总体均值的置信区间

合集下载

5%置信区间

5%置信区间

5%置信区间摘要:一、引言1.5% 置信区间的概念2.置信区间的应用场景二、5% 置信区间的计算方法1.标准正态分布表2.z 值计算3.置信区间公式三、5% 置信区间的应用案例1.样本均值的标准误差2.总体均值的置信区间四、置信区间的意义及局限性1.置信区间的含义2.置信区间的局限性五、总结正文:一、引言在统计学中,置信区间是一种用来估计总体参数的方法。

5% 置信区间,是指在一定置信水平下,对总体参数的估计范围。

置信区间广泛应用于市场调查、医学研究、经济学分析等领域。

二、5% 置信区间的计算方法1.标准正态分布表:在计算置信区间时,需要参考标准正态分布表,找到对应的z 值。

标准正态分布表中,z 值的范围为-3.09 至3.09。

2.z 值计算:根据样本数据,计算样本均值的标准误差(SE),公式为SE = √(Σ(xi - x) / (n - 1))。

然后,根据置信水平(通常为1 - α,α为显著性水平,如5% 置信水平对应α = 0.05),在标准正态分布表中查找对应的z 值。

3.置信区间公式:根据样本均值和样本大小(n),计算置信区间。

置信区间公式为:x ± z * SE。

三、5% 置信区间的应用案例1.样本均值的标准误差:在计算样本均值的置信区间时,首先需要计算样本均值的标准误差。

标准误差反映了样本均值的精确程度,标准误差越小,样本均值的估计值越接近总体均值。

2.总体均值的置信区间:假设从总体中抽取了一个样本,并计算出样本均值为x。

为了估计总体均值μ,可以使用5% 置信区间。

根据上述方法,计算得到置信区间为x ± z * SE,其中z 值根据置信水平查找,SE 为样本均值的标准误差。

四、置信区间的意义及局限性1.置信区间的含义:置信区间反映了在一定置信水平下,总体参数可能的取值范围。

例如,在5% 置信水平下,总体均值的置信区间表示我们有95% 的信心,总体均值落在该区间内。

正态分布总体 总体均值已知 方差的置信区间

正态分布总体 总体均值已知 方差的置信区间

正态分布总体总体均值已知方差的置信区间【文章开头】一、引言在统计学中,正态分布总体是相当常见的一种总体类型。

当我们需要对一个正态分布总体的总体均值进行推断时,有时候我们会面临到总体均值已知,但方差未知的情况。

对于这样的情况,我们可以使用置信区间来进行推断。

二、什么是置信区间?置信区间是指在统计推断中,对总体参数的估计范围。

通常,我们会给出一个置信水平,比如95%的置信水平,表示对总体参数的估计有95%的把握是正确的。

置信区间由一个下限和一个上限组成,表示总体参数可能落在这个范围内的概率。

三、正态分布总体的总体均值已知的情况下,方差的置信区间如何计算?当正态分布总体的总体均值已知时,我们可以使用样本标准差来作为总体方差的估计。

我们可以利用样本大小、置信水平和样本标准差来计算方差的置信区间。

四、计算步骤1. 收集样本数据:从正态分布总体中随机抽取样本,并记录样本数据。

2. 计算样本标准差:利用样本数据计算样本标准差。

样本标准差是总体方差的一个无偏估计。

3. 确定置信水平:根据需要的置信水平,确定置信水平对应的临界值。

临界值可以从统计表中查找。

4. 计算置信区间:利用样本大小、样本标准差和置信水平的临界值,计算方差的置信区间。

五、示例假设我们想研究某种药物对血压的影响。

我们从正态分布的总体中随机抽取了100个样本,并记录了每个样本的血压数据。

我们已知总体均值为120,方差未知。

现在,我们想要计算方差的95%置信区间。

1. 收集样本数据:从正态分布总体中随机抽取100个样本,并记录血压数据。

2. 计算样本标准差:利用样本数据计算样本标准差。

假设计算得到样本标准差为10。

3. 确定置信水平:我们希望得到95%的置信区间,因此置信水平为0.95。

4. 计算置信区间:根据样本大小100,样本标准差10,和置信水平0.95的临界值,我们可以计算得到方差的置信区间。

【文章主体】六、方差的置信区间是如何帮助我们进行推断的?方差的置信区间为我们提供了一个总体参数可能的取值范围。

平均值的置信区间

平均值的置信区间

平均值的置信区间什么是置信区间?统计学家经常必须从样本数据推断总体数据的特征。

在这个过程中,一个单独的样本本身代表的是总体的一部分,因此不能仅仅依靠简单地描述样本来了解总体。

这就是置信区间的意义所在。

置信区间是总体平均值的一个估计值,因此是样本平均值的范围。

平均值的置信区间是一种用来估计某个总体参数范围的工具。

换句话说,它是一个实数区间,可能包含某个待估计参数的真实值。

例如,如果我们根据样本数据计算出来的平均值是12,那么我们可能会使用置信区间来推断总体平均值的真实值(假设总体符合正态分布)。

这个置信区间告诉我们,在一定置信度下,总体平均值可能位于某个范围内,例如11至13之间。

在置信区间的范围内,我们可以以某一个概率推测待估计参数的真实值。

但是,由于我们只能够进行样本数据的抽样,因此我们无法知道总体的真实情况,也无法肯定某个置信区间是否覆盖了总体真实值。

因此,置信区间只是一个通过样本数据估计总体数据的工具,不能对总体答案的正确性做出绝对保证。

置信区间的理论基础置信区间的关键是$t$分布。

$t$分布是概率论和统计学中的一个重要分布。

在统计推断中,为计算总体平均值的置信区间而被广泛使用。

$t$分布是由William S. Gossett发明的,是在样本量较小、总体标准差未知的情況下针对总体平均值的推断所采用的一种概率分布。

当样本容量较少时,总体标准差通常被视为不知道。

此时,如果使用普通的$z$分布进行推断,则推断的误差非常大。

而当样本容量较大时,通常可以将总体标准差视为已知。

这时,我们可以使用$z$分布进行推断。

但是,如果我们无法确认总体标准差,却需要进行总体平均值的推断,那么我们就可以使用$t$分布。

$t$分布与正态分布不同,它没有一个固定的标准差。

相反,它的标准差是根据样本数据中的方差估计得出的。

与正态分布相比,$t$分布的曲线更高、更平,它的尾部比正态分布更粗、更长。

在样本容量较小(小于30)时,$t$分布对总体平均值的估计要比正态分布更准确。

65两个正态总体均值及方差比的置信区间

65两个正态总体均值及方差比的置信区间

1 n1
1 n2
(43.71 - 39.63 2.1448 6.71 16 / 63) ,
即 (4.08±7.25)=(-3.17,11.33).
例2 测得两个民族中各5位成年人的身高 (以cm计)如下
A民族 162.6 170.2 172.7 165.1 157.5 B民族 175.3 177.8 167.6 180.3 182.9
讨论两个正态总体均值差和方差比的估计问题.
1. 两个总体均值差1 2 的置信区间
(1)
2 1

2 2
均为已知
1 2的一个置信度为1 的置信区间
X
Y
z / 2
2 1
n1
2 2
n2
.
推导过程如下:
因为 X , Y 分别是 1, 2 的无偏估计, 所以 X Y 是 1 2 的无偏估计,
由X,
2 1
2 2
的置信区间
总体均值 1, 2 为未知
S12 S22
F
/
2 (n1
1 1, n2
1)
,
S12 S22
1 F1 / 2 (n1 1, n2
1).
F / 2(n1 1, n2 1) F0.05(17, 12) 2.59,
F1
/ 2(17,
12)
F0.95 (17,
12)
1 F0.05 (12,
17)
1, 2.38
于是得
2 1
2 2
的一个置信度为
0.90
的置信区间
0.34 0.29
1 2.59
,
0.34 0.29
2.38
0.45,
信区间.
解 由题意, 两总体样本独立且方差相等(但未知),

总体均值的置信区间

总体均值的置信区间

总体均值的置信区间总体均值的置信区间是统计学中一个重要的概念,它是一种估计总体均值的方法,对研究变量有重大的意义。

本文致力于对总体均值的置信区间做全面的介绍,包括它的定义、意义、假设和计算方法等。

首先,本文将讨论总体均值的置信区间的定义。

总体均值的置信区间是统计学中一种重要的概念,是一种计算总体均值的方法,它是通过样本统计量来估计总体参数。

具体来说,总体均值的置信区间是一种估计技术,它估计出某个总体均值的范围,该范围是一个以置信度为参数的区间。

接下来,本文将讨论总体均值的置信区间的意义。

总体均值的置信区间是一种估计总体均值的可靠方法,因此它具有重要的研究意义,对于研究变量来说,它可以帮助我们更准确地了解其行为规律。

例如,如果我们想探究一个社会问题,总体均值的置信区间可以提供重要的支持,帮助我们更准确地表述总体上的规律。

接着,本文将讨论总体均值的置信区间的假设。

由于置信区间是一种估计总体均值的方法,因此它的使用必须遵循特定的先决条件。

通常情况下,使用总体均值置信区间的前提条件是:1)样本是随机抽样;2)样本大小有限;3)样本变量是正态分布的;4)样本的标准差可以估计出来。

最后,本文讨论总体均值的置信区间的计算方法。

对于总体均值的置信区间,我们可以使用一种称为置信区间分析的方法来计算它。

具体来讲,我们可以将所有观察到的数据放入一个表格中,然后计算出样本均值、标准误差和置信度,接着利用这些数据来计算出总体均值的置信区间。

总体而言,总体均值的置信区间是统计学中一个重要的概念,它是一种计算总体均值的可靠方法,具有重要的研究意义。

本文通过详细讨论总体均值的置信区间的定义、意义、假设和计算方法等,使人们对总体均值的置信区间有了全面而深入的了解,并且能够更好地利用它来探究研究变量行为规律。

两正态总体均值差的置信区间

两正态总体均值差的置信区间

两正态总体均值差的区间估计基于Wolfram Mathematica ,给出了两正态分布Ν[μ1,σ1]、Ν[μ2,σ2]总体均值差μ1-μ2在两总体方差已知、未知但相等、未知但样本量相等、未知但已知方差比、未知近似、未知精确的置信区间估计方法。

最后对理论结果进行程序模拟。

设X i ~Ν(μ1,σ1),i =1,2,...,n ,为正态总体X ~Ν(μ1,σ1)的一i.i.d.,样本均值X -=1n i =1n X i ,样本方差S X 2=1n -1 i =1n X i -X - 2。

设Y i ~Ν(μ2,σ2),i =1,2,...,m ,为正态总体Y ~Ν(μ2,σ2)的一i.i.d.,样本均值Y -=1m i =1m Y i ,样本方差S Y 2=1m -1 i =1m Y i -Y - 2。

一、两总体方差σ12=σ102、σ22=σ202已知定理1:X -Ν μ1,σ1n ,Y -Ν μ2,σ2m .CharacteristicFunction NormalDistribution [μ,σ],t n n;特征函数CharacteristicFunction 正态分布NormalDistribution μ,σn ,t ;%⩵%%//完全简化FullSimplify [#,n >0&&属于Element [n,整数域Integers ]]&True定理2:X --Y -Νμ1-μ2,⇔X --Y --(μ1-μ2)Ν[0,1].转换分布TransformedDistribution X -Y,X 正态分布NormalDistribution μ1,σ1n ,Y 正态分布NormalDistribution μ2,σ2m转换分布TransformedDistribution(X -Y )-(μ1-μ2), X 正态分布NormalDistribution μ1,σ1n ,Y 正态分布NormalDistribution μ2,σ2m //完全简化FullSimplifyNormalDistribution μ1-μ2,NormalDistribution [0,1]下面简要给出求μ1-μ2置信区间的方法:由α2≤Φ≤1-α2,得μ1-μ2的置信水平为1-α的置信区间为X --Y --Z1≤μ1-μ2≤X --Y --Zα2即X --Y --Z1-α2≤μ1-μ2≤X --Y -+Z1其长度:L =2Z 1-α2以下是程序模拟:需要Needs ["HypothesisTesting`"]μ10=10;μ20=1;σ10=3;σ20=4;X =伪随机变数RandomVariate [正态分布NormalDistribution [μ10,σ10],2000];Y =伪随机变数RandomVariate [正态分布NormalDistribution [μ20,σ20],1000];α=0.05;"(一)两方差已知""1.计算法"n =长度Length [X ];m =长度Length [Y ];M =平均值Mean [X ]-平均值Mean [Y ];σ=Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α2;{M -Q σ,M +Q σ}"2.MeanDifferenceCI"MeanDifferenceCI X,Y,KnownVariance → σ102,σ202 ,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [M,σ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Q σ"相对区间长度:"r =L M "(二)两方差未知"清除Clear [μ,σ]{μ1,σ1}={μ,σ}/.求分布参数FindDistributionParameters [X,正态分布NormalDistribution [μ,σ]];2 正态分布\\正态分布统计分析\\两正态总体均值差的置信区间.nb求分布参数正态分布{μ2,σ2}={μ,σ}/.求分布参数FindDistributionParameters [Y,正态分布NormalDistribution [μ,σ]];"1.计算法"n =长度Length [X ];m =长度Length [Y ];M =平均值Mean [X ]-平均值Mean [Y ];σ=Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α2;{M -Q σ,M +Q σ}"2.MeanDifferenceCI"MeanDifferenceCI X,Y,KnownVariance → σ12,σ22 ,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [M,σ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Q σ"相对区间长度:"r =L M(一)两方差已知1.计算法{8.75322,9.31447}2.MeanDifferenceCI {8.75322,9.31447}3.NormalCI{8.75322,9.31447}区间长度:0.561248相对区间长度:0.0621273(二)两方差未知1.计算法{8.75899,9.30871}2.MeanDifferenceCI {8.75899,9.30871}3.NormalCI{8.75899,9.30871}区间长度:正态分布\\正态分布统计分析\\两正态总体均值差的置信区间.nb30.549724相对区间长度:0.0608516二、两总体方差σ12=σ22未知σ12=σ22未知,由定理2,知X--Y- Ν μ1-μ2,σ,X--Y- -(μ1-μ2)σΝ[0,1]。

总体均值90%的置信区间估计值

总体均值90%的置信区间估计值

总体均值90%的置信区间估计值
总体均值90%的置信区间估计值是一种统计方法,用于估计总体的均值,并提供一个区间,该区间以很高的概率包含总体的真实均值。

通常,90%的置信水平意味着如果重复进行同样的样本采集和统计分析,那么有90%的概率会得到真实的总体均值落在该区间内。

在进行统计分析时,首先需要选择一个合适的样本,这需要考虑诸如样本大小、样本代表性等因素。

然后,利用选择的统计方法计算出置信区间。

对于总体均值的90%置信区间,一般使用t分布或z分布来计算。

t分布用于较小的样本大小(通常小于30),而z分布用于较大的样本大小。

在90%的置信水平下,t分布或z分布的临界值取决于所需的置信水平以及样本大小。

除了计算方法的选择,置信区间的精确度也受到一些因素的影响,如样本大小、样本分布的离散程度、样本是否具有代表性等。

如果样本大小足够大且分布较集中,那么置信区间就会更精确。

如果样本具有代表性,那么置信区间就会更接近真实的总体均值。

总体均值90%的置信区间估计值在许多领域都有广泛的应用,例如社会科学、医学、经济学等。

它提供了一种方法来估计总体的真实情况,并且能够给出估计的不确定性。

通过使用置信区间,研究人员可以更好地理解其研究领域的特征和变化,从而做出更准确的决策。

7.5正态总体均值与方差的区间估计

7.5正态总体均值与方差的区间估计

1)
1,

P
X
S n t / 2 (n 1)
X
S n
t
/
2
(n
1)
1
,
于是得 的置信度为 1 的置信区间
X
S n
t
/
2
(n
1)
.
例1 有一大批糖果, 现从中随机地取16袋, 称得
重量(克)如下:
506 508 499 503 504 510 497 512
514 505 493 496 506 502 509 496
2
2
/
2
(n
1)
1,

(n 1)S 2
P
2
/
2
(
n
1)
2
(n 1)S 2
2 1
/
2
(n
1)
1 ,
于是得方差 2 的置信度为1 的置信区间
(n
2 /
1)S 2(n
2
1)
,
(n
2 1
/2
1)S 2 (n 1)
.
进一步可得:
标准差 的一个置信度为1 的置信区间
n 1S ,
只要n1和n2都很大(实用上 50即可), 则有
1 2的一个置信度为1 的近似置信区间
X
Y
z / 2
S12 n1
S22 n2
.
(3)
2 1
22
2,
但 2 为未知,
1 2的一个置信度为1 的置信区间
X Y t / 2(n1 n2 2)Sw
1 n1
1 n2
.
其中
Sw2
2. 两个总体方差比 12 的置信区间 22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为显著性水平,是总体参数未在区间内的概率。
2019/9/18
28
(四)总体均值的区间估计 (2已知)
1. 假定条件
– 总体服从正态分布,且总体方差(2)已知 – 如果不是正态分布,可以由正态分布来近似 (n 30)
2. 使用正态分布统计量Z
Z x ~ N (0,1) n
3. 总体均值 在1-置信水平下的置信区间为
2019/9/18
4
三、抽样调查的几个基本概念
1.总体和样本
(1)总体 总体单位的总数称为总体容量(用N表示)。
(2)样本 从总体中抽取来代表总体的部分总体单位所
构成的整体。 样本单位的总数称为样本容量(用n表示)。 种类:大样本 小样本
2019/9/18
5
2.总体参数和样本指标
(1)总体参数(总体指标)
N=4。4 个个体分别为X1=1、X2=2、X3=3 、X4=4 。总体的 均值、方差及分布如下:
均值和方差
总体分布
N
Xi
.3
i1 2.5
2
N
.1
N
(Xi )2
2 i1
1.25
N
0 1 234
2019/9/18
12
现从总体中抽取n=2的简单随机样本,在重复 抽样条件下,共有42=16个样本。所有样本的结果 如下表
教学难点:抽样调查的特点、抽样平均误差和
抽样极限误差的计算及误差范围和置信区间
教学学时:8学时
2019/9/18
1
统计推断的过程
总 体
2019/9/18
样本统计量


例如:样本
均值、比例
、方差
2
第一节 抽样调查
一、抽样调查的概念及特点
1.概念
(1)抽样调查:从所研究的总体中抽出 一部分单位,作为样本进行观察研究,以认 识总体的数量特征一种统计方法。
我们可以95%的概率保证该种零件的平 均长度在21.302~21.498 mm之间。
水平为0.95。
2019/9/18
30
总体均值的区间估计
(非正态总体:实例)
【 例 2】 某 大 学 从 该 校 学 生 中 随 机 抽 取 解:已知 x=26, =6,n=100,
100人,调查到他们
1- = 0.95,Z/2=1.96
(2)抽样估计:根据样本分布的原理、 利用样本资料提供的信息对总体的某些数量 特征进行科学的估计或推断。
2019/9/18
3
2.特点 (1)根据部分实际资料对全部总体的数量特征 作出估计; (2)按随机原则从全部总体中抽取样本单位; (3)抽样误差可以事先计算并加以控制;
二、抽样调查的作用
1.对不可能进行全面调查现象进行抽样估计; 2.抽样调查可以节省人力物力,提高调查的经 济效益,又能够节省时间,提高调查的实效性。
i 1
M
1.0 1.5 4.0 16
2.5
n
(xi x )2
2
i 1
x
M
(1.0 2.5)2 (4.0 2.5)2 0.625 2
16
n
式中:M为样本数目 比较及结论:
1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
如 (或记为 X )、P、 等。
(2)样本指标(估计量或样本统计量) 如 x 、p、s 等。
3.重复抽样和不重复抽样
(1)重复抽样(回置抽样) (2)不重复抽样(不回置抽样)
2019/9/18
6
4.概率抽样与非概率抽样
(1)概率抽样
基本的组织方式有:整群抽样、分层抽样、 等距抽样、简单随机抽样。
Sn
3. 总体均值 在1-置信水平下的置信区间为

x

t
2

S n
,
x
t
2
S n
2019/9/18
32
总体均值的区间估计 (2 未知实例)
【例3】从一个 正态总体中抽
取一个随机样 本, n = 25 , 其均值x = 50 ,标准差 s = 8 。 建立总体均
值 的 95% 的
( p) P(1 P) ( N n ) P(1 P) (1 n )
n N 1
n
N
例:从40000件产品中随机抽取200件进
行检查,结果有10件不合格。求合格率的抽
样平均误差?
2019/9/18
17
三、抽样极限误差
(一)概念
又称允许误差。指样本指标与总体指标 之间产生抽样误差被允许的最大可能范围。
1.概念
从总体中抽取一个样本,根据该样本的统计 量对总体的未知参数作出一个数值点的估计。
例如: 用样本均值作为总体未知均值的估计 值就是一个点估计。 2.点估计的方法:有矩估计法、顺序统计量法、 最大似然法、最小二乘法等。
优点:简单明确 缺点:不能说明估计结果的抽样误差和把握程 度。
2019/9/18
2019/9/18
20
第三节 简单随机抽样估计的方法
一、抽样估计的优良标准
同一个总体参数有多个样本估计量,究竟
哪一个才是最优估计量呢,常用以下三个标准
衡量:
1.无偏性:估计量的数学期望等于被估计
的总体参数
P( X )
无偏 有偏
A
C
2019/9/18

X 21
2.有效性:一个方差较小的无偏估计量称为
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
Hale Waihona Puke 22,12,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,1
4,2
4,3
4,4
2019/9/18
13
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
16个样本的均值(x)
第一个
第二个观察值
观察值 1
第六章 抽样推断
教学目的:①掌握抽样调查的概念特点、应用 范围;②理解、掌握抽样平均误差和抽样极限 误差的计算及误差范围和置信区间;③熟练掌 握简单随机抽样组织方式下如何利用样本指标 估计总体的平均指标和成数指标。④掌握假设 检验的一般问题
教学重点:抽样调查的特点、抽样平均误差和
抽样极限误差的计算及误差范围和置信区间
x Z 2

n
, x Z 2

n
2019/9/18
29
总体均值的区间估计
【 例 1】 某 种 零 (正态总体:实例)
件长度服从正态
分布,从该批产 品中随机抽取9
解:已知X~N(,0.152),x=2.14, 1- = 0.95,Z/2=1.96
n=9,
件,测得其平均 总体均值的置信区间为
长 度 为 21.4 mm



x Z 2 n , x Z 2 n
。已知总体标准
差 =0.15mm ,


21.4
1.96
0.15 9
,21.4
1.96
0.15 9

试估计该种零件 21.302,21.498
平均长度的置信 区间,给定置信
24
三、总体参数的区间估计
(一)区间估计的概念要点
1.根据一个样本的观察值给出总体参数的估计范围
2.给出总体参数落在这一区间的概率
3.例如: 总体均值在50~70之间,置信度为 95%
置信区间
样本统计量 (点估计)
2019/9/18
置信下限
置信上限
25
(二)区间估计的内容
置信区间
均值
比例
2 已知
2019/9/18
15
1.抽样平均数的平均误差
(1)重复抽样
(x)
2

nn
(2)不重复抽样
(x) 2 ( N n) 2 (1 n )
n N 1 n N
2019/9/18
16
2.抽样成数的平均误差
(1)重复抽样
( p) P(1 P)
n
(2)不重复抽样
◆时间表抽样筐——将总体全部单位按照时间顺 序排列,把总体的时间过程分为若干小的时间单 位,以时间单位为抽样单位。如检测流水线上的 产品质量时以1分钟为一个抽样单位。
2019/9/18
8
第二节 抽样误差
一、抽样误差的概念
(一)抽样误差的性质
1.抽样误差
由于随机抽样的偶然因素使各单位的结构不足
以代表总体的结构而引起抽样指标与总体指标间
2
3
4
1 1.0 1.5 2.0 2.5
2 1.5 2.0 2.5 3.0
3 2.0 2.5 3.0 3.5
4 2.5 3.0 3.5 4.0
P(x)
3
2
1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0
x
样本均值的抽样分布
2019/9/18
14
所有样本均值的均值和方差
n
x

xi
P( x X Z (x)) F(Z)
2019/9/18
19
Z /2 1; F (Z /2 ) 68.27%; Z /2 1.96; F (Z /2 ) 95%; Z /2 2; F (Z /2 ) 95.45%; Z /2 3; F (Z /2 ) 99.73%
相关文档
最新文档