线性代数经管类——重点难点总结

合集下载

线性代数各章节内容重点难点(大一第一学期)

线性代数各章节内容重点难点(大一第一学期)

线性代数各章节内容重点难点(大一第一
学期)
教学难点:向量空间、子空间、基、维数等概念的理解和应用,向量的内积和正交矩阵的性质的证明。

第一章:行列式
本章主要介绍了行列式的定义、性质和运算,以及克莱姆法则的应用。

学生需要了解行列式的基本概念和性质,掌握二、三、四阶行列式的计算方法,以及简单的n阶行列式的计算方法。

此外,学生还需要理解克莱姆法则的结论,并会应用于实际问题中。

本章教学难点在于行列式性质的证明。

第二章:矩阵
本章主要介绍了矩阵的概念和各种运算及其规律,包括单位矩阵、对角矩阵、三角矩阵、对称矩阵等的性质,矩阵的线性运算、乘法、转置等,以及逆矩阵、伴随矩阵、初等变换、矩阵等价、矩阵秩等概念和方法。

学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。

本章教学难点在于矩阵可
逆的充分必要条件的证明,初等矩阵及其性质,以及分块矩阵及其运算。

第三章:向量
本章主要介绍了向量的概念和相关性质,包括向量组的线性相关与线性无关的概念和性质,向量组的极大线性无关组的概念,向量组的等价和向量组的秩的概念,向量组的秩与矩阵的秩之间的关系,以及向量空间、子空间、基、维数等概念和向量的内积、正交矩阵等性质。

学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。

本章教学难点在于向量空间、子空间、基、维数等概念的理解和应用,以及向量的内积和正交矩阵的性质的证明。

线性代数重点难点

线性代数重点难点

线性代数重点难点一、重点内容及要求:1. 理解行列式的概念,能熟练运用行列式的基本性质以及行列式按行(列)展开定理计算行列式,会用Laplace定理和Cramer 法则解线性方程组。

2. 理解矩阵及其秩的概念,会用初等变换求其秩,掌握线性方程组有解、有唯一解以及无解的条件。

掌握用行的初等变换求方程组解的方法。

3. 会熟练运用矩阵的加法、数乘、乘法、转置等运算法则,会计算方阵乘积的行列式。

理解矩阵可求逆的概念,掌握利用伴随矩阵和初等变换求出矩阵逆的方法。

理解矩阵的初等变换和初等矩阵的关系, 理解初等变换和矩阵乘法的关系,掌握矩阵可逆的充要条件。

掌握分块矩阵的运算法则。

4. 理解线性空间、向量的线性组合和线性表示、向量组等价、向量组的线性相关线性无关以及向量组的极大线性无关组和向量组秩的概念,掌握向量组线性相关、线性无关的性质,能判断向量组的线性相关和无关性,会求出向量组的极大线性无关组、确定向量组的秩。

掌握子空间的判断条件,会求出线性空间的基、维数以及向量在一组基下的坐标。

理解基变换的概念,会求过渡矩阵、会用坐标变换公式。

掌握理解向量组的秩与矩阵秩的关系。

理解非齐次线性方程组的解与其导出的齐次线性方程组的解之间的关系、掌握齐次线性方程组基础解系的求法以及写出非齐次线性方程组的通解。

5. 理解内积和欧氏空间的概念,掌握Schmidt正交化方法,理解标准正交基、正交矩阵的概念及其相关性质。

6. 了解线性变换的概念,会写出在基下的矩阵。

理解线性变化和矩阵特定的一一对应关系。

理解并能熟练计算矩阵的特征值和特征向量,掌握矩阵的特征值和特征向量的相关性质。

理解相似矩阵的概念和性质。

掌握矩阵可相似对角阵的充要条件,能熟练地利用之化矩阵为对角阵。

理解实对称矩阵的特征值和特征向量的性质,能熟练地用整交矩阵化实对称矩阵化为对角阵。

7. 理解二次型及其秩的概念,理解对称矩阵和二次型的一一对应关系,理解二次型的标准形、规范形概念以及惯性定理,熟练利用配方法和正交矩阵化二次型为标准形。

线性代数经管类知识点

线性代数经管类知识点

线性代数经管类知识点线性代数在经管类学科中具有重要的地位,其涉及的知识点对于分析、建模和解决管理问题具有重要的作用。

本文将介绍一些线性代数在经管类学科中常用的知识点,并探讨其应用。

应用于经管类学科的线性代数知识主要包括矩阵运算、线性方程组的求解以及向量空间的理解。

我们将逐一进行阐述。

1. 矩阵运算:矩阵是一个重要的线性代数工具,在经管类学科中广泛应用于数据的存储和计算。

矩阵的加法、减法和乘法运算能够对数据进行处理和分析。

例如,在经济学中,我们可以通过矩阵乘法来计算不同经济指标的加权平均值,从而对经济状况进行评估。

此外,矩阵的转置运算也可以用于解决一些经济和管理问题,例如对投资组合的评估与优化。

2. 线性方程组的求解:线性方程组是经管类学科中常见的数学模型。

通过线性代数的方法,我们可以求解线性方程组,从而得到方程组的解析解或数值解。

这对于经济学中的均衡分析和管理学中的约束优化问题具有重要的作用。

同时,我们还可以通过求解线性方程组来进行数据拟合和趋势预测,帮助企业做出决策。

3. 向量空间的理解:向量空间是线性代数中的一个重要概念,它描述了向量的线性组合和向量之间的相对位置关系。

在经管类学科中,我们经常遇到多个变量之间的关系,例如市场需求与供给的关系、公司利润与销售额的关系等。

通过将变量转化为向量,我们可以使用向量空间的理论和方法来分析这些关系。

例如,我们可以通过求解向量的线性相关性来检验变量之间的相关性,从而评估市场需求的变化对供给的影响,或者评估公司销售额的变化对利润的影响。

除了以上提到的知识点,线性代数在经管类学科中还有其他重要的应用。

例如,特征值和特征向量的分析可以用于研究矩阵的稳定性和动态系统的行为。

奇异值分解可以用于降维和数据压缩,从而提取关键信息。

矩阵的逆可以用于求解逆问题,例如在金融学中用于对冲或风险管理。

总之,线性代数在经管类学科中扮演着不可或缺的角色。

通过掌握矩阵运算、线性方程组求解和向量空间的理解,我们能够更好地理解和分析经济和管理问题。

线性代数知识重难点和常考题型汇总

线性代数知识重难点和常考题型汇总

②、

a11 a21

a12
a22

a1 n a2 n



x1
x2



b1
b2


Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2

amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2



an


x1
x2



(全部按列分块,其中



b1 b2




);



xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)

自考本科线性代数(经管类)知识汇总(红字重点)

自考本科线性代数(经管类)知识汇总(红字重点)

自考高数线性代数笔记第一章行列式行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。

(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。

我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:.解得0<x<9所以当0<x<9时,所给行列式大于0。

(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。

其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。

所以在行列式的第i行和第j列的交叉位置上。

为叙述方便起见,我们用(i,j)表示这个位置。

n阶行列式通常也简记作。

n阶行列式也是一个数,至于它的值的计算方法需要引入下面两个概念。

线性代数难点解析

线性代数难点解析

线性代数难点解析.txt如果背叛是一种勇气,那么接受背叛则需要更大的勇气。

爱情是块砖,婚姻是座山。

砖不在多,有一块就灵;山不在高,守一生就行。

一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。

2、掌握:行列式的基本性质及推论。

3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。

二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。

三、重要公式1、若A为n阶方阵,则│kA│= kn│A│2、若A、B均为n阶方阵,则│AB│=│A│·│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi四、题型及解题思路1、有关行列式概念与性质的命题2、行列式的计算(方法)1)利用定义2)按某行(列)展开使行列式降阶3)利用行列式的性质①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。

②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。

③逐次行(列)相加减,化简行列式。

④把行列式拆成几个行列式的和差。

4)递推法,适用于规律性强且零元素较多的行列式5)数学归纳法,多用于证明3、运用克莱姆法则求解线性方程组若D =│A│≠0,则Ax=b有唯一解,即x1=D1/D,x2= D2/D,…,xn= Dn/D其中Dj是把D中xj的系数换成常数项。

注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。

4、运用系数行列式│A│判别方程组解的问题1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解)2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法则求出第二章矩阵一、重点1、理解:矩阵的定义、性质,几种特殊的矩阵(零矩阵,上(下)三角矩阵,对称矩阵,对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵)2、掌握:1)矩阵的各种运算及运算规律2)矩阵可逆的判定及求逆矩阵的各种方法3)矩阵的初等变换方法二、难点1、矩阵的求逆矩阵的初等变换2、初等变换与初等矩阵的关系三、重要公式及难点解析1、线性运算1)交换律一般不成立,即AB≠BA2)一些代数恒等式不能直接套用,如设A,B,C均为n阶矩阵(A+B)2=A2+AB+BA+B2≠A2+2AB+B2(AB)2=(AB)(AB)≠A2B2(AB)k≠AkBk(A+B)(A-B)≠A2-B2以上各式当且仅当A与B可交换,即AB=BA时才成立。

线性代数难点解析

线性代数难点解析

一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。

2、掌握:行列式的基本性质及推论。

3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。

二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。

三、重要公式1、若A为n阶方阵,则│kA│= kn│A│2、若A、B均为n阶方阵,则│AB│=│A│·│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi四、题型及解题思路1、有关行列式概念与性质的命题2、行列式的计算(方法)1)利用定义2)按某行(列)展开使行列式降阶3)利用行列式的性质①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。

②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。

③逐次行(列)相加减,化简行列式。

④把行列式拆成几个行列式的和差。

4)递推法,适用于规律性强且零元素较多的行列式5)数学归纳法,多用于证明3、运用克莱姆法则求解线性方程组若D =│A│≠0,则Ax=b有唯一解,即x1=D1/D,x2= D2/D,…,xn= Dn/D其中Dj是把D中xj的系数换成常数项。

注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。

4、运用系数行列式│A│判别方程组解的问题1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解)2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法则求出第二章矩阵一、重点1、理解:矩阵的定义、性质,几种特殊的矩阵(零矩阵,上(下)三角矩阵,对称矩阵,对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵)2、掌握:1)矩阵的各种运算及运算规律2)矩阵可逆的判定及求逆矩阵的各种方法3)矩阵的初等变换方法二、难点1、矩阵的求逆矩阵的初等变换2、初等变换与初等矩阵的关系三、重要公式及难点解析1、线性运算1)交换律一般不成立,即AB≠BA2)一些代数恒等式不能直接套用,如设A,B,C均为n阶矩阵(A+B)2=A2+AB+BA+B2≠A2+2AB+B2(AB)2=(AB)(AB)≠A2B2(AB)k≠AkBk(A+B)(A-B)≠A2-B2以上各式当且仅当A与B可交换,即AB=BA时才成立。

自考线性代数(经管类)重点内容

自考线性代数(经管类)重点内容

《线性代数(经管类)》重点内容前言:很多自考学员反映,在自考复习过程中大多数时候感到既畏惧,又无从下手。

那么,如何才能在有限的时间里,让我们的学员了解报考课程的重点难点,做到胸有成竹,运筹帷幄,从而提高复习效率,卓有成效地提高学生的成绩呢,自考网教学研发中心各专业研发团队特结合近10年自学考试历年真题的命题趋势及规律总结出考试重点,考生通过对重点考点的复习可以系统掌握考试常考的的知识点,明确复习目标,减轻考生的复习压力,减少复习时间,提高复习质量,让考生轻轻松松备考,简简单单通过考试。

第一章行列式1.简单的二阶、三阶行列式的计算。

(P3)2.利用行列式的定义计算行列式。

(P9)3.利用行列式的六大性质计算行列式。

(P11)4.利用克拉默法则求解线性方程组。

(P27)第二章矩阵5.矩阵的乘法运算。

(P37)6.矩阵乘法运算规律。

(P41)7.方阵的行列式具有的性质。

(P45)8.方阵的逆矩阵及其具有的性质。

(P48)9.利用矩阵的初等变换求解逆矩阵。

(P66)10.矩阵秩的求法。

(P70)11.利用矩阵求解线性方程组。

(P75)第三章向量空间12.线性表示。

(P83)13.线性相关和线性无关的性质与证明。

(P88)14.求向量组的极大无关组。

(P94)15.向量组的秩具有的性质。

(P97)16.求向量组的秩。

(P99)17.求向量空间的基与维数。

(P106)第四章线性方程组18.齐次线性方程组的性质。

(P110)19.求解齐次线性方程组。

(P114)20.非齐次线性方程组解的判别定理。

(P119)21.非齐次线性方程组的求通解方法。

(P)第五章特征值与特征向量22.特征值与特征向量的定义求法。

(P129)23.特征值与特征向量的一些重要结论。

(P131)24.特征值的性质。

(P132)25.求特征值与特征向量的一般方法。

(P133)26.方阵相似具有的性质。

(P138)27.求向量内积。

(P146)28.正交矩阵的性质与证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4184线性代数(经管类)——重点难点总结
1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T
2、设A 是n m ⨯矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥
B .b Ax =(其中b 是m 维实向量)必有唯一解
C .m A r =)(
D .0=Ax 存在基础解系
解:αααααααααααααααα
100
101
101)())(()())(()(T T T T T T T
T ==, 由于)13(23)2,3(=⎪⎪⎭

⎝⎛=T αα,
所以10010010113)13()(==ααααT T ⎪⎪⎭

⎝⎛=⎪⎪⎭⎫ ⎝⎛=466913)2,3(2313100
100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k ,
即0)()()()(443332221141=++++++-ααααk k k k k k k k ,
因为4321,,,αααα线性无关,必有⎪⎪⎩
⎪⎪
⎨⎧=+=+=+=-000043322141
k k k k k
k k k ,
只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0?
B.A =E
C.r (A )=n
D.0<r (A )<(n )
B.f 的标准形的系数都大于或等于零
C.A 的特征值都大于零
D.A 的所有子式都大于零×
20、求二次型f(x 1,x 2,x 3)=-4x 1x 2+2x 1x 3+2x 2x 3经可逆线性变换⎪⎩⎪
⎨⎧=+-=++=33
32123211y 2x y y 2y 2x y y 2y 2x 所
得的标准形.
12、设A 、B 为同阶方阵,且r (A )=r (B ),则()A 与B 合同⇔r (A )=r (B )⇔P T AP=B,P 可逆
A.A 与B 相似?
B.|A |=|B |
C.A 与B 等价
D.A 与B 合同?
13、若A 、B 相似,则下列说法错误..的是(B) A.A 与B 等价 B.A 与B 合同
若矩阵A 的行列式|A |≠0,则A 可逆,即AA -1=E ,E 为单位矩阵。

Ax =0只有零解⇔|A |≠0,故A 可逆
15、问a 为何值时,线性方程组⎪⎪
⎩⎪
⎪⎨=++=+=++6
32222432321
32321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)。

四、证明题(本题6分)
16、设A ,B ,A +B 均为n 阶正交矩阵,证明(A +B )-1=A -1+B -1。

17、若四阶方阵的秩为3,则() A.A 为可逆阵
B.齐次方程组Ax =0有非零解
C.齐次方程组Ax=0只有零解
D.非齐次方程组Ax =b 必有解
18、设2阶实对称矩阵A 的特征值为1,2,它们对应的特征向量分别为1α=(1,
1)T ,
D。

相关文档
最新文档