项目一 三相异步电动机点动和自锁控制

合集下载

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告图2-5 按钮联锁的正反转控制线路按图2-5接线,实验操作步骤如下:(1) 按控制屏启动按钮,接通三相交流电源;(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转;(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按正向启动按钮SB1,电机正转,接触器KM1工作,按下SB3电机停止运行;按反向启动按钮SB2,电机反转,接触器KM2工作,按下SB3电机停止运行;2. 接触器和按钮双重联锁的正反转控制线路按图2-6接线,经检查无误后,方可进行通电操作。

实验操作步骤如下:图2-6 接触器和按钮双重联锁的正反转控制线路(1) 按控制屏启动按钮,接通三相交流电源。

(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(4) 按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生?(5) 电动机停稳后,同时按正、反向两只起动按钮,观察有何情况发生?(6) 失压与欠压保护按起动按钮SB1(或SB2)电动机起动后,按控制屏停止按钮,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按SB1(或SB2),观察电动机能否自行起动?实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按下SB1,电机正向旋转,KM1正常工作,按下SB3电机停止运行。

按下SB2,电机反向旋转,KM2正常工作,按下SB3电机停止运行。

三相鼠笼式异步电动机点动控制、自锁控制和正反转控制

三相鼠笼式异步电动机点动控制、自锁控制和正反转控制

实验一三相鼠笼式异步电动机点动、自锁控制和正反转控制1. 通过对三相鼠笼式异步电动机点动控制和自锁控制路线的实际安装接线,掌握由电气原理图变换成安装接线图的知识。

2. 通过对三相鼠笼式异步电动机正反转控制路线的安装接线,掌握由电气原理图接成实际操作电路的方法。

3. 加深对电气控制系统各种保护、点动控制、自锁、互锁等环节的理解。

4. 学会分析、排除继电--接触控制路线故障的方法。

1. 继电─接触控制在各类生产机械中获得广泛地应用,但凡需要进行先后、上下、摆布、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。

交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。

(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电先后触头的动作状态,分动合〔常开〕、动断〔常闭〕两类。

(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。

(4) 接线端子,反作用弹簧等。

2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。

〔1〕自锁。

要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以到达电动机的长期运行,这一动合触头称为“自锁触头〞。

〔2〕互锁。

使两个电器不能同时得电动作的控制,称为互锁控制,如为了防止正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。

为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的路线中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。

电气互锁○1为了防止接触器KM1 〔正转〕、 KM2 〔反转〕同时得电吸合造成三相电源短路,在KM1〔KM2〕线圈支路中串接有KM1〔KM2〕动断触头,它们保证了路线工作时KM1、KM2不会同时得电〔如图30-1〕,以到达电气互锁目的。

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告
五、实验注意事项
1.接线时合理安排挂箱位置,接线要求牢靠、整齐、安全可靠;
2.操作时要胆大、心细、谨慎,不许用手触及各电器元件的导电部分及电动机的转动部分,以免触电及意外损伤;
3.通电观察继电器动作时要注意安全,防止碰触带电部位。
六、思考题
1.试比较点动控制线路与自锁控制线路从结构上主要有什么区别?从功能上看主要区别是什么?
3.在主回路中,熔断器和热继电器热元件可否少用一只或两只?熔断器和热继电器两者可否只采用其中一种就可起到短路和过载保护作用?为什么?
为了电机的安全,熔断器和热继电器热元件不能少用。
熔断器:
熔断器(fuse)是指当电流超过规定值时,以本身产生的热量使熔体熔断,断开电路的一种电器。熔断器广泛应用于高低压配电系统和控制系统以及用电设备中,作为短路和过电流的保护器。
2. 接触器和按钮双重联锁的正反转控制线路
按图2-6接线,经检查无误后,方可进行通电操作。实验操作步骤如下:
图2-6 接触器和按钮双重联锁的正反转控制线路
(1) 按控制屏启动按钮,接通三相交流电源。
(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。按停止按钮SB3,使电动机停转。
(3)按下SB2,电机反向旋转,KM2正常工作,按下SB3电机停止运行。
(4)先按下SB1,电机正向旋转,之后直接按下SB2,电机可直接切换到反转运行状态。
(5)同时按SB1和SB2电机不会运行。
(6)按起动按钮 SB1且电动机失压,接触器电磁吸力急剧下降或消失,衔铁释放,主触点与自锁出点断开,电动机停止运转。再按控制屏上启动按钮,接通三相电源。电动机不会自行启动运转。
Q1为总电源的三相闸刀开关,对整个系统的供电控制,起隔离作用;

实验一-三相异步电动机点动和自锁控制线路

实验一-三相异步电动机点动和自锁控制线路
(1)按下“关”按钮切断交流电源。按图2-3接线。图中SB1、SB2、SB3、KM1、KM2、FR1选用D61-2挂件,Q1、FU1、FU2 、FU3、FU4选用D62-2挂件,电机选用WDJ24(△/220V)。经检查无误后,按下“开”按钮通电操作。
(2)合上电源开关Q1,接通220V三相交流电源。
实验一 三相异步电动机点动和自锁控制线路
一、实验目的
1、通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2、通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。
二、实验设备
序号
型号
名称
数量
1
WDJ24
三相鼠笼异步电动机(△/220V)
(6)按下SB3使M2停止后再按SB1,观察并记录电机及接触器运行状态。
图4-3停止顺序控制
四、讨论题
1、画出图4-1、4-2、4-3的运行原理流程图。
2、比较图4-1、4-2、4-3三种线路的不同点和各自的特点。
3、列举几个顺序控制的机床控制实例,并说明其用途。
二、实验设备
序号
型号
名称
数量
1
WDJ17
三相线绕式异步电动机
1件
2
WDJ24
三相鼠笼异步电动机(△/220V)
1件
3
D61-2
继电接触控制(一)
1件
4
D62-2
继电接触控制(二)
1件
三、实验方法
1、三相异步电动机起动顺序控制(一):
按图4-1接线。图中SB1、SB2、SB3、KM1、KM2、FR1选用D61-2挂件,FU1、FU2、FU3、FU4、Q1、FR2选用D62-2挂件,电机M1选用WDJ17,M2选用WDJ24(△/220V)。

电器原理实验一——三相异步电机的点动、自锁与正反转控制

电器原理实验一——三相异步电机的点动、自锁与正反转控制

课程名称:电器原理指导老师:_ 孙丹_______成绩:__________________ 实验名称:三相异步电机的点动、自锁与正反转控制实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识;2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。

3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解;4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处;5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。

6.学会分析、排除继电--接触控制线路故障的方法.二、实验内容和原理1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环;(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类;(3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧;(4) 接线端子,反作用弹簧等。

2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。

要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。

使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。

为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。

三相鼠笼式异步电动机点动控制、自锁控制和正反转控制

三相鼠笼式异步电动机点动控制、自锁控制和正反转控制

实验一三相鼠笼式异步电动机点动、自锁控制和正反转控制一、实验目的1. 通过对三相鼠笼式异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。

2. 通过对三相鼠笼式异步电动机正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。

3. 加深对电气控制系统各种保护、点动控制、自锁、互锁等环节的理解。

4. 学会分析、排除继电--接触控制线路故障的方法。

二、原理说明1. 继电─接触控制在各类生产机械中获得广泛地应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。

交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。

(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。

(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。

(4) 接线端子,反作用弹簧等。

2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。

(1)自锁。

要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。

(2)互锁。

使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。

为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。

○1电气互锁为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM1(KM2)动断触头,它们保证了线路工作时KM1、KM2不会同时得电(如图30-1),以达到电气互锁目的。

实验2.6plc控制的三相异步电动机点动和自锁实验

实验2.6plc控制的三相异步电动机点动和自锁实验

实验 PLC 控制的三相异步电动机点动和自锁实验FRV12WVUKMU13V13W13FUU12V12W12W11V11U11QSL3L2L1M3~上图为电工实训实验指导书中三相异步电动机接触器点动控制又可自锁控制线路。

线路的动作过程:当按下起动按钮SB1,线圈KM 通电,主触头闭合,电动机M 起动旋转。

当松开按钮时,电动机M 不会停转,因为这时,接触器线圈KM 可以通过并联在SB1两端已闭合的辅助触头KM 和点动按钮SB2的常闭触点继续维持通电,保证主触头KM 仍处在接通状态,电动机M 就不会失电,也就不会停转。

无论在接触器线圈KM 通电或者断电的情况下,按下点动按钮SB2,能流只能通过SB2的常开触点是接触器线圈KM 通电;点动按钮SB2复位时,接触器线圈KM 处与断电状态。

可见按钮SB2可以实现电机的点动控制。

可编程控制器控制系统可代替继电器控制系统实现相同的控制任务。

其输入设备和输出设备与继电器控制系统相同,但他们是直接接到可编程控制器的输入端和输出端的。

控制程序是通过一个编程器写道可编程控制器的程序存储器中。

每个程序语句确定一个顺序,运行时依次读取存储器中的程序语句,对它们的内容进行解释并加以执行,执行结果用以接通输出设备,控制被控对象的工作。

在存储器控制系统中,控制程序的修改不需要通过改变控制系统的接线(即硬件),而只需要通过编程器改变程序存储器中某些语句的内容。

一、实验目的1、 了解继电器控制系统和PLC 控制系统的不同点和相同点。

2、 掌握三相异步电动机点动控制又可自锁控制主回路的接线。

3、 学会用可编程控制器实现电机启动过程的编程方法。

二、实验内容(b)(a)M3~L1L2L3QSU11V11W11W12V12U12FUW13V13U13KMU V WFRX0X2X3X4X5+24VCOMX1Y0Y1COM1Y2Y3COM2COM0FX系列PLCKM~380VSB1SB2SB3FR上图(a )为PLC 控制系统主回路接线图;图(b )为本实验的PLC 主机接线图。

三相异步电动机即可点动又可自锁控制线路工作原理

三相异步电动机即可点动又可自锁控制线路工作原理

三相异步电动机即可点动又可自锁控制线路工作原理三相异步电动机是一种常用的电机类型,可以通过点动方式来实现启停控制,并且还可以通过自锁控制线路来实现长时间运行。

首先,我们了解一下三相异步电动机的基本工作原理。

三相异步电动机由定子和转子组成。

定子上有三个绕组,分别与三相交流电源相连。

转子由铁芯和导体构成,是固定在轴上并可以自由旋转的部分。

当三相交流电源接通后,定子绕组中产生的旋转磁场会进一步感应到转子上的导体,从而使转子开始旋转。

在点动控制方面,我们可以通过控制电机启动电流的时间来实现电机的点动启停。

通过将启动按钮与电机控制电路相连,当按钮按下时,电源接通并给予电机一个短暂的启动电流,使电机转子开始旋转。

当按钮松开后,电源断开,电机停止运转。

这样,我们可以通过按下按钮来控制电机的启停,快速方便地实现点动操作。

而自锁控制线路的原理是通过继电器和保持电路来实现。

在电机的启动过程中,当按钮按下时,继电器的触点闭合,使电源能够持续供给电机启动电流。

同时,在继电器的触点闭合后,保持电路也接通,通过继电器的辅助触点来维持电源给电机供电。

当按钮松开时,继电器的触点打开,电源断开,但保持电路仍然保持闭合状态,继续给电机供电,使电机能够继续运行,实现自锁的效果。

直到另一个按钮按下,或者停止按钮按下,保持电路才会断开,电机停止运行。

综上所述,三相异步电动机即可点动又可自锁控制线路工作原理是通过点动控制电路来实现电机的快速启停,通过自锁控制线路来实现电机的长时间运行。

点动控制通过短暂给予电机启动电流来实现,而自锁控制则是通过继电器和保持电路来实现电机的持续运行。

这种控制方式广泛应用于各种需要快速启停和长时间运行的场合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目一三相异步电动机点动和自锁控制
一、实验目的
了解使用PLC代替传统继电器控制回路的方法及编程技巧,理解并掌握三相异步电动机的点动和自锁控制方式及其实现方法。

二、实验仪器
1.THPJW-1A型高级维修电工实训考核装置一台
2.安装有GX Developer编程软件的计算机一台
3.SC-09下载电缆一根
4.实验导线若干
5.三相异步电动机一台
三、实验内容及说明
在传统的强电控制系统中,使用了大量的接触器.中间继电器.时间继电器等分立元器件。

由于使用的元器件数量和品种多,使得系统接线复杂,给系统调试以及修改接线带来困难。

因其潜在故障点多,故降低了整个系统的安全可靠性。

采用PLC对强电系统进行控制,就可以取代传统的继电接触控制系统,还可构成复杂的过程控制网络。

在需要大量中间继电器以及时间继电器和计数继电器的场合,PLC无需增加硬件设备,利用微处理器及存储器的功能,就可以很容易地完成这些逻辑组合和运算,大大降低了控制成本。

因此用PLC作为强电系统的控制器件是一种行之有效的解决方案。

本实验中,PLC对电机的控制方式分两种:
1.点动控制
启动:按启动按钮SB1,X0的动合触点闭合,Y1线圈得电,即接触器KM2的线圈得电,0.1S后Y0线圈得电,即接触器KM1的线圈得电,电动机作星形连接启动。

每按动SB1一次,电机运转一次。

2.自锁控制
启动:按启动按钮SB2,X1的动合触点闭合,Y1线圈得电,即接触器KM2的线圈得电,0.1S后Y0线圈得电,即接触器KM1的线圈得电,电动机作星形连接启动。

只有按下停止按钮SB3时电机才停止运转。

★四、实验接线图(有更合理的接线图,同学们自行修改)五、梯形图参考程序~220V
L N
★1、确定系统的输入、输出设备。

输入:
输出:
★2、控制系统的梯形图(参考)★六、实验验证Y0
Y1 启动(KM1)
启动(KM2)
X2 X1
X0
停止(SB3)自锁启动(SB2)
点动(SB1)。

相关文档
最新文档