04184线性代数(经管类)课堂笔记-红字重点
自考线性代数经管类笔记

自考线性代数经管类笔记线性代数是一门应用广泛的数学学科,对于经管类专业的学生来说尤为重要。
本篇笔记将详细介绍线性代数的基本概念和常用方法,以及其中涉及到的经管类应用。
一、向量和矩阵1.1 向量的定义和运算向量是由有序的一组数按照一定顺序排列而成的对象,常用于表示多维度的数据。
向量的加法和数乘是基本的运算操作,能够实现向量之间的合成和缩放。
1.2 矩阵的定义和运算矩阵是由多个向量按行或按列排列而成的矩形数组。
矩阵的加法、数乘和乘法是常见的运算操作,通过这些运算可以实现线性方程组的求解和数据的变换。
二、线性方程组2.1 线性方程组的概念线性方程组是由一组线性方程组成的方程集合,可以用矩阵和向量的形式表示。
线性方程组通常用来描述多个变量之间的关系。
2.2 线性方程组的解法高斯消元法是求解线性方程组的常用方法,通过矩阵的初等行变换将线性方程组化为简化的行阶梯形式,从而得到方程组的解。
三、矩阵的应用3.1 线性变换线性变换是指从一个向量空间到另一个向量空间的一种特殊变换,可以用矩阵表示。
在经管类问题中,线性变换常用于描述经济模型、市场规模和供求关系等。
3.2 特征值与特征向量矩阵的特征值和特征向量是描述矩阵性质的重要指标,可以用来判断矩阵的稳定性和变换的特征。
四、行列式4.1 行列式的概念行列式是一个与矩阵相关的标量,可以用来判断矩阵的可逆性、求解线性方程组和计算面积、体积等几何量。
4.2 行列式的性质行列式具有一系列重要的性质,包括行列式的展开性质、可逆矩阵的行列式性质和矩阵乘法的行列式性质等。
五、矩阵的特殊类型5.1 对称矩阵对称矩阵是指矩阵的转置矩阵等于矩阵本身,具有特殊的性质和应用,常用于描述系统的对称程度和分析力学中的刚体问题。
5.2 正定矩阵正定矩阵是指矩阵的所有特征值都大于零,是优化问题和概率论中常见的矩阵类型。
六、线性代数的应用6.1 经济学中的应用线性代数在经济学中有广泛的应用,如求解均衡价格、计算生产函数、分析供求关系等。
4月自学考试04184线性代数(经管类)试卷(重点)及答案教育文稿

2015 年 4 月高等教育自学考试全国统一命题考试04184 线性代数(经管类)试卷一、单项选择题(本大题共5 小题,每小题 2 分,共 10 分)在每小题列出地四个备选项中只有一个选项为符合题目要求地, 地括号内;错选、多选或未选均无分; 请将其代码填写在题后a 1 a 2b 1b 2a 1 a 2 2b 1 2b 2 3a 13a 2, D 2 =,则 D 2=1、设行列式 【 】D 1=A.-D 1B.D 1C.2D 1D.3D 11 2 0 1 x 12 4 0 2 2 y, B =,且 2A=B ,则 【 】2、若 A=A.x=1 , y=2 C.x=1 , y=1B.x=2 , y=1 D.x=2 , y=2A 等价地为3、已知 A 为 3 阶可逆矩阵,则下列矩阵中与【】1 A. 0 0 0 0 0 01 0 0 0 1 0 00 1 C. 0 0 0 0 0 01 1 0 0 0 1 0 01B. D. 4、设 2 阶实对称矩阵 A 地全部特征值味 1, -1, -1,则齐次线性方程组( E+A )x=0 地基础解系所含解向量地个数为 【】A.0B.1C.2D.33 11 3有一个特征值为【】5、矩阵A.-3二、填空题(本大题共B.-2 10 小题,每小题C.12 分,共 D.220 分)请在每小题地空格中填上正确答案;错填、不填均无分; 1A 为 3 阶矩阵,且A =3,则 3A =6、设 .2 3 1 5A * =,则7、设 A=.1 2 0 11 1 1 1, B=,若矩阵 X 满足 AX =B ,则 X= .8、已知 A=1 2T ,T线性相关,则数 k=.9、若向量组(1, 2, 1) (k-1 , 4, 2) 12x 12x 1 3x 12 x 2 x 2 x 2ax 3 x 3 x 30 0a = 有非零解,则数 .10、若齐次线性方程组T ,T,则内积(1,11、设向量(1, -2, 2) (2, 0, -1) 2 )= .12 V ={x=(x 1,x 2, 0)T|x 1, x 2 R } 地维数为12、向量空间 13、与向量(1 .1, 0,1) T 与(1, 1, 0) T 均正交地一个单位向量为 .2 3地两个特征值之积为 .14、矩阵2 22 2 2x1ax2a x32 x 1 x 2 正定,则数 a 地取值范围为15、若实二次型 f(x1 , x 2,x3)= .7 小题,每小题 三、计算题(本大题共9 分,共 63 分)2 1 1 1 13 1 1 1 14 1 11 1 5地值 .16、计算行列式 D=1 21*A( 2A)2A 地值 .17、设 2 阶矩阵 A 地行列式,求行列式0 1 111111251,B= ,矩阵X 满足X =AX +B,求0X.18、设矩阵 A =3T T T T(1,2,1) , (2,5,1) , (1,3, 6) , (3, 1,10)19、求向量组地秩与一个极1234大线性无关组,并将向量组中地其余向量由该极大线性无关组线性表出.22x 1 x 1 x 1 ax 2bx 2cx 2 a x 3 b x 3c x 33a 223b ,其中 a, b, c 两两互不相同 . 20、利用克拉默法则解线性方程组2 23c1 a 1 a 3 1 11 10 0 0 0 1 0 00 b相似,求数 a, b 地值. 21、已知矩阵 AB 与 f ( x 1 , x 2 ) 5x 1 5x 2 4 x 1x 2 为标准型, 22、用正交变换化二次型并写出所作地正交变换 .四、证明题(本题 7 分)23、设 A , B 均为 n 阶矩阵,且 A=B+E ,B 2=B ,证明 A 可逆 .2015 年 4 月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5 小题,每小题 3.D 2 分类,共 10 分)4.C1.C2.A 5.B二、填空题(本大题共 小题,每小题 2 分,共 20 分)10 5 31 26. 97.1 1 1 31 08.9. 3 10. -2 11. 0 1 31 3TT或1,1,1 1,1,112. 213.15. a > 163 分)1 1 0 414. -1三、计算题(本大题共7 小题,每小题 9 分,共 1 2 1 1 3 1 1 1 1 1 4 1 11 1 5 1 0 0 03 5 2 21 1 3 016.解 ( 5 分)D=5= 221 3 01 0 474( 9 分)12*1AA 可逆,于为 AA A17.解 由于 ,所以 ( 3 分)1 21*11(2 A ) 2 AA2 A A故 (6 分)21 23 23 29 21111AAAA( 9 分)=由 X AX B ,化为 E A XB ,18.解 ( 4 分)11 11 0 01 20 3 02 2 1 1 1 11 31而 E AE A可逆,且 ( 7 分)0 3 02 21 1 1 1 1 251 0 3 32 1 1 0 11 3故 X( 9 分)12 1 11 5 53 7 71 0 0 0 1 011 5 017 7 0由于1,2,3,0 019.解 ( 5 分) 41,所以向量组地秩为 2, 2 为一个极大线性无关组,并且有115 2 ,177(9 分)31412注:极大线性无关组不唯一;方程组地系数行列式20. 解 a21 D= 1 1 ab c 2b cb ac a c b2D 0 ,故方程有唯一解;因为 a,b,c 两两互不相同,所以(4 分)3a 2a 23a2 a 2a b c 1 1 1 2 222 又 D 13b 3cb 0 , D 23b3cb c0 ,2222c2 1 1 1 a b c 3a 3b 2D 33D( 7 分)3c2由克拉默法则得到方程组地解D D D 3 D D3 1 2 x 0, x 0, x 3(9 分)123DDD21.解 因为矩阵 A 与 B 相似,故trA trB 且 AB ,(6 分)1 3 a 1 10 21 0b即所以 (9 分)a=1,b=4. 5 2 2 5A22. 解 二次型地矩阵3,7,所以 A 地特征值由于 ( 4 分)E A37 123 ,由方程组 3E A x 0 得到 3 地一个单位对于特征值A 属于特征值11112 2特征向量17, 由方程组 对于特征值7 E A x 0 得到 7 地一个单位特征向量A 属于特征值22112 2 .21 1 112 2得正交矩阵Q1,,作正交变换 x Qy ,22 23 7 .二次型化为标准形 fy 1y 2( 9 分)四、证明题(本题 7 分) 2因为 AB E ,所以 A EB ,又 BB ,23.证 2A EA E , 故 (3 分)1 2 2A3 A2E, 于为 AA 3EE ,故 化简得 可逆;( 7 分)A。
04184线性代数(经管类)基础知识

第一章行列式(一)行列式的定义1.行列式的定义D n=∑(-1)t a1c1a2c2…a n cn(t是列标c的逆序数)=∑(-1)t a r11a r22…a rn n(t是行标r的逆序数) 2.余子式及代数余子式设有n阶行列式D n,对任何一个元素a ij,划去它所在的第i行及第j列,剩下的元素按原先次序组成一个n-1阶行列式,称它为元素a ij的余子式,记作M ij,再记A ij=(-1)i+j M ij,称A ij为元素a ij的代数余子式.3.特殊行列式①②③(二)行列式的性质性质1 行列式与它的转置行列式相等,即|A|=|A T|性质2用数k乘行列式D中某一行(列)的所有元素等于用数k乘此行列式D.推论1行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面性质3互换行列式的任意两行(列),行列式的值改变符号.推论2如果行列式中有某两行(列)相同,则此行列式的值等于零.推论3 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4如果行列式某行(列)所有元素均为两个数的和,则行列式可以按该行(列)拆为两个行列式的和.性质5 把行列式某一行(列)所有元素都乘以同一个数然后加到另一行(列)的对应元素上去,行列式不变. 定理1(行列式展开定理)n阶行列式D=|a ij|n等于它任意一行(列)各元素与其对应的代数余子式的乘积的和,即D=a i1A i1+a i2A i2+…+a in A in(i=1,2,…n)(D按第i行的展开式)或D=a1j A1j+a2j A2j+…+a nj A nj(j=1,2,…n)(D按第j列的展开式)定理2行列式D=|a ij|n的任一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即a i1A k1+a i2A k2+…+a in A kn=0(i≠k)或a1j A1s+a2j A2s+…+a nj A ns=0(j≠s)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:第二章矩阵(一)矩阵的定义矩阵定义:m*n个数a ij(i=1,2,…m,j=1,2,…n)排列成一个m行n列的有序数表,称为m*n矩阵,记为(a ij)m*n (二)矩阵的运算1.矩阵的同型与相等设有矩阵A=(a ij)m*n, B=(b ij)k*s,若m=k, n=s,则说A与B是同型矩阵,若A与B同型,且对应元素相等,即a ij=b ij,则称矩阵A与B相等,记为A=B2.矩阵的加、减法设A=(a ij)m*n, B=(b ij)m*n,是两个同型矩阵,则A+B=(a ij+b ij)m*n , A-B=(a ij-b ij)m*n注意:矩阵的相加(减)体现为对应元素的相加(减),只有A与B为同型矩阵,它们才可以相加(减).①A+B=B+A ②(A+B)+C=A+(B+C) ③A-B=A+(-B)3.数乘运算设A=(a ij)m*n,k为任一个数,则规定kA=(ka ij)m*n, 数k与矩阵A的乘积就是A中所有元素都乘以k①(kj)A=k(j A) ②(k+j)A=k A+j A ③k(A+B)=k A+k B4.乘法运算设A=(a ij)m*k,B=(b ij)k*n,则规定AB=(c ij)m*n,其中c ij=a i1b1j+a i2b2j+…+a ik b kj (i=1,2,…,m, j=1,2,…,n)只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,且AB的行数为A的行数,AB的列数为B的列数,AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.矩阵乘法与普通数乘法不同:不满足交换律,即①AB≠BA②当AB=0,不能推出A=0或B=0,不满足消去律.①(AB)C=A(BC) ②A(B+C)=AB+AC ③(B+C)A=BA+CA ④k(AB)=(k A)B=A(k B)⑤AE=EA=A5.方阵的乘幂与多项式方阵A为n阶方阵,则A m=AAA…A(m个).①A k A j=A k+j ②(A k)j=A kj ③特别地A0=E④若f(x)=a m x m+a m-1x m-1+…+a1x+a0,则规定f(A)=a m A m+a m-1A m-1+…+a1A+a0E,称f(A)为A的方阵多项式。
04184线性代数知识点

04184线性代数知识点b b1. 已知 2 阶行列式 a 1 a 1= N , b 1 b c 1 c 线性代数知识点 = n ,则 b 1 b 2 a 1 + c 1 a 2 + c 22. 设 A 是 n 阶矩阵,C 是 n 阶正交阵,且 B=C T AC ,则 A 与B 等价、A 与 B 有相同的特征值、A 与 B 相似3. n 元线性方程组 Ax=b 有两个解 a 、c ,则 a-c 是 Ax=0 的解。
4.4.设A ,B ,C 均为n 阶方阵,AB= BA ,AC=CA ,则ABC=BCA5. 非齐次线性方程组 Ax=b 中,系数矩阵 A 和增广矩阵的秩都等于 4,A 是4×6 矩阵,则方程组有无穷多解6. α,β,γ是三维列向量,且|α,β,γ|≠0,则向量组α,β,γ的线性相关性是线性无关7.(-1,1)不能表示成(1,0)和(2,0)的线性组合8.(4,0)能表示成(-1,2),(3,2)和(6,4)的线性组合,且系数不唯一9.设β=(1,0,1),γ=(1,1,-1),则满足条件3x+β=γ的x 为 1/3(0, 1, -2)10.设α,β,γ都是 n 维向量,k ,l 是数,(α+β)+γ=α+(β+γ)、α+β=β+α、α+(-α)=011.属于不同特征值的特征向量必线性无关、相似矩阵必有相同的特征值、特征值相同的矩阵未必相似12. 已知矩阵 A = 5 2 1有一个特征值为 0,则 x= 2.5 13. 已知 3 阶矩阵 A 的特征值为 1,2,3,则|A-4E|=-614. 已知 f (x )=x 2+x+1 方阵 A 的特征值 1,0,-1,则 f (A )的特征值为 3,1,115. 要保证 n 阶实对称阵 A 为正定,则 A -1 正定、A 合同于单位阵、A 的正惯性指数等于 n16.二次型 f (x 1,x 2,x 3)= x 12+ x 22+x 32+2x 1x 2+2x 1x 3+2x 2x 3,其秩为 117. 设 f=X T AX ,g=X T BX 是两个 n 元正定二次型,则 X T ABX 未必是正定二次型。
自考线性代数(04184)经管类复习提纲内含经典例题分类讲解

线性代数复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
04184 线性代数(经管类)

13、已知
A
相似与
=
-1 0
0 2 ,则 A-E =-2
11 1 14、 3 5 6 =6。
9 25 36
15、设 A 为正交阵,则 A 1
16、 ( AB)T BT AT
17、设 3 阶矩阵 A 的行列式|A|=2,则|2A|= 16
18、设 A 为 n 阶矩阵,B 为 n 阶非零矩阵,若 B 的每一列向量都是齐次线性方程组 Ax=0 的解, 则|A|= 0。
解: 设 A 和 A 分别为方程组的系数矩阵和增广矩阵.对 A 施以初等行变换: 1 1 3 2 1 1 1 1 3 2 1 1
A 2 2 2 2 2 1 0 0 4 2 0 1 5 5 9 8 4 5 0 0 6 2 1 0
1 1 3 2 1 1 1 1 3 2 1 1 0 0 4 2 0 1 0 0 2 0 1 1 . 0 0 2 0 1 1 0 0 0 2 2 3
2
7、设 A 为可逆矩阵,则与 A 必有相同特征值的矩阵为 AT 8、向量空间V {(x, y, 0)T R3, x, y R} 的维数等于 2。 9、向量空间V 的一组基就是向量组V 的一个极大线性无关组 10、二次型 f (x1, x2 , x3 ) 2x12 +6x22 +4x32 是正定二次型 11、设1 , 2 ,…, n 为 n 阶矩阵 A 的行(列)向量组,则向量组1 , 2 ,…, n 线 性相关的充分必要条件是 A 0 12、若行列式 D 中有两行(列)元素对应相等,则 D 的值为 0
1 1 23
0 1 3
22、设 A 0 1
0 2
2
,B
0
6
1
1 23
1
自考本科线性代数(经管类)知识汇总

自考高数线性代数笔记第一章行列式1.1 行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1 a 为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2 当x 取何值时,[答疑编号10010102:针对该题提问]解:.解得0<x<9所以当0<x<9 时,所给行列式大于0。
(二)n 阶行列式符号:它由n 行、n 列元素(共个元素)组成,称之为n 阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i 称为行标,它表示这个数在第i 行上;后一个下标j 称为列标,它表示这个数在第j 列上。
所以在行列式的第i 行和第j 列的交叉位置上。
04184线性代数知识点

04184线性代数知识点线性代数是数学中的一个重要分支,它研究的是向量空间以及线性映射的性质与运算规律。
它在科学和工程领域中有着非常广泛的应用,包括计算机图形学、机器学习、量子力学等。
以下是线性代数中一些重要的知识点:1.向量与向量空间:向量是具有大小和方向的量,可以用一列有序数表示。
向量空间是由一组向量及其线性组合组成的集合。
向量空间满足加法、数乘和封闭性等基本性质。
2.矩阵与行列式:矩阵是一个按照矩形排列的数组,行列式是一个用于描述矩阵性质的数。
矩阵可以用来表示线性映射,而行列式则可以用来计算矩阵的特征值和特征向量。
3.线性方程组与线性映射:线性方程组是一组关于未知量的线性方程的集合,可以用矩阵和向量的形式表示。
线性映射是一种保持向量空间结构的映射,包括线性变换和线性函数。
4.向量空间的基与维数:向量空间的基是一个线性无关的向量组,它可以用来表示向量空间中的任意向量。
维数是向量空间中基的数量,对于有限维向量空间,维数即基中向量的个数。
5.线性相关与线性无关:向量组中如果存在一组不全为零的线性组合得到零向量,就称这个向量组线性相关;否则,就称这个向量组线性无关。
线性无关的向量组可以作为向量空间的基。
6.线性变换与特征值特征向量:线性变换是指一个向量空间到另一个向量空间的映射,它保持向量空间中的线性结构。
特征值是线性变换对应矩阵的特征方程的根,特征向量是与特征值对应的非零向量。
7.内积空间与正交性:内积空间是一个满足特定性质的向量空间,其中定义了一种内积运算。
正交性是指两个向量的内积为零,它在几何学和物理学中有着重要的应用。
8.矩阵的特征值分解与奇异值分解:特征值分解是将一个矩阵分解为特征值和特征向量的形式,奇异值分解是将一个矩阵分解为奇异值和奇异向量的形式。
这两种分解在矩阵分析和数据处理中都有广泛的应用。
9.欧几里得空间与投影:欧几里得空间是一个具有内积的向量空间,它常常用来描述实数空间中的几何关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
04184线性代数(经管类)课堂笔记-红字重点第一章行列式1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1某5某9+2某6某7+3某4某8-3某5某7-1某6某8-2某4某9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如解因为所以8-3a=0,时例2当某取何值时,解:.解得0所以当0它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j称为列标,它表示这个数在第j列上。
所以在行列式的第i行和第j列的交叉位置上。
为叙述方便起见,我们用(i,j)表示这个位置。
n阶行列式通常也简记作。
也是一个数,至于它的值的计算方法需要引入下面两个概念。
(1)在n阶行列式中,划去它的第i行和第j列,余下的数按照原来相对顺序组成的一个(n-1)阶行列式叫元素的余子式,记作例如,在三阶行列式中,的余子式表示将三阶行列式划去第1行和第1列后,余下的数按照相对位置组成的二阶行列式,所以相似地,的余子式表示将三阶行列式划去第二行和第三列后,余下的数组成的二阶行列式。
所以例1若,求:(3)解(1)(2)(3)(4)定义:(系数其实是个正负符号)例2求例1中的代数余子式(1)(2)(4)解:(1)(2)(3)(4)(如果符号是奇数,等于相反数;如果是偶数,等于原数)例3若计算(以上两组数相等)解:由于与例3的结果比较,发现这一结果说明:三阶行列式等于它的第一列的元素与对应的代数余子式的积的和,这一结果可以推广到n阶行列式作为定义。
定义:n阶行列式即规定n阶行列式的值为它的第一列的元素与相应代数余子式的积的和,上面结果中因为所以有特别情形例4计算下列行列式(1)由本例可见四阶上三角形行列式的值也等于它的主对角线各数之积(2)可见五阶上三角形行列式的值仍等于它的主对角线各数之积即任意n阶上三角形行列式的值等于它的主对角线各数之积同理有1.2行列式按行(列)展开在1.1节讲n阶行列式的展开时,是把按其第一列展开而逐步把行列式的阶数降低以后,再求出其值。
实际上,行列式可以按其任意一行或按其任意一列展开来求出它的值。
现在给出下面的重要定理,其证明从略。
定理1.2.1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积之和,即(i=1,2,…,n)(1.8)或(j=1,2,…,n)(1.9)其中,是元素在D 中的代数余子式。
定理1.2.1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积之和,即(i=1,2,…,n)(1.8)或(j=1,2,…,n)(1.9)其中,是元素在D中的代数余子式。
(1.8)式称为D按第i行的展开式,(1.9)式称为D按第j列的展开式,这里i,j=1,2,…上述展开定理也可以表示成(i=1,2,…,n)(j=1,2,…,n)这两个展开式中的每一项都由三部分组成:元素和它前面的符号以及它后面的余子式,三者缺一不可!特别容易忘掉的是把元素(特别是)抄写下来。
根据定理1.2.1知道,凡是含零行(行中元素全为零)或零列(列中元素全为零)的行列式,其值必为零。
特别情形(1)(2)例5计算解:由于第一行或第四列所含零最多,故可按第一行展开(解题技巧)可见四阶下三角形行列式的值也等于它的主对角线各数之积例5的结果可推广为我们称这种行列式为下三角行列式(可任意取值的元素在主对角线的下面)。
例6计算解:由于第2行含0最多,所以应按第二行展开例7计算按第6行展开得例8计算(1)解:按第4行展开(2)解:将D按第一行展开(重新分组后得出)1.3行列式的性质与计算因为n阶行列式是n!项求和,而且每一项都是n个数的乘积,当n比较大时,计算量会非常大,例如,10!=3628800。
所以对于阶数较大的行列式很难直接用定义去求它的值,这时利用行列式的性质可以有效地解决行列式的求值问题。
下面我们来研究行列式的性质,并利用行列式的性质来简化行列式的计算。
1.3.1行列式的性质将行列式D的第一行改为第一列,第二行改为第二列……第n行改为第n列,仍得到一个n阶行列式,这个新的行列式称为D的转置行列式,记为或。
即如果则性质1行列式和它的转置行列式相等,即或根据这个性质可知,在任意一个行列式中,行与列是处于平等地位的。
凡是对“行”成立的性质,对“列”也成立;反之,凡是对“列”成立的性质,对“行”也成立。
所以只需研究行列式有关行的性质,其所有结论对列也是自然成立的。
(运用最多)性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD这也就是说,行列式可以按某一行和某一按列提出公因数:证将左边的行列式按其第i行展开以后,再提出公因数k,即得右边的值:注意如果行列式有多行或多列有公因数,必须按行或按列逐次提出公因数。
例1计算行列式:解=30(4+6+5-2-4-15)=30(-6)=-180在例1的计算过程中,我们先提出第二行的公因数2和第三行的公因数3,得到第一个等号右边的式子,然后提出这个行列式中第三列的公因数5,把行列式中各元素的绝对值化小以后,再求出原行列式的值。
例2因为所以原式=4abcdef这里是把上式第一个等号左边的行列式的第一、二、三行分别提出了公因子a,d,f,第二个等号左边的行列式的第一、二、三列分别提出了公因子b,c,e,化简后再求出其值。
例3计算行列式:在行列式D的每一行中都提出公因数(-1)并用行列式性质1可以得到因为行列式D是一个数,所以由D=-D,可知行列式D=0。
用这种方法可以证明:任意一个奇数阶反对称行列式必为零。
所谓反对称行列式指的是,其中主对角线上的元素全为0,而以主对角线为轴,两边处于对称位置上的元素异号。
即若是反对称行列式,则它满足条件(运用最多)性质3互换行列式的任意两行(列),行列式的值改变符号。
即对于如下两个行列式有根据这个性质可以得到下面的重要推论:推论如果行列式中有两行(列)相同,则此行列式的值等于零。
因为互换行列式D中的两个相同的行(列),其结果仍是D,但由性质3可知其结果为-D,因此D=-D,所以D=0。
性质4如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零。
证设行列式D的第i行与第j行的对应元素成比例,不妨设第j行元素是第i行元素乘以k得到的,则由于将行列式D中第j行的比例系数k提到行列式的外面来以后,余下的行列式有两行对应元素相同,因此该行列式的值为零,从而原行列式的值等于零。
行列式中某两列元素对应成比例的情形可以类似地证明。
例4验算某=3是否是方程的根。
解:因为(第二行与第四行成倍数)∴某=3是方程f(某)=0的根。
性质5行列式可以按行(列)拆开,即证将左边的行列式按其第i行展开即得这就是右边两个行列式之和。
(运用最多)性质6把行列式D的某一行(列)的所有元素都乘以同一数k以后加到另一行(列)的对应元素上去,所得的行列式仍为D即:例5证明:的充要条件是k=1或k=±2证因为(第一行的数乘与(-1)加到第二行上去)所以,D=0的充要条件是k=1或k=±2。
此题中,为了叙述方便,我们引入了新的记号,将每一步的行变换写在等号上面(若有列变换则写在等号下面,本题没有列变换),即第一步中的②+(-1)某①表示将第一行的-1倍加到第二行上,第二步是第一列展开。
根据行列式的展开定理与行列式的性质,我们有下面的定理:定理1.3.1n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即,(1.10),(1.11)1.3.2行列式的计算行列式的计算主要采用以下两种基本方法。
(1)利用行列式的性质,把原行列式化为容易求值的行列式,常用的方法是把原行列式化为上三角(或下三角)行列式再求值。
此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质6在某一行或某一列中产生很多个“0”元素,再按包含0最多的行或列展开。
例6计算行列式解由于上三角行列式的值等于其主对角线上元素的乘积,所以我们只要设法利用行列式的性质将行列式化为上三角行列式,即可求出行列式的值。
我们在计算例6中的行列式时,是利用行列式的性质先将它化成上三角行列式后,再求出它的值,事实上在计算行列式的值时,未必都要化成上三角或下三角行列式,若将行列式的性质与展开定理结合起来使用,往往可以更快地求出结果。
例7计算行列式:解观察到行列式的第一行第一列位置的元素a11=1,利用这个(1,1)位置的元素1把行列式中第一列的其他元素全都化为0,然后按第一列展开,可将这个四阶行列式降为三阶行列式来计算,具体步骤如下:按第一列展开,得=(-1)某2某(把最简单的调到第一列或是第一旬)在本例中,记号①②写在等号下面,表示交换行列式的第一列和第二列,②+5某①写在等号下面,表示将行列式的第一列乘以5后加到第二列。
例9计算行列式:(例子很特殊)解这个行列式有特殊的形状,其特点是它的每一行元素之和为6,我们可以采用简易方法求其值,先把后三列都加到第一列上去,提出第一列的公因数6,再将后三行都减去第一行:(32)?例10计算行列式:a2-例11计算n阶行列式(n>1):解将行列式按第一列展开,得(简化的过程就是消阶,次方也应减少,为(N-1)等例12计算范德蒙德(VanderMonde)行列式:例13计算(这是个定律)例14计算(解题规律:每行或是每列中的和是一样的,故每行或是每列都乘“1”加到第一行或是第一列上去,再把这个数当公因数提取,形成有一行或是列全为“1”的行列式,然后再化简)=(某+4a)(某-a)41.4克拉默法则或(一)二元一次方程组(方程1、2左右同乘以一个数,上下对减)由a22某①-a12某②得由a11②-a21①得令=D=D1=D2则有A是常数项∴当D≠0时,二元一次方程组有唯一解(二)三元一次方程组令叫系数行列式,,由D中的A11①+A21②+A31③得即。