判断一个数能否被整除的条件

合集下载

快速判断一个数能不能被整除

快速判断一个数能不能被整除

快速判断一‎个数能不能‎被整除(‎1)1与0‎的特性:‎1是任何整‎数的约数,‎即对于任何‎整数a,总‎有1|a.‎0是任何‎非零整数的‎倍数,a≠‎0,a为整‎数,则a|‎0.(2‎)若一个整‎数的末位是‎0、2、4‎、6或8,‎则这个数能‎被2整除。

‎(3)若‎一个整数的‎数字和能被‎3整除,则‎这个整数能‎被3整除。

‎(4)‎若一个整数‎的末尾两位‎数能被4整‎除,则这个‎数能被4整‎除。

(5‎)若一个整‎数的末位是‎0或5,则‎这个数能被‎5整除。

‎(6)若一‎个整数能被‎2和3整除‎,则这个数‎能被6整除‎。

(7)‎若一个整数‎的个位数字‎截去,再从‎余下的数中‎,减去个位‎数的2倍,‎如果差是7‎的倍数,则‎原数能被7‎整除。

如果‎差太大或心‎算不易看出‎是否7的倍‎数,就需要‎继续上述「‎截尾、倍大‎、相减、验‎差」的过程‎,直到能清‎楚判断为止‎。

例如,判‎断133是‎否7的倍数‎的过程如下‎:13-3‎×2=7,‎所以133‎是 7的倍‎数;又例如‎判断613‎9是否7的‎倍数的过程‎如下:61‎3-9×2‎=595 ‎, 59-‎5×2=4‎9,所以6‎139是7‎的倍数,余‎类推。

(‎8)若一个‎整数的未尾‎三位数能被‎8整除,则‎这个数能被‎8整除。

‎(9)若一‎个整数的数‎字和能被9‎整除,则这‎个整数能被‎9整除。

‎(10)若‎一个整数的‎末位是0,‎则这个数能‎被10整除‎。

(11‎)若一个整‎数的奇位数‎字之和与偶‎位数字之和‎的差能被1‎1整除,则‎这个数能被‎11整除。

‎11的倍数‎检验法也可‎用上述检查‎7的「割尾‎法」处理!‎过程唯一不‎同的是:倍‎数不是2而‎是1!(‎12)若一‎个整数能被‎3和4整除‎,则这个数‎能被12整‎除。

(1‎3)若一个‎整数的个位‎数字截去,‎再从余下的‎数中,加上‎个位数的4‎倍,如果差‎是13的倍‎数,则原数‎能被13整‎除。

整除的特征

整除的特征

整除的特征:一个数能否被另一个数整除,要根据一定的规律来判断,所以要掌握一些特征。

(1)能被2 整除的数的特征:个位数是0、2、4、6、8的整数能被2整除。

例如:10、72、34、56、98都能被2整除。

(2)能被5整除的数的特征:个位数是0或5的整数能被5整除。

例如:180、315都能被5整除。

(3)能被3或9整除的数的特征:各个数位上数字的和是3或9的倍数的整数,能被3或9整除。

例如:5037各数位上的数的和是15,15是3的倍数,所以5037能被3整除。

4878各数位上的数的和是27,27是9的倍数,所以4878能被9整除。

能被9整除的数必然能被3整除,但能被3整除的数不一定能被9整除。

一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同。

(4)能被4 和25整除的数的特征:末尾两位数是4或25的倍数的整数,能被4或25整除。

例如:712末尾两倍数是12,12是4 的倍数,所以712能被4整除。

975的末尾两倍数是75,75是25的倍数,所以975能被25整除。

如果一个数既能被4整除,又能被25整除,那么这个数一定是整百数。

如700、2800都能同时被4 和25整除。

(5)能被8和125整除的数的特征:末尾三位数是8或是125的倍数,能被8或25整除。

例如:2408的末尾三位数是408,408是8的倍数,所以2408能被8整除。

9250末尾三位数是250,因为250是125的倍数,所以9250能被125整除。

如果一个数既能被8整除,又能被125整除,那么这个数一定是整千数。

如1000、3000、78000等。

(6)能被11整除的数的特征:如果一个数奇数位上的数之和与偶数位上的数之和的差是11的倍数,那么这个整数就能被11整除。

例如:189354奇数位上的数之和是1+9+5=15,偶数位的数之和是8+3+4=15,它们的差是15-15=0,因为0能被11整除,所以189354能被11整除。

一个数被整除的判断方法

一个数被整除的判断方法

一个数被整除的判断方法:被11整除:把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".被2整除:末位为偶数的数能被2整除.被3整除:各个数位上的数相加能被3整除的数就能被3整除.被4整除:若一个整数的末尾两位数能被4整除,则这个数能被4整除。

被5整除:若一个整数的末位是0或5,则这个数能被5整除。

被6整除:若一个整数能被2和3整除,则这个数能被6整除。

被7整除:(比较麻烦一点)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

被8整除:若一个整数的未尾三位数能被8整除,则这个数能被8整除。

被9整除:若一个整数的数字和能被9整除,则这个整数能被9整除。

被10整除:若一个整数的末位是0,则这个数能被10整除。

被11整除:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!或末3位与末3位前的差(大减小)得到的数能被11整除,那么这个数就能被11整除被12整除:若一个整数能被3和4整除,则这个数能被12整除。

被13整除:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

教你如何判断一个数能否被另一个数整除

教你如何判断一个数能否被另一个数整除

教你如何判断一个数能否被另一个数整除写一篇1500字的文章,不包括标题和其他无关内容。

教你如何判断一个数能否被另一个数整除在数学中,判断一个数能否被另一个数整除是十分常见的问题。

本文将向读者介绍一些简单而有效的方法来判断一个数能否被另一个数整除,希望对读者有所启发和帮助。

首先,我们先来了解一下整除的概念。

当一个数a可以被另一个数b整除时,我们可以说b是a的因数,a是b的倍数。

简而言之,如果一个数除以另一个数的余数为零,那么这个数就可以被另一个数整除。

接下来,让我们来看看如何判断一个数能否被2整除。

要判断一个数能否被2整除,只需要查看这个数的个位数是否为0、2、4、6或8即可。

如果个位数是以上任何一个数,那么这个数可以被2整除;如果个位数是1、3、5、7或9,那么这个数不能被2整除。

而对于判断一个数能否被3整除,我们需要通过这个数的各位数之和来判断。

如果这个数的各位数之和能被3整除,那么这个数也能被3整除。

例如,对于数123,其各位数之和为1+2+3=6,由于6可以被3整除,所以123也能被3整除。

类似地,我们可以通过各位数之和来判断一个数能否被9整除。

如果一个数的各位数之和能被9整除,那么这个数也能被9整除。

例如,对于数567,其各位数之和为5+6+7=18,由于18可以被9整除,所以567也能被9整除。

另外,判断一个数能否被5整除非常简单,只需要查看这个数的个位数是否为0或5即可。

如果个位数是0或5,那么这个数可以被5整除;如果个位数不是0或5,那么这个数不能被5整除。

对于判断一个数能否被4整除,我们需要观察数的末两位数。

如果这个数的末两位数能被4整除,那么这个数也能被4整除。

例如,对于数248,其末两位数48可以被4整除,所以248也能被4整除。

最后,我们来讨论判断一个数能否被10整除。

如果一个数能被10整除,那么它的个位数必定为0。

因此,只需查询这个数的个位数是否为0,即可判断这个数能否被10整除。

能被234567等数整除的数的特征

能被234567等数整除的数的特征

能被234567等数整除的数的特征一个数能否被2、3、4、5、6、7等数整除,取决于这个数的特征和性质。

在本文中,我们将探讨以下几个关键因素来确定一个数能否被这些数整除的特征。

1.末位数字:一个数能否被2整除取决于它的末位数字。

如果一个数的末位数字是0、2、4、6或8,那么它可以被2整除。

如果一个数的末位数字是0或5,那么它可以被5整除。

因此,如果一个数能被2和5同时整除,它也能被10整除。

3.末位数字和:如果一个数的末位数字和倒数第二位数字组成的两位数能被4整除,那么这个数也能被4整除。

例如,数字152的倒数第二位数字是5,末位数字是2,它们组成的两位数52能被4整除,所以152也能被4整除。

4.末位数字:一个数能否被5整除取决于它的末位数字。

如果一个数的末位数字是0或5,那么它可以被5整除。

5.可被2整除的数中,末位数字是0或5的数,再判断这个数能否被3整除。

如果能被3整除,则说明这个数也能被6整除。

例如,数字30能被2整除,末位数字是0,它也能被3整除,所以30能被6整除。

6.数字和:一个数能否被6整除取决于它各个位数上数字之和。

如果一个数各个位数上的数字之和能被3整除,并且末位数字是0、2、4、6或8,那么它也能被6整除。

7.数字重复:一个数能否被7整除取决于它的数字组成是否存在循环数字。

如果一个数的数字组成中存在循环数字,那么这个数可以被7整除。

例如,数字17的数字组成是1和7,它们是重复的,所以17能被7整除。

综上所述,一个数能否被2、3、4、5、6、7等数整除的特征是:它的末位数字必须是0、2、4、5、6、8中的一个;它的数字和必须能被3整除;如果末位数字和倒数第二位数字组成的两位数能被4整除,那么该数也能被4整除;它的数字组成中存在循环数字。

一个数被整除的判断方法

一个数被整除的判断方法

一个数被整除的判断方法要判断一个数是否能被另一个数整除,我们需要了解整除的定义和一些基本的数学概念。

在本文中,我们将会解释什么是整除,探讨整除的性质,并介绍一些实际应用。

首先,让我们来明确整除的定义。

当一个数能够被另一个数整除时,我们可以说这个数是另一个数的倍数。

换句话说,如果一个数a能够被另一个数b整除,那么我们可以表示为a÷b=c,其中c是一个整数。

简单来说,如果a可以被b整除,那么a是b的倍数。

现在,我们来讨论一些整除的性质。

这些性质可帮助我们更容易地判断一个数是否能被另一个数整除。

首先,一个数能否被2整除取决于它的个位数是否是偶数。

如果一个数的个位数是2,4,6,8或0,那么这个数是2的倍数,因此可以被2整除。

其次,一个数能否被3整除取决于它所有位数之和是否能被3整除。

例如,如果一个数的所有位数之和为9,18,27或36等可以被3整除的数,那么这个数也可以被3整除。

类似地,一个数能否被4整除取决于它的个位数和十位数组成的两位数是否是4的倍数。

如果一个数的个位数和十位数组成的两位数是4,8,12,16或20等可以被4整除的数,那么这个数也可以被4整除。

同样的规则适用于5和10。

如果一个数的个位数是0或5,那么它是5的倍数,也是10的倍数,因此可以被5和10整除。

下一个规则是针对6的。

一个数能否被6整除取决于它是否同时符合能被2和3整除的条件。

换句话说,一个数能被6整除,必须满足它是偶数且所有位数之和能被3整除。

在判断一个数是否能被9整除时,我们需要观察它的所有位数之和是否能被9整除。

这个规则与判断一个数能否被3整除的规则类似。

最后,如果一个数同时符合能被2、3和5整除的条件,那么它也能被30整除。

这是因为30可以分解为2乘以3乘以5除了上述规则,我们还可以使用除法算法来判断一个数是否能被另一个数整除。

除法算法是一种用除法操作进行数值计算的方法,可以在我们手头没有计算器或工具的情况下快速判断一个数能否被另一个数整除。

判断一个数能否被整除的方法

判断一个数能否被整除的方法

一个数能否被整除的判断方法
能被2整除的数:若一个整数个位上是偶数,则这个数能被
2整除。

能被3整除的数:若一个整数的数字之和能被3整除,则这
个数能被3整除。

能被4整除的数:若一个整数的末尾两位数能被4整除,则
这个数能被4整除。

能被5整除的数:若一个整数的末位是0或5,则这个数能
被5整除。

能被6整除的数:若一个整数能被2和3整除,则这个数能
被6整除。

能被7整除的数:若一个整数的个位之前的数字,减去个位
数的2倍,如果差是7的倍数,则原数能
被7整除。

如果数值太大看不出是否7的
倍数,就需要继续上述的过程,直到能清
楚判断为止。

能被8整除的数:若一个整数的未尾三位数能被8整除,则
这个数能被8整除。

能被9整除的数:若一个整数的数字和能被9整除,则这个
整数能被9整除。

能被10整除的数:若一个整数的末位是0,则这个数能被
10整除。

能被11整除的数:若一个整数的奇位数字之和与偶位数字
之和的差能被11整除,则这个数能被
11整除。

11的倍数检验法也可用上述
检查7的「割尾法」处理!
能被12整除的数:若一个整数能被3和4整除,则这个数
能被12整除。

能被13整除的数:若一个整数的个位数字截去,再从余下
的数中,加上个位数的4倍,如果差是
13的倍数,则原数能被13整除。

如何判断一个数能否被7整除

如何判断一个数能否被7整除

如何判断一个数能否被7整除在平时教学中,经常需要判断一个数能否被另一个数整除,不仅可以加快学生的解题速度,而且对培养学生的解题能力是很有好处的。

但在小学数学教材中,仅仅介绍能被2、5、3整除数的特征,已经远远不能适应新课改的需要。

那么,如何才能快速判斷一个数能否被7数整除呢?下面笔者介绍以下三种方法。

一、拆数法将要判断的这个数先拆分成几个数的和或(差),要求较大数必须是7的倍数。

我们只要判断较小的一个数就可以了。

如果较小数也是7的倍数,那么原来的数就一定能够被7整除。

例如:判断1426能不能被7整除。

分析与解:只要把1426先拆分成1400和26的和即可。

因为1400是7的倍数,但26不是7的倍数,所以,很快可以判断1426不能被7整除。

例如:判断406能否被7整除。

分析与解:把406先拆分成420和14的差。

即406=420-14,因为420和14都是7的倍数。

所以,406一定能被7整除。

二、割尾法将要判断的这个数用末位以前的数依次减去末位数字的2倍,,所得的差如果能被7整除,这个数就一定能被7整除。

例如:判断266能否被7整除因为266的末位以前的数字是26,减去末位数字6的2倍得14(26-6×2),因为14能被7整除,所以,266也一定能被7整除。

三、求差法一个数如果末三位数和末三位以前的数字组成的数的差能被7整除,这个数就一定能被7整除。

如:判断95123能否被7整除。

分析与解:95123末三位数123与末三位以前的数95的差(123-95)是28,因为28能被7整除,所以,95123也一定能被7整除。

总之,只有将上面三种方法灵活应用,方可快速判断一个数能否被7整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判断一个数能否被整除的条件
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的末位是0或5,则这个数能被5整除。

(6)若一个整数能被2和3整除,则这个数能被6整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

(9)若一个整数的数字和能被9整除,则这个整数能被9整除。

(10)若一个整数的末位是0,则这个数能被10整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。

(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。

如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。

相关文档
最新文档