数据结构最小生成树

合集下载

数据结构(Java版)图2(最小生成树)

数据结构(Java版)图2(最小生成树)

最小生成树举例
A
50 60 52 65 50
C
45 42 30 50
A
C
45
B
40
D
G
B
40 50
D
42 30
G
E
70
F
E
F
(a) 无向带权连通图G
(b) 无向带权图G 的最小生成树T
从最小生成树的定义可知,构造n个顶点的无向带权连 通图的最小生成树,必须满足如下三个条件: ① 必须包含n个顶点。 ② 有且仅有n-1条边。 ③ 没有回路。

将ej边加入到tree中;
}
实践项目

设计一个程序实现Prim和Kruskal算法.
表5-1 lowcost[ ]数组数据变化情况 表5-2 closest[ ]数组数据变化情况
扫描次数
closest[0]
closest[1]
closest[2]
closest[3]
closest[4]
closest[5]
求最小生成树算法

普里姆算法(Prim) (从点着手)

适合于求边稠密的最小生成树 适合于求边稀疏的最小生成树

克鲁斯卡尔算法(Kruskal)(从边着手)

普里姆算法(Prim)思想
1.
2.
3.
4.
令集合U={u0}(即从顶点u0开始构造最小生 成树),集合T={}。 从所有顶点u∈U和顶点v∈V-U的边权中选择最 小权值的边(u,v),将顶点v加入到集合U中,边 (u,v)加入到集合T中。 如此重复下去,直到U=V时则最小生成树构造完 毕。 此时集合U就是最小生成树的顶点集合,集合T 就是最小生成树的边集。

数据结构最小生成树克鲁斯卡尔算法代码

数据结构最小生成树克鲁斯卡尔算法代码

数据结构最小生成树克鲁斯卡尔算法代码以下是克鲁斯卡尔算法的实现代码:```python# 定义边的类class Edge:def __init__(self, src, dest, weight):self.src = srcself.dest = destself.weight = weight# 定义图的类class Graph:def __init__(self, vertices):self.V = verticesself.edges = []def add_edge(self, src, dest, weight):edge = Edge(src, dest, weight)self.edges.append(edge)# 查找顶点的根节点def find(self, parent, i):if parent[i] == i:return ireturn self.find(parent, parent[i])# 合并两个集合def union(self, parent, rank, x, y):xroot = self.find(parent, x)yroot = self.find(parent, y)if rank[xroot] < rank[yroot]:parent[xroot] = yrootelif rank[xroot] > rank[yroot]:parent[yroot] = xrootelse:parent[yroot] = xrootrank[xroot] += 1# 使用克鲁斯卡尔算法计算最小生成树def kruskal(self):result = []i = 0e = 0 # 已选择的边的数量# 按权重对边进行排序self.edges = sorted(self.edges, key=lambda x:x.weight)parent = []rank = []# 初始化每个顶点的父节点和秩for node in range(self.V):parent.append(node)rank.append(0)while e < self.V - 1:# 选择权重最小的边edge = self.edges[i]i += 1x = self.find(parent, edge.src)y = self.find(parent, edge.dest) # 判断是否形成环路if x != y:e += 1result.append(edge)self.union(parent, rank, x, y) return result# 测试代码g = Graph(4)g.add_edge(0, 1, 10)g.add_edge(0, 2, 6)g.add_edge(0, 3, 5)g.add_edge(1, 3, 15)g.add_edge(2, 3, 4)result = g.kruskal()for edge in result:print(f"{edge.src} -- {edge.dest} == {edge.weight}")```这段代码实现了克鲁斯卡尔算法,其中`Graph`类表示图,`Edge`类表示边。

数据结构的树应用中的问题

数据结构的树应用中的问题

数据结构的树应用中的问题树是一种重要的数据结构,在计算机科学中有着广泛的应用。

树的应用涉及到许多问题,本文将介绍其中一些常见的问题及其解决方法。

一、二叉搜索树的查找二叉搜索树是一种特殊的树结构,它的每个节点都包含一个值,并且左子树的值小于该节点的值,右子树的值大于该节点的值。

在二叉搜索树中,我们可以通过比较节点的值来快速地进行查找操作。

具体的查找方法可以使用递归或迭代的方式实现,通过不断比较节点的值,直到找到目标节点或者遍历到叶子节点为止。

二、二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树中的所有节点。

常用的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树;中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树;后序遍历是指先遍历左右子树,最后访问根节点。

这三种遍历方式在不同的问题中有着不同的应用,具体的选择取决于问题的要求。

三、树的高度和深度树的高度和深度是指从根节点到叶子节点的最长路径上的节点数。

计算树的高度可以使用递归的方法,分别计算左子树和右子树的高度,然后取较大值再加上根节点即可。

树的深度可以通过求解根节点到目标节点的路径长度来实现,具体方法可以使用递归或迭代的方式。

四、树的平衡性检查树的平衡性是指树的左右子树的高度差不超过一个固定值。

平衡树的好处是可以提高树的查找效率。

常见的平衡树有AVL树和红黑树。

平衡树的插入和删除操作会涉及到旋转操作,通过旋转可以调整树的结构以保持平衡。

五、树的最小生成树最小生成树是指在一个加权连通图中选择一棵包含所有顶点的树,使得树的总权值最小。

常用的算法有Prim算法和Kruskal算法。

Prim算法是一种贪心算法,从一个起始点开始,每次选择与当前树相连的最小权值的边,逐步扩展生成树。

Kruskal算法则是一种基于并查集的算法,首先将图中的边按照权值从小到大排序,然后逐步选择权值最小且不会形成环的边加入生成树。

实验5最小生成树算法的设计与实现(报告)

实验5最小生成树算法的设计与实现(报告)

实验5 最小生成树算法的设计与实现一、实验目的1、根据算法设计需要, 掌握连通图的灵活表示方法;2、掌握最小生成树算法,如Prim、Kruskal算法;3、基本掌握贪心算法的一般设计方法;4、进一步掌握集合的表示与操作算法的应用。

二、实验内容1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法;2、设计Kruskal算法实验程序。

有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。

设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。

三、Kruskal算法的原理方法边权排序:1 3 14 6 23 6 41 4 52 3 53 4 52 5 61 2 63 5 65 6 61. 初始化时:属于最小生成树的顶点U={}不属于最小生成树的顶点V={1,2,3,4,5,6}2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5}4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5}6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成四、实验程序的功能模块功能模块:bool cmp(Edge a,Edge b); //定义比较方法x);//在并查集森林中找到x的祖先int g etfa(intint s ame(int x,int y); //判断祖先是否是同一个,即是否联通 void merge(int x,int y); //合并子树,即联通两子树sort(e+1,e+m+1,cmp); //对边按边权进行升序排序详细代码:#include <iostream>#include <cstdio>#include <cstring>#include <algorithm>#define M AXN_E 100000#define M AXN_V 100000using namespace std;struct Edge{int f m,to,dist;//边的起始顶点,边的到达顶点,边权}e[MAXN_E];int f a[MAXN_V],n,m; //顶点数组,顶点总数,边总数 //定义比较,只是边权比较bool cmp(Edge a,Edge b){return a.dist < b.dist;}//查找x的祖先是在并查集森林中找到x的祖先x){//getfaint g etfa(intreturn fa[x];if(fa[x]==x)else r eturn fa[x] = getfa(fa[x]);}//判断祖先是否是同一个,即是否联通int s ame(int x,int y){return getfa(x)==getfa(y);}//合并两棵树void merge(int x,int y){int f ax=getfa(x),fay=getfa(y);fa[fax]=fay;}int m ain(){int i;cout<<"请输入顶点数目和边数目:"<<endl;cin>>n>>m;//n为点数,m为边数//输出顶点信息cout<<"各个顶点值依次为:"<<endl;for(i=0;i<n;i++){fa[i]=i;if(i!=0)cout<<fa[i]<<" ";}cout<<endl;cout<<"请输入边的信息(例子:1 4 5 从顶点1到顶点4的边权为5)"<<endl;for(i=1;i<=m;i++)用边集数组存放边,方便排序和调用 cin>>e[i].fm>>e[i].to>>e[i].dist;//sort(e+1,e+m+1,cmp); //对边按边权进行升序排序表示目前的点共存在于多少个集合中,初始情况是每 int r st=n,ans=0;//rst个点都在不同的集合中for(i=1;i<=m && rst>1;i++){int x=e[i].fm,y=e[i].to;函数是查询两个点是否在同一集合中 if(same(x,y))continue;//sameelse{函数用来将两个点合并到同一集合中 merge(x,y);//mergerst--;//每次将两个不同集合中的点合并,都将使rst值减1这条边是最小生成树中的边,将答案加上边权 ans+=e[i].dist;//}}cout<<ans;return 0;}五、测试数据和相应的最小生成树Input:6 101 2 61 3 11 4 52 3 52 5 63 4 53 5 63 6 44 6 25 6 6Putout:18生成树为:七、思考题1、微软面试题一个大院子里住了50户人家,每家都养了一条狗,有一天他们接到通知说院子里有狗生病了,并要求所有主人在发现自己家狗生病的当天就要把狗枪杀掉。

考研数据结构图的必背算法及知识点

考研数据结构图的必背算法及知识点

考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。

这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。

在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。

n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。

对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。

即无向连通图的生成树不是唯一的。

连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。

图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。

最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。

最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。

解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。

他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。

时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。

数据结构 耿国华 西北大学 7-5最小生成树-动画演示

数据结构 耿国华 西北大学 7-5最小生成树-动画演示

5
6
小 D 6 6 18 14
生 成 树
E F
1291
11
18 14
33
33
Step1. 初始化。选取种子 顶点,种子顶点构成最优 路段网,其余顶点构成外 围网。初始化Closedge。
A
16 B
21
1
2
3
4
5
6
A A A A A A U 19
F
C
A B C D E FV
0 16 ∞ ∞ 19 21 w
Closedge数组
F
21 Step3. 更新Closedge, 11 确保每组边是最优路段网
到外围网路径中最小的。
14
33
A
16
B
5
6
11
AB U 19
F
C
FV
6
2111 w
E
D
最小生成树——Prim算法
AB C DE
A 16 19
B 16 5 6
最M
C
5
6
Hale Waihona Puke 小 D 6 6 18E
D
Closedge数组
最小生成树——Prim算法
AB C DE
A 16 19
B 16 5 6
最M
C
5
6
小 D 6 6 18
生 成 树
E F
1291
11
18 14
33
1
2
3
4
5
A A AB AB A
ABCDE
0 0 ∞5 ∞6 19
Closedge数组
F
21 Step3. 更新Closedge, 11 确保每组边是最优路段网

最小生成树的算法

最小生成树的算法

最小生成树的算法王洁引言:求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。

下面将介绍几种最小生成树的算法。

一,用“破圈法”求全部最小生成树的算法1 理论根据1.1 约化原则给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ⊆ E ,使生成树所有边权最小,此生成树称为最小生成树.(1) 基本回路将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。

基本回路是由 T 中的树枝和一条连枝构成的回路.(2) 基本割集设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。

基本割集是集合中的元素只有一条是树枝,其他的为连枝.(3) 等长变换设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ∉ H,当且仅当'e ∈()cf e ,也就是说e ∈()S e ,则'T =T ⊕{e, 'e }也是一棵生成树。

当()e ω='()e ω时,这棵生成树叫做等长变换。

最小生成树

最小生成树
然后从那些其一个端点已在U中,另一个端点 仍在U外的所有边中,找一条最短(即权值最 小)的边,假定该边为(Vi,Vj),其中Vi∈U, Vj∈V-U,并把该边(Vi,Vj)和顶点Vj分别并入T的 边集TE和顶点集U; 图
如此进行下去,每次往生成树里并入一 个顶点和一条边,直到n-1次后,把所有 n 个顶点都并入生成树T的顶点集U中, 此时U=V,TE中包含有(n-1)条边;

图6.10 图G 及其生成树
无向连通图 G 图
➢ 生成树
图6.10 图G 及其生成树
生成树
➢ 最小生成树

1.1 普里姆(prim)算法
假设G=(V,E)是一个具有n 个顶点的连通网络, T=(U,TE)是G的最小生成树,其中U是T的顶点 集,TE是T的边集,U和TE的初值均为空。
算法开始时,首先从V中任取一个顶点(假定 为V1),将此顶点并入U中,此时最小生成树 顶点集U={V1};
这样,T就是最后得到的最小生成树。
普里姆算法中每次选取的边两端,总是 一个已连通顶点(在U集合内)和一个未 连通顶点(在U集合外),故这个边选取 后一定能将未连通顶点连通而又保证不 会形成环路。

图6.11 普里姆算法例子

为了便于在顶点集合U和V-U之间选择权 最小的边,建立两个数组closest和 lowcost,closest[i]表示U中的一个顶点,该 顶点与V-U中的一个顶点构成的边具有最 小的权;lowcost表示该边对应的权值。

{

min=lowcost[j];

k=j;

} printf(“(%d,%d)”,k,closest[j]);
/* 打印生成树的一条边*/
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构
多元化考核作业
题目:最小生成树
姓名:卢伟
专业班级:物联网工程B1501班
学号:
目录
1 课程设计介绍 (3)
1.1 课程设计内容 (3)
1.2 课程设计要求 (3)
2 课程设计原理 (4)
2.1 课设题目粗略分析 (4)
2.2 原理图介绍 (6)
2.2.1 功能模块图 (6)
2.2.2 流程图分析 (7)
3 数据结构分析 (13)
3.1 存储结构 (13)
3.2 算法描述 (13)
4 调试与分析 (14)
4.1 调试过程 (14)
1.2 程序执行过程 (15)
参考文献 (18)
1 课程设计介绍
1.1 课程设计内容
编写算法能够建立带权图,并能够用Kruskal算法求该图的最小生成树。

最小生成树能够选择图上的任意一点做根结点。

最小生成树输出采用顶点集合和边的集合的形式。

1.2 课程设计要求
1.顶点信息用字符串,数据可自行设定。

2.参考相应的资料,独立完成课程设计任务。

3.交规范课程设计报告和软件代码。

2 课程设计原理
2.1 课设题目粗略分析
根据课设题目要求,拟将整体程序分为三大模块。

以下是三个模块的大体分析:
1.要确定图的存储形式,通过对题目要求的具体分析。

发现该题的主要操作是路径的输出,因此采用边集数组(每个元素是一个结构体,包括起点、终点和权值)和邻接矩阵比较方便以后的编程。

2.Kruskal算法。

该算法设置了集合A,该集合一直是某最小生成树的子集。

在每步决定是否把边(u,v)添加到集合A中,其添加条件是A∪{(u,v)}仍然是最小生成树的子集。

我们称这样的边为A的安全边,因为可以安全地把它添加到A中而不会破坏上述条件。

3.Dijkstra算法。

算法的基本思路是:假设每个点都有一对标号(d j,p j),其中d是从起源点到点j的最短路径的长度(从顶点到其本身的最短路径是零路(没有弧的路),其长度等于零);p j则是从s到j 的最短路径中j点的前一点。

求解从起源点s到点j的最短路径算法的基本过程如下:
1)初始化。

起源点设置为:①d s=0,p s为空;②所有其它点:d i=∞,p i=?;③标记起源点s,记k=s,其他所有点设为未标记的。

2)k到其直接连接的未标记的点j的距离,并设置:
d j=min[d j, d k+l kj]
式中,l kj是从点k到j的直接连接距离。

3)选取下一个点。

从所有未标记的结点中,选取d j中最小的一个i:
d i=min[d j, 所有未标记的点j]
点i就被选为最短路径中的一点,并设为已标记的。

4)找到点i的前一点。

从已标记的点中找到直接连接到i的点j*,作为前一点,设置:i=j*
5)标记点i。

如果所有点已标记,则算法完全推出,否则,记k=i,转到2)再继续。

而程序中求两点间最短路径算法。

其主要步骤是:
①调用dijkstra算法。

②将path中的第“终点”元素向上回溯至起点,并显示出来。

2.2 原理图介绍
2.2.1 功能模块图
图2.1功能模块图
2.2.2 流程图分析
1.主函数
图2.2 主函数流程图
2.insertsort函数
3.图2.3 insertsort函数流程图
3.Kruskal函数
图2.4 Kruskal函数流程图
4. dijkstra 函数
图2.5 dijkstra 函数流程图
5. printpath1函数
图2.6 printpath1函数流程图
6. printpath2函数
图2.7 printpath2函数流程图
3 数据结构分析
3.1 存储结构
定义一个结构体数组,其空间足够大,可将输入的字符串存于数组中。

struct edges
{int bv;
int tv;
int w;
};
3.2 算法描述
1. Kruskal函数:
因为Kruskal需要一个有序的边集数组,所以要先对边集数组排序。

其次,在执行中需要判断是否构成回路,因此还需另有一个判断函数seeks,在Kruskal中调用seeks。

2. dijkstra函数:
因为从一源到其余各点的最短路径共有n-1条,因此可以设一变量vnum作为计数器控制循环。

该函数的关键在于dist数组的重新置数。

该置数条件是:该顶点是被访问过,并且新起点到该点的权值加上新起点到源点的权值小于该点原权值。

因此第一次将其设为:if (s[w]==0&&cost[u][w]+dist[u]<dist[w])。

但是在实际运行中,发现有些路径的权值为负。

经过分析发现,因为在程序中∞由32767代替。

若cost[u][w]==32767,那么cost[u][w]+dist[u]肯定溢出主负值,因此造成权值出现负值。

但是如果cost[u][w]==32767,那么dist[w]肯定不需要重新置数。

所以将条件改为:if(s[w]==0&&cost[u][w]+dist[u]<dist[w]&&cost[u][w]!=32767)。

修改之后问题得到解决。

3. printpath1函数:
该函数主要用来输出源点到其余各点的最短路径。

因为在主函数调用该函数前,已经调用了dijkstra函数,所以所需的dist、path、s数组已经由dijkstra函数生成,因此在该函数中,只需用一变量控制循环,一一将path数组中的每一元素回溯至起点即可。

其关键在于不同情况下输出形式的不同。

4.printpath2函数:
该函数主要用来输出两点间的最短路径。

其主要部分与printpath1函数相同,只是无需由循环将所有顶点一一输出,只需将path数组中下标为v1的元素回溯至起点并显示出来。

4 调试与分析
4.1 调试过程
在调试程序时主要遇到一下几类问题:
1.有时函数中一些数组中的数据无法存储。

2.对其进行检验发现没有申请空间大小。

3.在源程序的开头用#define定义数值大小,在使用数组时亦可知道它的空间大小。

4.此函数中有时出现负值。

5.对其进行检验发现在程序中∞由32767代替。

若cost[u][w]==32767,那么cost[u][w]+dist[u]肯定溢出主负值,因此造成权值出现负值。

6.但是当cost[u][w]==32767,那么dist[w]肯定不需要重新置数。

所以将if(s[w]==0&&cost[u][w]+dist[u]<dist[w])改为:if(s[w]==0&&cost[u][w]+dist[u]<dist[w]&&cost[u][w]!=32767)。

问题得到解决。

1.2程序执行过程
系统使用说明:
1. 输入的数据可以是整数,字符串(如1,2,3);
2. 本系统可以建立带权图,并能够用Kruskal算法求改图的最小生成树。

而且能够选择图上的任意一点做根结点。

还能够求两点之间的最短距离。

3. 该系统会有菜单提示,进行选项:
1.kruskal
2.shortpath
3.shortpath between two point
4.exit
4.程序实际运行截图
图4.1 输入形式
图4.2 kruskal算法输出
图4.3 最短距离输出
参考文献
[1]《数据结构》(C语言版).严蔚敏,吴伟民.清华大学出版社.2007
[2]《算法设计与分析》.张德富.国防工业出版社.2009
[3]《计算机算法与程序设计》.朱青.清华大学出版社.2009
[4]《C程序设计语言》.徐宝文,李志.机械工业出版社.2004。

相关文档
最新文档