是3的倍数的特征

合集下载

《3的倍数的特征》教案

《3的倍数的特征》教案

《3的倍数的特征》教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!《3的倍数的特征》教案《3的倍数的特征》教案(通用14篇)《3的倍数的特征》教案篇1设计说明1、让学生产生探究的兴趣。

3的倍数的特征

3的倍数的特征

暂停一下
3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54Biblioteka 576063
66
69
72
75
78
81
84
87
90
93
96
99
个位和十位上的数字相加之和都等于9。
9
18 1+8=9
27 2+7=9
36 3+6=9
45 4+5=9
54
5+4=9
63
6+3=9
72 81
7+2=9 8+1=9
个位和十位上的 数字相加之和: 9+2=11, 11 ÷3=3……2
如果是三位数或更多数位的数,我们的发现还成立吗?
暂停一下
3的倍数的特征:
一个数各个数位上的数字之和是3 的倍数,这个数就是3的倍数。
北师大版 五年级上册 第三单元 倍数与因数
学习目标:
√ 经历探索3的倍数的特征的过程,理解3 的倍数的特征。
√ 能判断一个数是否是3的倍数。 √ 发展分析、比较、猜测、验证的能力。
2的倍数的特征:个位上是2、4、6、8、0的数都是 2的倍数。
5的倍数的特征:个位上是0或5的数都是5的倍数。
个位上是3、6、9的数是3的 倍数。
个位上是3、6、9的数不一定 是3的倍数,如:23、26、29
都不是3的倍数。
请在百数表中圈出3的倍数,你发现了什么?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

第二单元《3的倍数的特征》教案

第二单元《3的倍数的特征》教案
4.3的倍数在数列中的规律和性质。
5.3的倍数在日常生活中的应用。
二、核心素养目标
《3的倍数的特征》教学旨在培养学生的以下核心素养:
1.数学抽象:通过探究和归纳,使学生理解数的倍数概念,提高数学抽象思维能力。
2.逻辑推理:培养学生运用逻辑推理方法,分析并证明3的倍数的特征,增强推理能力。
3.数学建模:让学生运用所学知识解决实际问题,建立数学模型,提高数学建模素养。
-重点三:分析数列中3的倍数的规律,如每隔两个数出现一个3的倍数等。
-重点四:结合实际情境,让学生学会将数学知识应用于生活,如购物时如何判断总价是否为3的倍数。
2.教学难点
(1)理解并掌握如何运用各位数字之和判断一个数是否为3的倍数。
(2)在数列中找出并应用3的倍数的规律。
(3)将抽象的数学概念应用于解决具体问题。
五、教学反思
在今天的课堂中,我们探讨了《3的倍数的特征》,整体教学过程让我有了以下几点思考。
首先,我发现同学们对3的倍数的概念掌握得还不错,但在运用各位数字之和判断一个数是否为3的倍数时,部分同学还是感到有些困难。这一点让我意识到,在今后的教学中,需要加强对这一知识点的讲解和练习,让学生更好地理解并运用这一方法。
其次,在实践活动环节,同学们分组讨论和实验操作的过程中,我注意到他们对3的倍数在实际生活中的应用有了更深刻的认识。但同时,我也发现有些小组在讨论时,观点较为片面,未能全面考虑到3的倍数在各种情境下的应用。针对这一问题,我计划在接下来的课堂中,引入更多丰富多样的实例,激发学生的思考,帮助他们更好地将数学知识应用于实际生活。
3.重点难点解析:在讲授过程中,我会特别强调3的倍数的定义和判断方法这两个重点。对于难点部分,如理解各位数字之和与3的倍数的关系,我会通过举例和图示来帮助大家理解。

3的倍数的特征

3的倍数的特征

根据2,5的倍数的特征,小明猜想只看个位上的数字,如果个位上的数字是3,6,9 的数是3的倍数,小明的猜想对吗?我们在百数表中用“□”标出3的倍数,来验证一下吧!根据找一个数的倍数的方法,用3分别乘1、2、3、4,……求出100以内3的倍数,并在百数表里用“□”圈出3的倍数。

观察发现13、16、19、……都不是3的倍数。

只看个位数字上的数不能判断一个数是不是3的倍数,所以小明的猜想不对。

观察百数表里用“□”画出来的3的倍数,我们发现:位置3的倍数所在的第一斜行3的倍数所在的第二斜行3的倍数所在的第三斜行…3的倍数3,12,216,15,24,33,42,519,18,27,36,45,54,63,72,81…各位上的数的和3 6 9 …各位上的数的和的特点3,6,9,…都是3的倍数3的倍数的特征一个数各个数位上的数字和是3的倍数,这个数就是3的倍数。

例如:1687是不是3的倍数?判断:1687各位上的数的和是1+6+8+7=22,22不是3的倍数,所以1687不是3的倍数,验证:1687÷3=562 (1)例题1 下面的数,哪些是3的倍数?29 45 51 67 84 96解答过程:各个数位上的数字之和是3的倍数的数是3的倍数,如29:2+9=11,11不是3的倍数,所以29不是3的倍数,同理依次判断即可。

答案:45,51,84,96例题2 不计算,你能很快说出哪几题的结果没有余数吗?48÷3 57÷3 342÷3 567÷3 802÷3解答过程:其实这道题的意思很明显,以上式子都是除法,要求结果没有余数,只能是整除,而除数都是3,若是整除就要求被除数是3的整数倍,要求各个数位上的数字之和是3 的倍数。

答案:48,57,342,567都是3的倍数,所以48÷3;57÷3;342÷3;567÷3的结果没有余数。

《3的倍数的特征》教案

《3的倍数的特征》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“3的倍数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《3的倍数的特征》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个数是否为3的倍数的情况?”比如,在购物时,如何快速判断商品价格是否能被3整除,以便于支付时方便找零。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索3的倍数的奥秘。
本章节将紧扣新教材要求,关注学生核心素养的培养,助力学生全面发展。
三、教学难点与重点
1.教学重点
(1)3的倍数的定义:学生需掌握3的倍数的概念,理解一个数能被3整除即为3的倍数。
(2)3的倍数的特征:学生应理解并记住一个数的各位数之和能被3整除,则这个数也能被3整除的规律。
(3)3的倍数的应用:学生能够运用3的倍数特征进行数的判断,解决实际问题。
《3的倍数的特征》教案
一、教学内容
《3的倍数的特征》教案,本章节内容依据人教版小学数学四年级下册第九单元《倍数与因数》中的第三节“3的倍数的特征”进行设计。主要内容包括:
1. 3的倍数的定义:引导学生理解3的倍数是指可以被3整除的自然数。
2. 3的倍数的特征:探讨3的倍数在数位上的规律,即一个数各位数之和能被3整除,则这个数也能被3整除。

3的倍数的特征范文

3的倍数的特征范文

3的倍数的特征范文
3的倍数是指能被3整除的数,以下是3的倍数的一些特征:
1.个位数为0、3、6、9:一个数能被3整除的条件是,这个数的每
位数字之和能被3整除。

个位数为0、3、6、9的数的每位数字之和一定
能被3整除。

例如,12、21、33、600等都是3的倍数。

2.末尾两位为00:如果一个数的末尾两位都是0,那么这个数一定能
被3整除。

例如,300、900、1200等都是3的倍数。

3.数字之和能被3整除:一个数的每位数字之和能被3整除的话,那
么这个数一定能被3整除。

例如,342的数字之和为3+4+2=9,能被3整除,所以342是3的倍数。

4.前N项和为3的倍数:如果一个数的前N项和是3的倍数,那么这
个数一定是3的倍数。

例如,1+2+3=6是3的倍数,所以6是3的倍数。

5.数字反序后也是3的倍数:如果一个数的每位数字反序之后得到的
数也是3的倍数,那么这个数一定是3的倍数。

例如,24的反序数为42,42也是3的倍数,所以24是3的倍数。

6.如果一个数的末尾两位与该数除以100的余数相等,那么它是3的
倍数。

例如,156的末尾两位是56,156除以100的余数也是56,所以
156是3的倍数。

7.一个数的十位数减去个位数的差是3的倍数:一个数的十位数减去
个位数的差是3的倍数时,那么这个数就是3的倍数。

例如,93的十位
数减去个位数的差是9-3=6,6是3的倍数,所以93是3的倍数。

通过以上特征,我们可以很容易地判断一个数是否是3的倍数。

3的倍数特征以及原因分析

3的倍数特征以及原因分析

3的倍数特征以及原因
分析
本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
3的倍数特征以及原因分析
我研究了一下3的倍数特征以及它的原因分析,首先,我画了一张百数图,然后把一百以内的3的倍数标了出来,它们分别是:3、6、9、12、15、18、21。

90、99。

然后慢慢地观察这些数,我就发现,如果用这些数上的每一位的数字加起来,就是3的倍数,他们分别是:3、6、9、3、6、9。

就这样一直循环下去,所以我得出了一个结论:“只要是3的倍数,无论多少位,所有位上的数字相加起来的和就一定是3的倍数。

如果加起来不是3的倍数,那这个数本身就不是3的倍数。

”后来我又研究,为什么3的倍数特征是这样的呢,我就拿三位数来举例。

一个三位数,假设它是ABC,那就是由100A+10B+C组成的,如果它能被3整除,又有99A+9B肯定能被3整除,所以它们的差A+B+C也就肯定是3的倍数,A+B+C就是所有位上的数字相加起来的和。

这个结论:“只要是3的倍数,无论多少位,所有位上的数字相加起来的和就一定是3的倍数。

如果加起来不是3的倍数,那这个数本身就不是3的倍数。

”通过试验后,它是成立的。

3的倍数的特征

3的倍数的特征

探索3的倍数的特征
3的倍数的数
1 2 3 4 5 6 7 ……
×3
3 6 9 12 15 18 21 ……
1+2=3 1+5=6 ……
12个位上的数不是3的倍数,但 1 + 2 = 3,3是3的倍数。 15个位上的数不是3的倍数, 但1 + 5 = 6,6是3的倍数。
3的倍数的数
1 2 3 4 5 6 7 ……
×3
3 6 9 12 15 18 21 ……
提示:
把3的倍数的各位上的数 相加,看看你有什么发现。
探索3的倍数的特征
我们把刚才得到的3的那些倍数各个数位上的数字加起来, 看看他们都是些什么数?
1+2=3 1+5=6 1+8=9 2+1=3
想一想
这些数有什么特点,你看出来了吗?
探索3的倍数的特征
刚才的那些数各数位上的数加起来的和还是3的倍数。 1+2=3 1+5=6 1+8=9 2+1=3 3,6,9都是3的倍数。 因此,一个数如果各个数位上的数字之和是3的倍数,这个 数就是3的倍数。 小精灵的话你听懂了吗?它说得对吗? 我们用小精灵讲的方法检验一下吧: 354是3的倍数吗? 3+5+4=12,12是3的倍数,因此354就是3的倍数。 检验一下:354÷3=118 同学们再试试看呢
探索3的倍数的特征
用刚刚的方法判断以下数是否是3的倍数: 789 93 527 1050
7+8+9=24, 24是3的倍数,所以789是3的倍数。 (789÷3=263) 9+3=12, 12是3的倍数,所以93是3的倍数。 (93÷3=31) 5+2+7=14,14不是3的倍数,所以527不是3的倍数。 (527÷3=175…2) 1+0+5+0=6,6是3的倍数,所以1050也是3的倍数。 (1050÷3=350) 用刚刚的方法判断出的结果正确吗? 你能用自己的话说一说3的倍数的特征了吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是3的倍数的特征
3的倍数的特征有以下几个方面:
1.整除性质:3的倍数具有整除3的性质,即一个数能够被3整除,那么它就是3的倍数。

例如,6除以3的结果是2,说明6是3的倍数。

2.数位和:一个数的各个位数之和如果能够被3整除,那么这个数也是3的倍数。

例如,123的各个位数之和是6,因为6能被3整除,所以123是3的倍数。

3.末尾为0:为0、3、6、9的数字都能被3整除,因此如果一个数的末尾是0、3、6、9中的一个,那么它就是3的倍数。

4.各位数字之和为3的倍数:如果一个数的各位数字之和能够被3整除,那么这个数也是3的倍数。

例如,624的各位数字之和是12,因为12能被3整除,所以624是3的倍数。

5.间隔为3的倍数:如果一个数的个位数和十位数的差能被3整除,那么这个数也是3的倍数。

例如,27的个位数为7,十位数为2,它们的差为5,5不能被3整除,所以27不是3的倍数;而30的个位数为0,十位数为3,它们的差为3,3能被3整除,所以30是3的倍数。

即个位数与十位数之差能被3整除。

6.整数规律:3的倍数的个位数如果是0、3、6、9,那么这个数还是3的倍数。

如果一个数的个位数是0、3、6、9,那么它一定能被3整除,并且这个规律也可以递归应用于数的每一位。

例如,231的个位数为1,因此它不是3的倍数;而234的个位数为4,因此可以通过判断234除以10后的结果是否是3的倍数来判断234是否是3的倍数。

这些都是3的倍数的特征,根据这些特征可以判断一个数是否是3的倍数。

同时,这些特征也可以用于解决一些与3的倍数有关的问题,例如编写算法求解3的倍数的个数或者求给定范围内3的倍数之和等。

相关文档
最新文档