3[1].4木材干燥工艺(2)
木材加工中的干燥工艺和控制

木材加工中的干燥工艺和控制木材作为一种非常重要的建筑材料,在建筑、家具、造船、交通运输等各领域都有着广泛的应用。
然而,在木材应用过程中,木材的干燥工艺是一个至关重要的环节,因为木材打湿后会引起木材的各种缺陷,如开裂、变形等。
本文将重点介绍木材加工中的干燥工艺和控制。
一、木材的干燥方式目前,常见的木材干燥方式主要有两种:自然干燥和人工干燥。
自然干燥是指将木材堆放在通风良好的地方,通过自然风吹晒使木材逐渐失去水分;而人工干燥则是通过专业干燥设备,对木材进行一定程度的加热和蒸发处理,从而使木材快速失去水分,以达到干燥的效果。
在实际应用中,人工干燥方式更为常用,因为自然干燥比较耗时,且不易控制干燥过程中的温度和湿度,容易导致木材质量不稳定。
二、木材干燥过程中的关键控制因素在进行人工干燥的过程中,需要掌握以下几个关键控制因素。
1.温度控制温度是木材干燥过程中的关键控制因素之一。
一般情况下,温度过低会造成干燥效率低下,时间过长影响生产效益;而温度过高则会导致木材变形、开裂等缺陷。
因此,在干燥过程中,需要掌握一个适宜的温度范围,使得木材能够快速干燥,同时又不会造成质量缺陷。
2.湿度控制湿度是影响人工干燥效果的另一个重要因素。
湿度过高会导致干燥不充分,木材质量下降;而湿度过低则会造成木材干燥过快,造成开裂等缺陷。
因此,在进行干燥过程中,需要控制干燥环境的湿度,确保在适宜的范围内。
3.压力控制在人工干燥过程中,还需要控制干燥设备的压力,以确保木材在干燥过程中不被压坏或变形。
同时,压力还可以调整干燥设备内空气的流动速度和方向,从而加快木材表面水分的蒸发速度,提高干燥效率。
4.干燥时间控制干燥时间是指木材从进入干燥设备开始,到完成干燥的时间长度。
干燥时间的控制需要结合温度、湿度、压力等因素进行考虑,以保证木材干燥的充分程度,并避免过度干燥导致木材的质量下降。
三、常见的木材干燥设备现代化的木材加工工厂中,一般采用以下几种常见的人工干燥设备。
木材干燥技术—常规蒸汽干燥设备

第四章常规蒸汽干燥设备4.1 木材的干燥方法4.1.1 气干大气干燥是把锯材按照一定的方式堆放在空旷的场院式棚子内。
由自然空气通过材堆,使木材内水分逐步排出,以达到干燥的目的。
这种干燥方法中的热能主要来自于太阳能的辐射。
大气干燥法是目前常见的一种生产方式。
它的特点是:①生产方式简单,不需要太多的干燥设备,节约能源;②占地面积大,干燥时间长,干燥过程不能人为地控制,受地区、季节、气候等条件的影响;③终含水率较高(10~15%,与当地的平衡含水率相适应),在干燥期间易产生虫蛀、腐朽,变色,开裂等缺陷。
4.1.2 人工干燥常规蒸汽干燥是长期以来使用最普遍的一种木材干燥方法,这种传统干燥方法就是把木材置于几种特定结构的干燥室中进行干燥的处理过程。
其主要特点是以湿空气作为传热介质,传热方式以对流传热为主。
4.2 干燥室的分类4.2.1 按照作业方式分类①周期式干燥室干燥作业按周期进行,湿材从装窑到出窑为一个生产周期,即材堆一次性装窑,干燥结束后一次性出窑。
②连续式干燥室此类干燥室比较长,通常在20米以上,有的甚至长达100米,被干木材在如同隧道一样的干燥室内连续干燥,干燥过程是连续不断进行的。
4.2.2 按照干燥介质的种类分类①空气干燥室②炉气干燥室③过热蒸汽干燥室4.2.3 按照干燥介质的循环特性分类①自然循环干燥室②强制循环干燥室4.3 典型常规蒸汽干燥室结构4.3.1 长轴型强制循环干燥室结构特点:一台电机带动数台风机;一根长轴沿干燥室长度方向放置;进排气口沿室长一列式排列;顶板将干燥室分为上下两间。
优点:①技术性能稳定,工艺成熟,室内气流速度分布均匀,干燥质量比较好;②每室只用一台电动机,功率较小,因此动力消耗少。
不足:①长轴的安装技术要求高,而且不易平衡;②通风机间金属构件多,易腐朽,维修困难;③投资较高,腐蚀严重,维修工作量大。
4.3.2 短轴型强制循环干燥室结构特点:顶板将干燥室分为上下两间;每台风机由一台电机带动;通风机间无气流导向板;进排气口在室顶两列排列。
木材干燥总复习提纲整理

绪论(xùlùn)1.木材干燥的定义(dìngyì)与目的。
定义(dìngyì):在热力作用下,以蒸发(zhēngfā)或沸腾的汽化方式将木材(mùcái)内部水分排出去的过程。
木材干燥的目的:1.预防木材腐朽变质,延长木材的使用寿命;2.防止木材变形和开裂,保证产品的加工质量;3.提高木材的力学强度,改善木材的物理性能;4.改善木材的环境学特性;5.减轻木材重量,降低运输费用。
2木材干燥的常规干燥方法和特种干燥方法。
总体分为:自然干燥人工干燥常规干燥:大气干燥,室干。
特种干燥:除湿干燥,真空干燥,微波干燥,太阳能干燥。
木材干燥与载热介质1.干燥介质的定义在干燥过程中能够把热量传递给木材、同时又能把木材排出的水汽带走的媒介物质(可为气体或液体)。
2.常用的干燥介质过热水蒸气、湿空气、炉气。
4.过热蒸汽的性质5.干度、过热度干度:单位质量的湿饱和蒸汽中含有干饱和蒸汽的量,用x表示。
(描述湿饱和蒸汽的量)过热度:过热蒸汽的温度与相同压力下饱和蒸汽温度的差。
过热度越大,过热蒸汽的状态距离饱和蒸汽的状态越远,过热蒸汽越不饱和,干燥能力越强。
(描述过热蒸汽的量)7.相对湿度、绝对湿度、湿容量、湿含量的定义绝对湿度(absolute humidity):单位体积的湿空气中所含水蒸气的质量湿容量:饱和湿空气的绝对湿度相对湿度RH(relative humidity):单位体积的湿空气中含有水蒸气的重量与同温同压下可能含有最大水蒸气的重量之比,即:绝对湿度与湿容量之比。
湿空气的湿含量:含有1千克干空气的湿空气中水蒸气的克数8.相对湿度的测定方法及其原理相对湿度的测定:干湿球温度计法、平衡含水率法(湿敏试片法)9. I-d 图的作用、分区作用(zuòyòng):图主要是描述湿空气的状态(zhuàngtài),即通过确定湿空气的各个参数,来确定湿空气的状态。
木材干燥工艺

影响木材干燥速度之因子分析前言木材干燥时,其中所含水分(自由水,约束水,水蒸气)是利用不同的机构(me-chanism),经由不同的流通管道,自中心移至表面而蒸发。
在移动过程中,水分可能随木材中的实际状况自某一形式转换为另一形式(图2.8.)。
一般生材在常温下其约束水约占其全干重的30%,余者除极微量的水蒸气外,均为自由水。
以大叶桃花心木(Swietenia macrophylla)为例,其原始含水率约60%左右:故可粗估一半为约束水,一半为自由水。
若为台湾杉(Talwanla cryptomerioides),因其原始含水率高达150%以上,故其自由水亦增为约束水的4倍以上。
约束水的含量永远是一常数(30%左右)。
水分移动的速率完全受制于下列因素。
物理因素温度、相对湿度、和空气循环等物理因素对木材水分移动的影响乃一深奥而复杂的学科,本文仅简要叙述其基本原理。
(1)温度热(heat)是木材水分蒸发时必须获得运动能量(kinetic energy)的根源,同时水分蒸发的快慢全赖单位时间内热能的供应情形以及加热媒体(空气)吸收水分的能力而定。
干燥是由木材表面逐渐向内层进行,假如温度一定,则蒸发率会随木材水分的减少以及空气中蒸气压力的增加而逐渐降低。
所以,欲保持稳定的蒸发率,必须能使木材水分获得附加热能(additional energy),或者降低干燥窑内的蒸气压力。
此可藉提高温度(更多的热能)或降低相对湿度(较低的蒸气压力)以达成。
故欲使温度在50℃(122下)时之蒸发率等于70℃(158oF)之蒸发率,则必须尽量降低相对湿度;藉增加干燥空气的水分亲和力(moisture affinity)来补偿热能的减少。
但如此处理可能会形成剧烈的水分梯度,使木材发生干裂而招致“贬质”(degrade)。
另一方面,提高温度可加速水分的移动,虽需维持较高的湿度以防干裂,但不致过份影响干燥速率。
谈到温度,有一事应牢记于心,即在干燥过程中窑内之干球温度必高于木材温度。
木材高温高压蒸汽干燥工艺

实木蒸汽干燥工艺(星湖实业)一、木材干燥概念众所周知木材是由生长树木锯割而成。
木材在国民经济建设和我们家庭生活中都有着比较关键作用。
我们天天都要接触木材。
木材中含有水分, 但水分过多就要向空气中蒸发, 会造成木材在一定环境下尺寸不稳定性, 给木材加工和使用带来严重影响, 其产品质量不能得到确保, 所以要使木材为我们所用, 必需对它进行干燥。
二、木材干燥定义及目木材干燥通常指在热能作用下以蒸发或沸腾方法排除木材水分处理过程。
这个定义说明, 若要使木材中水分排除, 在它周围环境中必需要有一个热能存在, 而这个热能通常就是产生热热源。
就像我们居住房屋, 要想使之含有适宜温度, 必需要有一个热源来确保供热, 如火炉、蒸汽、空调器、阳光等。
在一定温度下, 木材中水分就以蒸发方法或沸腾方法排到它周围空气中, 木材就得到了干燥。
当木材中水分降到一定程度时, 我们就能够使用它来加工和制造我们所需要产品。
三、为何选择饱和蒸气加热:常规室干方法现在是关键干燥方法。
常规室干是指采取木材干燥室对木材进行干燥。
它能够人为地控制干燥条件对木材进行干燥处理, 简称室干。
现在中国外木材干燥生产中, 常规室干占木材干燥生产85%~90%。
采取热源是蒸汽加热器, 需要配置蒸汽锅炉。
常规室干优点是: 蒸气加热成本低, 即是软化剂又是加热源。
能够确保任意树种和厚度木材干燥质量, 能将木材水分含量干燥到所需要任意状态, 干燥周期短, 设备操作灵活, 干燥条件易于掌握, 便于实现木材干燥生产机械自动化。
四、木材加工干燥优点(1)预防木材产生开裂和变形。
木材中水分在向空气中排除时, 尤其是当木材水分含量在木材纤维饱和点以下时, 就会引发木材体积收缩。
假如收缩不均匀, 木材就会出现开裂或变形。
若是将木材干燥到与使用环境相适应程度或使用要求状态, 就能保持木材体积尺寸相对稳定, 而且是经久耐用。
(2)提升木材力学强度, 改善木材物理性能和加工工艺条件。
3[1].4木材干燥工艺(2)PPT课件
![3[1].4木材干燥工艺(2)PPT课件](https://img.taocdn.com/s3/m/193ac5aba26925c52dc5bf5e.png)
上下层隔条不允许位移过多,
上层隔条必须压在下层隔条
一半的位置上,防止全压在
下层板而引起板材的弯曲,
这样材堆的压力就可以通过
2021 隔条由支撑梁承担。 10
• 隔条应伸出材堆侧面20-30mm,以增加材堆的稳 定性,减少材堆两边板材变形,且有利于码垛, 但隔条不能伸出材堆太长,以防止材堆不能进出 干燥室。
Ⅲ
Ⅳ
Ⅵ
-
落叶松
Ⅳ
Ⅴ
Ⅵ
Ⅶ
-
2021
16
• (2)时间干燥基准
把整个干燥过程所需要的时间分成若干段,每一时 间段对应一种介质温、湿度。参考附录10.1。
基准 序号
5
干燥 阶段
1 2 3
干球 温度 ℃
90
100
110
湿球 温度 ℃
70 70 68
相对 湿度 %
43 29 18
时间 系数
%
30
20
50
2021
喷蒸管和进排气道:是否漏气及正常喷射、开关和调 整是否灵活 ➢ 回水系统的检查 疏水器、维修阀门、旁通阀控制系统的检查 ➢ 检测系统的检查 干湿球温度计、平衡含水率传感器、木材含水率传感
器、控制柜上的显示仪表、2021电流表、电压表和电度表 3
二、锯材的堆积
单元小材堆和轨车材堆
2021
4
1.堆积方法: •1)板材与板材之间靠紧,不流空隙的密集排列:
• 半波动干燥基准
在干燥前段(M>25%)逐渐升高,而在后段作 波动变化。
2021
14
表 双段干燥基准表
试
干燥介质参数
验
第一阶段(W>20%)
号
t
木材烘干方案

木材烘干方案1. 背景介绍木材烘干是一种将生木材中的水分蒸发掉的过程,可以提高木材的质量和降低其容重。
高质量的干燥木材具有较好的稳定性和耐久性,被广泛应用于建筑、家具制造、造纸等行业。
因此,设计和实施一个有效的木材烘干方案对于木材加工行业来说至关重要。
2. 目标本文档旨在介绍一个全面的木材烘干方案,包括烘干方法、工艺流程、设备选择等内容,以帮助读者理解并应用该方案。
3. 烘干方法烘干方法是选择木材烘干方案时的关键因素之一。
下面介绍两种常见的木材烘干方法:3.1 自然晾干法自然晾干法是将木材堆放在通风良好的场地,利用自然气候条件将水分蒸发出去的方法。
这种方法简单易行,成本低廉,但烘干时间较长,易受天气影响,对于大批量生产的木材来说并不适用。
3.2 人工烘干法人工烘干法是利用热源和通风设备,加速木材内部水分的挥发和蒸发的方法。
这种方法烘干时间短,烘干效果好,但设备投资较大,需要有专门的烘干设备。
4. 工艺流程一个完整的木材烘干方案包括以下几个工艺步骤:4.1 原料准备选择优质的原料木材是提高烘干效果的重要一步。
要求原料木材干燥、储存完好,无病虫害,尽量避免有害物质的污染。
4.2 木材分类与排列根据原料木材的种类、尺寸和温度要求,将木材分类,并按照一定的方式进行排列。
4.3 预热处理通过提供适当的温度和湿度来预热木材,使木材内部温度均匀分布,为后续的烘干做好准备。
4.4 木材烘干根据烘干方法选择相应的烘干设备。
将预热处理后的木材放入烘干设备中,根据设备要求设置合适的温度和湿度,控制烘干时间。
4.5 降温与平衡在木材烘干完毕后,需要进行降温处理,使木材温度逐渐恢复到室温,并保持一段时间以达到平衡状态。
4.6 最终加工木材烘干完成后,可以进行最终的加工处理,例如切割、打磨、上漆等,以满足不同行业的需求。
5. 设备选择选择合适的烘干设备是实施木材烘干方案的关键一步。
以下是几种常见的木材烘干设备:•热风循环烘干机:通过电或燃料提供热源,利用风机将热风循环供给木材,使木材快速烘干。
精选木材常规干燥工艺干燥工艺

6.1.4.2检验板的使用 木材干燥过程中,检验板是操作人员随时掌握干燥过程的依据,必须保证检验板完整性。应放在易取放位置;检测含水率检验板最好放置在材堆中水分蒸发最慢部位,确保被干木材终含水率均达到要求;检测应力检验板最好放置在材堆中水分蒸发最快部位,以防止干燥缺陷的发生。
隔条的尺寸: 一般情况下,强制循环空气干燥窑采用20~25mm厚的隔条,自然循环木材干燥窑采用25~35mm厚的隔条。隔条的横断面一般为正方形,也有采用矩形,锯制为25mm×35mm,以适用于不同情况。板材的规格厚度不同,所需木材表面的气流循环速度不同,其隔条的厚度也不同,下表列出板材厚度与隔条厚度之间的关系。
要求隔条材的物理力学性能好,材质均匀,纹理通直,能经久使用;一般使用变形小、硬度高的干木材制作。
6.1.2.3 堆积锯材时的注意事项: ①同一干燥室材堆木材的树种、厚度要相同,或树种不同而材质相近。厚度容许偏差为木材平均厚度10%,初含水率力求一致。 ②材堆中各层隔条在高度上自上而下地保持在一条垂直线上,落在材堆底部的支撑横梁上。 ③支持材堆的几根横梁,高度一致,在一个水平面上。 ④木材越薄,要求干燥质量越高,或要求终含水率越低,配置隔条数目应越多,沿材堆长度横置隔条。 25mm厚板材,隔条间距不应超过0.5m;50mm厚板材隔条间距可按0.8~1.0m布置,50mm以上厚木材,隔条间距取1.0m。
6.1.4检验板的使用 生产中通过测定检验板含水率和应力变化来操作干燥过程。 用于检验木材含水率的检验板,叫做含水率检验板。设置含水率检验板的目的就是为了检测干燥过程中木材含水率的变化,作为实施干燥基准阶段转换和结束干燥过程的依据。 用于检验木材干燥应力的检验板,叫做应力检验板。设置应力检验板的目的就是为了检测干燥过程中木材应力的大小,作为干燥过程中实施调湿处理的依据。 检验板(含水率检验板、应力检验板)是室内被干木材代表。6.1.4.1检验板的选制 按含水率基准操作的工艺过程必须使用检验板。锯制检验板的木材应具有代表性,对材质要求如下:①无腐朽,无裂纹,无虫蛀,非偏心材、无涡纹,少节疤;②含水率较高的边材;③材质密实,干燥缓慢的树基部材;④弦切板材(板面是弦切面)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
130 130 125 120 118 115 112
0.35 0.35 0.42 0.50 0.53 0.58 0.65
表 双段干燥基准选择表
锯材厚度(mm)
树
种
22以下 22~30 30~40 40~50 50~60
松、云杉、冷杉、雪松 桦木、白杨 落叶松
Ⅰ Ⅱ Ⅳ
Ⅱ Ⅲ Ⅴ
Ⅲ Ⅳ Ⅵ
Ⅴ Ⅵ Ⅶ
疏水器、维修阀门、旁通阀控制系统的检查 检测系统的检查 干湿球温度计、平衡含水率传感器、木材含水率传感
器、控制柜上的显示仪表、电流表、电压表和电度表
二、锯材的堆积
单元小材堆和轨车材堆
1.堆积方法:
•1)板材与板材之间靠紧,不流空隙的密集排列:
适用各种周期式 强制循环干燥室
•2)板材与板材之间留有空隙:
2)分析研究法: 如果被干树种没有现成的干燥基准可以参考,干 燥基准的制定先从研究木材的干燥特性和构造特 征开始,然后用分析和试验相结合的方法在实验 室进行干燥工艺试验。 木材的干燥特性一般包括:木材的基本密度、弦 径向干缩系数和比率、干燥速度; 与干燥有关的构造特征有:木射线的粗细和数量、 细胞壁的壁厚和其上纹孔的数量和性质、内含物 分布和数量等。
• 对隔条的要求(经久耐用,厚度偏差为1~2mm 等)
• 隔条在高度方向上要垂直,并且应落在材堆底部 的支撑横梁上,以免板材因受到隔条的压力引起 弯曲。
• 隔条的根数与支撑横梁的根 数不同时,就必须采用棚架 隔条的方法,使隔条由横梁 上逐层依次地向正确位置移 动,如图中“跑条错半”, 上下层隔条不允许位移过多, 上层隔条必须压在下层隔条 一半的位置上,防止全压在 下层板而引起板材的弯曲, 这样材堆的压力就可以通过 隔条由支撑梁承担。
三、干燥基准
⒈干燥基准:在干燥过程中根据干燥时间和木材
的状态(含水率、应力)的变化而编制的干燥介
质温度和湿度变化的程序表。
⒉分类:
• (1)含水率干燥基准 在整个干燥过程中按含水率阶段的幅度划分成几 个阶段,每一阶段确定出相应的介质温、湿度。 • 双段或三段干燥基准 在整个干燥过程中根据含水率划分成二段或三段, 并确定相应的介质温、湿度; • 波动干燥基准 含水率基准各阶段介质温度作“升温-降温-恒 温”反复波动变化; • 半波动干燥基准 在干燥前段(M>25%)逐渐升高,而在后段作 波动变化。
表 双段干燥基准表
干 燥 介 质 参 数
试 验 号 t
第一阶段(W>20%)
第二阶段(W<20%)
△t
30 20 15 12 10 8 6
φ
t
△t
30 30 25 20 18 15 12
φ
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ
130 120 115 112 110 108 106
0.35 0.50 0.58 0.65 0.69 0.75 0.81
干燥前准备工作
干燥室壳体及设备的检查
锯材的堆积
干燥基准
干燥基准的分类 干燥基准的制定 室干过程的检测与干燥质量检测 干燥缺陷
一、干燥室壳体及设备的检查
干燥室壳体及大门的检查 全砖砌体干燥室、全金属壳体干燥室 通风机系统的检查 供热系统的检查 加热器和蒸汽管路:是否漏气、开关和调整是否灵活 调湿系统的检查 喷蒸管和进排气道:是否漏气及正常喷射、开关和调 整是否灵活 回水系统的检查
(3)连续升温干燥基准
在锯材的干燥过程中,通过匀速升高介质的温度,使木材
温度和介质温度之间的温差为常数,从而使干燥速度基本 为常数。 表 连续升温基准表(50mm厚红松)
工艺过程 空气参数 干球温度(℃) 湿球温度(℃) 开始 45 37 升温速度 1.5 ℃/h 1.0 ℃/h 最高 118 85 终了处理2h 90 86
• 隔条应伸出材堆侧面20-30mm,以增加材堆的稳 定性,减少材堆两边板材变形,且有利于码垛, 但隔条不能伸出材堆太长,以防止材堆不能进出 干燥室。
3.材堆堆积的注意事项及尺寸 材堆的外型尺寸可参考如下经验数据: 材堆外型:与门框之间的间隙为75~100mm; 与顶板或室顶的间隙为200mm;与侧墙之间的距 离为400~ 600mm、500~ 800mm(侧风型); 材堆底部与轨面的距离为300mm。
适用各种周期式 强制循环干燥室
•3)在材堆中央部分留有较大空隙:
适用自然循环或弱 强制循环干燥室
⒉ 隔条(drying finger)
隔条的作用:使相邻两层锯材均匀隔开 1)在材堆高度方向上形成水平气流循环通道;2) 使材堆在宽度方向上稳定; 3)使材堆的各层木料相互挟持,防止和减轻木 材的翘曲。 隔条的尺寸: 长度:与材堆的宽度一致。 宽度:35~45mm
3)图表法 : 可以通过图表直接查到干燥基准。 这种方法是根据木材的含水率规定干燥介质的平衡含 水率和干燥梯度。
(4)干燥梯度基准 干燥梯度:指木材平均含水率与介质平衡含水率之比。
⒊ 干燥基准的选用及编制 ⑴制定干燥基准的用性质与该树种接近的已有干燥基准的树种的 干燥基准作为参考基准,并进行适当的修改,将 修改后的基准作为试验基准(初步干燥基准)。 • 如果在小型试验设备中进行,干燥基准可以从硬 开始,如果在大型设备中开始,干燥基准应从软 开始。 • 试验过程中应经常检测木材的含水率变化和应力 变化,并记录干燥缺陷发生的时间和程度。
Ⅵ -
• (2)时间干燥基准 把整个干燥过程所需要的时间分成若干段,每一时 间段对应一种介质温、湿度。参考附录10.1。
基准 序号 干燥 阶段 1 5 2 3 干球 温度 ℃ 90 100 110 湿球 温度 ℃ 70 70 68 相对 湿度 % 43 29 18 时间 系数 % 30 20 50
表 板材厚度与隔条厚度之间的关系
板材厚度(mm)
10 15-24 25-35 40-50 50-70 70-100
隔条厚度(mm)
15 20 25 30 35 40
a
适合材间风速较高 的情况
适合材间风速较低 的情况
30以下 30-40 40-60 60-80 80以上
13 20 25 30 40