高分子材料(塑料、橡胶)连接技术

合集下载

高分子合成技术

高分子合成技术

高分子合成技术高分子合成技术是一种重要的化学工艺,其应用广泛,可以制备出多种功能性高分子材料,如塑料、橡胶、纤维、涂料等。

本文将介绍高分子合成技术的基本原理、分类、合成方法以及应用领域等方面的知识。

一、高分子合成技术的基本原理高分子合成技术是指将单体(也称为单体物质)通过化学反应转化为高分子的过程。

单体是指可以通过化学反应形成高分子的单元分子,如乙烯、苯乙烯、丙烯酸等。

高分子是由许多单体分子通过共价键连接而成的大分子,其分子量通常在几千到数百万之间。

高分子合成的基本原理是通过化学反应将单体分子连接起来,形成高分子链。

这种连接方式通常是通过共价键连接,而不是通过物理吸附或静电作用连接。

高分子的合成过程通常需要催化剂的参与,以促进反应的进行和提高反应速率。

催化剂可以是酸、碱、金属或有机物等。

二、高分子合成技术的分类高分子合成技术可以根据反应方式、单体种类、反应条件等多个方面进行分类。

以下是常见的分类方式:1. 反应方式:高分子合成反应可以分为自由基聚合、阴离子聚合、阳离子聚合、离子交换聚合等几种方式。

其中自由基聚合是应用最广泛的一种方式,其反应速率快、反应条件温和、产物纯度高等优点,因此被广泛应用于塑料、橡胶等材料的制备中。

2. 单体种类:根据单体的化学结构和性质,高分子合成可以分为低聚物合成、共聚物合成、交联聚合物合成等几种方式。

低聚物合成是指将单体的聚合反应停留在一定程度,形成分子量较小的聚合物。

共聚物合成是指将两种或两种以上的单体进行聚合反应,形成具有不同性质的高分子。

交联聚合物合成是指通过交联剂将聚合物链连接起来,形成具有强度和韧性的高分子材料。

3. 反应条件:高分子合成反应的条件包括温度、压力、催化剂种类和用量等多个方面。

根据反应条件的不同,高分子合成可以分为常温聚合、高温聚合、压力聚合等几种方式。

三、高分子合成技术的合成方法高分子合成技术的合成方法有很多种,根据反应方式和单体种类的不同,可以选择不同的合成方法。

高分子材料与工程专业简介

高分子材料与工程专业简介
纺织大学、湖北科技大学 武汉工程大学、长江大学、湖北汽车工业学院、孝感学院 【湖南省】中南林业科技大学 、南华大学、湖南工业大学、衡阳师范学院 【广东省】中山大学、广东石油化工学院、深圳大学、仲恺农业工程学院、 华南理工大学、广东工业大学、暨南大学 【广西壮族自治区】桂林理工大学 【海南省】海南大学 【四川省】四川大学、西南石油学院 【陕西省】西安工业大学、西北工业大学、西安工程大学 、陕西科技大学、西安科技大学、西安交通大学、延安大学 【甘肃省】兰州大学、兰州理工大学 【内蒙古自治区】内蒙古农业大学 【新疆维吾尔自治区】新疆大学
(3)高分子合成方向:
我校高分子合成以新型橡胶、涂料与粘合为主要方向。本专业方向培养能在高分子材料合成工业各部门从事高分子材料的合成、高分子材料改性、功能与特种高分子合成与表征等科学研究与产品开发的高级工程技术人才。学生主要学习以高分子材料合成、高分子化学与物理改性为主体的聚合物合成工艺、聚合反应工程、功能与特种高分子材料设计、聚合物改性原理与方法等专业知识。
专业咨询邮箱:gaofenzi@
高分子材料与工程专业培养具备高分子材料与工程等方面的知识,能在高分子材料的合成改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。
本专业学生主要学习高聚物化学与物理的基本理论和高分子材料的组成、结构与性能知识及高分子成型加工技术知识。
二、专业综合介绍
材料物理(Material Physics)专业,一般属于材料科学与工程系学院下辖的专业之一。所涉及到的方面主要是材料的宏观及微观结构,尤其是微观结构,材料的物理性能基本参数以及这些参数的物理本质。 材料物理专业是材料科学与工程里面不可或缺的重要组成部分。犹如支撑万丈高楼的基石,材料支撑着人类文明。很多人觉得新世纪是“信息技术”的世界,不过任何技术赖以实现的物质基础还是材料,这一重要地位在人类社会发展到任何阶段都无法改变,而且必将越来越重要。随着科学技术的发展,材料正朝着微型化、功能化、智能化的方向发展。现在颇为流行的纳米材料、环境材料、电子材料、信息材料,大部分都是材料的物理性能在各特殊领域的应用。比如纳米材料,可以说就是纳米尺度下的材料物理学。材料物理专业所研究的磁学及光学性质在信息材料领域有着巨大的应用空间,是现代半导体、微电子、光电子产业发展的理论及应用基础。因此,随着材料产业以及信息产业在新 高分子材料与工程专业人才的培养模式

高分子材料加工技术

高分子材料加工技术

高分子材料加工技术
高分子材料加工技术是指将高分子材料(如塑料、橡胶)通过一系列的加工工艺,使其变成所需的产品或零部件的过程。

它包括以下几种常见的加工技术:
1. 注塑成型:将高分子材料加热熔融后,通过注塑机将熔融物注入模具中,然后冷却固化成型。

2. 吹塑成型:将高分子材料加热熔融后通过吹塑机,将其吹入充气的模具中,然后冷却固化成型。

3. 挤出成型:将高分子材料加热熔融后,通过挤出机将熔融物挤出成型。

4. 压延成型:将高分子材料通过双辊压延机,经过连续的冷却和压延,使其变成薄膜或板材。

5. 注塑拉伸吹塑成型:将高分子材料通过注塑机注塑成形后,再通过拉伸和吹塑成型,制成透明的容器或瓶子。

6. 焊接和粘接:在高分子材料表面使用热焊或化学粘接剂
将两个或多个零部件连接在一起。

此外,还有其他加工技术如热压、胎具法、模压、拉伸成
型等。

这些加工技术都有各自的特点和适用范围,根据实
际需求选择合适的加工技术可以提高生产效率和产品质量。

塑料焊接的基本方法

塑料焊接的基本方法

塑料焊接的基本方法塑料焊接是一种常见的塑料加工技术,用于将两个或多个塑料件连接在一起。

塑料焊接具有简单、高效、经济等优点,被广泛应用于塑料制品的制造和维修。

以下是塑料焊接的基本方法。

1.熔接焊接(热传导焊接)熔接焊接是最常用的塑料焊接方法之一、它适用于热可塑性塑料,如聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等。

熔接焊接的步骤如下:-将需要连接的塑料件对齐并稳定固定。

-使用一个热锐器或者加热片加热,将焊接接头加热到熔融温度。

热锐器或加热片的温度应根据塑料的种类确定。

-然后迅速将两个熔化的接头压合在一起,使其完全融合,并保持一定时间,待冷却固化后即完成了焊接。

2.超声波焊接超声波焊接适用于热可塑性塑料,如聚丙烯(PP)、聚酰胺(PA)、聚碳酸酯(PC)等。

超声波焊接的步骤如下:-将需要焊接的塑料件对齐并放在超声波焊接机的夹具中。

-通过超声波发生器产生振动,然后通过焊头对焊接部位施加压力。

-高频的振动使塑料材料表面产生热,塑料迅速熔化,然后冷却固化,实现了焊接。

3.摩擦搅拌焊接摩擦搅拌焊接是一种适用于熔融焊接塑料的方法,例如聚氯乙烯(PVC)、聚苯乙烯(PS)等。

摩擦搅拌焊接的步骤如下:-将需要连接的塑料件对齐并固定在焊接机上,如旋转摩擦搅拌焊接机。

-在摩擦搅拌焊接机上设置适当的转速和压力。

-启动机器,使两个塑料件接触在一起,然后通过转动和施加横向压力,实现塑料间的高速磨擦。

-磨擦产生的热能将塑料加热到熔融状态,然后停止搅拌,使塑料冷却固化,完成焊接。

4.热板焊接热板焊接适用于热可塑性塑料,如聚苯乙烯(PS)、聚碳酸酯(PC)等。

热板焊接的步骤如下:-将需要连接的塑料件对齐并固定在热板焊接机上,注意保持接触面整洁。

-设置合适的温度和焊接时间,启动机器加热热板。

-热板达到设定温度后,将两个接头夹紧在热板之间。

-保持一定的压力和时间,使两个塑料接触的表面熔化并融合在一起。

-冷却后,断开压力,取出焊接件,焊接即完成。

高分子化学材料在日常生活中应用

高分子化学材料在日常生活中应用

浅析高分子化学材料在日常生活中的应用(巩义市第三中等专业学校河南巩义451200)高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。

高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。

如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。

下面就以塑料和纤维素举例说明。

一、生活中常见的高分子材料——塑料塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。

是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。

塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。

2、塑料制造成本低。

3、耐用、防水、质轻。

4、容易被塑制成不同形状。

5、是良好的绝缘体。

6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。

塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。

2、塑料容易燃烧,燃烧时产生有毒气体。

3、塑料是由石油炼制的产品制成的,石油资源是有限的。

热塑性弹性体

热塑性弹性体

热塑性弹性体(Thermoplastic elastomer,TPE)热塑性弹性体(Thermoplastic elastomer,TPE)是物理性能介于橡胶和塑料之间的一类高分子材料,它既具有橡胶的弹性,又具有塑料的易加工性。

这些特性早在1926年Waldo Semon研究PVC时就发现了。

随着共混技术以及嵌段、接枝等共聚技术的进展,世界各地的研究者和公司又相继开发成功了多类具有这种特性的高分子材料,如热塑性聚氨酯(TPU)、苯乙烯类TPE(SBC)、热塑性动态硫化胶(TPV)、聚酯型TPE(TPEE)、聚酰胺型TPE(TPAE)、离聚体型TPE等等。

各类TPE几乎都有一个共同的特点,那就是在分子的凝聚态结构中都存在微观相分离和热可逆的约束形式。

分离的两相称作弹性相和硬相,弹性相提供类似橡胶的弹性和柔软性,而硬相既提供刚性和强度,又提供热可逆的约束形式,这些约束形式在非动态硫化胶类TPE中还起到物理交联点的作用,使弹性相象硫化橡胶一样具有优良的弹性和强度。

至今人们在进行TPE的分子设计时所依赖的热可逆约束形式主要有三种,包括结晶相、冻结相和离子簇。

氢键也是热可逆的约束形式,但一般仅在上述三种形式中起辅助作用。

从各种商品化TPE的对比情况看来,它们在结构、特性与合成方法上都有许多差异(见表1-1)。

其中TPU、TPV、TPEE、TPAE相对于SBC、TPO、CPE来讲,综合性能更优异,可以认为是TPE中档次较高的品种。

TPE的应用领域涉及汽车、电子、电气、建筑、工程及日常生活用品等多方面,其使用的最终形态包括各种护套、管材、电线电缆、垫片、零配件、鞋件、密封条、输送带、涂料、油漆、粘合剂、热熔胶、纤维等。

可以说,TPE工业发展到现在,已经具有相当成熟的水平,其商业地位也日显重要了。

热塑性弹性体热塑性弹性体(Thermoplastic Elastomer-TPE)亦称热塑性橡胶(Thermoplastic Rubber-TPR 或Thermoplastic Vulcanizate-TPV)是一种兼具橡胶和热塑性塑料特性的材料。

聚合物合成的基本工艺流程

聚合物合成的基本工艺流程

聚合物合成的基本工艺流程在化学领域中,聚合物是由重复单元结构组成的高分子化合物,常用于制备塑料、橡胶、纤维等材料。

聚合物的合成过程是通过将单体分子通过聚合反应进行连接而形成的。

下面将介绍聚合物合成的基本工艺流程。

1. 单体选择与准备在聚合物合成过程中,首先需要选择合适的单体进行反应。

这些单体通常是具有活性官能团的化合物,能够参与到聚合反应之中。

在选择单体时,需要考虑其反应活性、官能团的类型以及所需的聚合度等因素。

选择好单体后,需要对单体进行准备工作,确保其纯度和稳定性。

通常会通过物理或化学方法对单体进行精细处理,以满足后续聚合反应的要求。

2. 聚合反应聚合反应是将单体分子通过共价键连接成高分子链的过程。

根据不同的聚合机理,聚合反应可以分为添加聚合、开环聚合和缩聚等不同类型。

在聚合反应中,通常需要引入引发剂或催化剂,以启动聚合反应并控制反应速率。

此外,反应条件如温度、压力、溶剂选择等也会影响聚合物的结构和性质。

3. 分子量控制与功能化在聚合物合成过程中,分子量是一个重要的参数,直接影响着聚合物的物理性质和应用性能。

因此,在聚合反应中需要进行分子量控制,确保所得聚合物具有合适的分子量。

此外,在聚合反应结束后,可以对聚合物进行功能化处理,引入不同官能团或结构单元,以赋予聚合物特定的性能,如增强机械性能、改善耐热性等。

4. 纯化与表征最后,在聚合物合成完成后,需要进行纯化和表征工作。

纯化过程可以采用溶剂抽提、结晶、凝胶渗透色谱等方法,去除杂质和未反应单体,得到纯净的聚合物样品。

在表征方面,常用的方法包括核磁共振(NMR)、红外光谱(IR)、凝胶渗透色谱(GPC)等,通过这些手段可以了解聚合物的结构、分子量分布等信息。

结语通过以上基本工艺流程,我们可以了解到聚合物合成的主要步骤和关键技术。

在实际应用中,不同的聚合物体系会有各自特定的合成方法和注意事项,需要结合具体情况进行调整和优化。

随着科学技术的不断进步,聚合物合成领域也将迎来更多创新和发展机遇。

胶黏剂与粘接技术原理

胶黏剂与粘接技术原理

四、吸附理论 粘接力的主要来源是两材料接触时的分子间作用力,包 括范德华力和氢键力。 经计算,理想平面距离1nm时,范德华力产生的吸引力 9~90Mpa,距离0.3nm时,吸引力100Mpa。聚乙烯20 Mpa, 尼龙66,80Mpa。Bikerman:“正常的粘接头在机械力作用 下粘附破坏是不可能的”。 分子间作用力是提供粘接力的因素,但不是唯一因素。 在某些特殊情况下,其他因素也能起主导作用。 缺点:理论与实际的差距,只有物理吸附,其他物理吸附 比胶黏剂容易 要求:充分润湿,亲密接触
复合型
分类 2 、按形态分类 液态:水溶液、溶液、乳液、无溶剂型 固态型:粉状、 块状、细绳状、 胶膜 带状:黏附型;热封型 膏状与腻子 3 、按应用方法分类 室温固化型(溶剂挥发型、潮气固化型、厌氧型、加固化剂型) 压敏型(接触压胶、自粘(冷粘)型、 缓粘(热粘)型、 永粘型) 热固型 、热熔型 4 、按用途分类 结构用(实际粘接强度大于6.9MPa,通常是热固性) 非结构用、压敏胶、特种用
淀粉、天然橡胶、松香、阿拉伯(树)胶
矿物蜡、沥青、粘土 烯类聚合物(聚乙烯类,PVC类, 聚乙烯醇,PVA,聚乙烯醇缩 醛,聚丙烯酸类),饱和聚酯,聚酰胺,纤维素类(硝酸、醋酸)
环氧树脂,酚醛树脂,不饱和聚酯,聚酰亚胺,脲醛树脂,间苯二 酚甲醛树脂,聚异氰酸酯
氯丁橡胶,丁苯胶,丁腈胶,丁基胶,聚硫橡胶,有机硅橡胶 酚醛-氯丁橡胶,酚醛-丁腈橡胶,酚醛-聚乙烯醇缩醛,环氧-酚 醛,环氧-丁腈橡胶, EVA,环氧-聚酰胺
浸润的动力学
浸润速度与被粘物的表面结构、胶粘剂粘度η和表面张力 有关。浸润时间 T=2kη/( γl cosθ) k-与表面结构有关的常数 有机液体的表面张力γl 相差不会很大。 θ越小,浸润速度越快 液体粘度越低,浸润时间越短,便充分浸润缝隙;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料的连接技术
摘要:目前塑料的常用连接方式有粘接、机械连接、焊接等,粘接主要是通过粘合剂进行粘接,粘接方便快捷;机械连接是利用机械的方法达到目的。

其中焊接是重要的一种,它具有连接强度高、表面连续性好、应用范围广、工艺简单、可实现机械化、生产效率高等优点,得到了广泛应用。

随着高分子材料的广泛应用,高分子材料的连接技术也日趋重要。

关键词:粘接机械连接焊接广泛重要
虽然有各种方式可将树脂与其他树脂接合,但最简单、最广泛的方式则是,利用粘合剂予以粘接。

一、利用环氧树脂系粘合剂,环氧树脂粘合剂经过硬化後会变硬,因此一般都用来粘接要求强度的构件。

二、硅胶系粘合剂,硅胶系粘合剂的耐溶剂性较高,在广泛的温度环境下具有稳定的性质。

几乎所有的硅胶粘合剂,在硬化後会出现具弹力的橡胶性状。

换言之,若与要求粘接强度相较之下,反倒是适用于需要气密性、耐药品性的部份或严苛环境(温度范围广泛、极高温或极低温)下。

三、尿烷系粘合剂,由于尿烷系粘合剂和许多树脂与金属皆具有密合性,即使是环氧树脂系粘合剂或硅胶系粘合剂等无法获得充分粘接力的树脂(聚缩醛树脂等),也可进行良好的粘接效果。

但有时会出现较为柔软、耐热性、耐溶剂性方面的问题。

高分子材料的机械连接与金属材料类似,有自攻螺钉连接、金属螺纹嵌件连接、塑料螺纹连接、铆钉连接、螺栓连接、卡入连接等。

此处就不再仔细讨论。

高分子材料的焊接是最具有特殊性的,它与金属焊接有许多不同之处。

焊接具有连接强度高、表面连续性好、应用范围广、工艺简单、可实现机械化、生产效率高等优点,得到了广泛应用。

(1)热熔焊接利用加热板或加热丝使被焊接的塑料件对接面熔化,再通过压力使对接面连接达到焊接牢固的目的。

热融焊接常用于焊面为圆形的医用塑料制品及医用包装袋等的制作。

比如,医用塑料输液瓶的瓶口、医用塑料或纸塑复合包装袋等。

(2)超声焊接超声焊接的原理是以 20kHz 的频率造成高速振动,使塑料与塑料的对接面因摩擦生热而融合;若用于塑料与金属的焊接,可在不足 1s 内将金属焊接于塑料驳口内。

超声焊接是一种新颖的塑料二次加工技术,以其高效、优质、美观、节能等优势而发展起来。

超声焊接使用范围广,可实施的方法多,如平面焊接法、铆接法、点焊法、镶嵌法等。

超声焊接已应用于血液透析器、血浆采集器等医用制品的制作中,如血浆单采离心分离器的杯体与压盖的焊接,采用此种焊接法替代了化学粘合,解决了离心杯高速旋转时引起的粘合剂融化现象,取得了良好的效果。

此外,在医用防护口罩、防护服、输液器、球囊扩张导管的制作过程中也常采用这种方法。

(3)高频焊接高频焊接是利用热塑性塑料在高频电极间会因分子极化而随电场变化产生运动,分子间发生摩擦,使电能转变成热能,塑料本身生热直至熔融,从而达到连接的目的。

高频焊接常用于血袋、引流袋、尿袋等袋类医用制品的制作和一些医用包装袋的封口。

(4)振动焊接振动焊接是一种通过摩擦生热的自限加热焊接方法。

通常以一定的线性位移或角位移进行摩擦生热,使两块制件的接触面熔融。

可用于大部分热塑性塑料,尤其适用于结晶性塑料如PE、PA、PP 等不易进行超声或熔融焊接的塑料。

振动焊接具有焊接速度快、能自动调节焊接温度、焊缝不出现过热、焊缝区很少有杂质等诸多优点,在医用塑料制品方面应用较多。

特别适用于超声焊接不易实现的较长的线性接头和热板焊接需用较长时间完成的接头。

(5)激光焊接激光焊接是一种高速、非接触焊接热塑性塑料的方法。

在正常的工作条件下,激光辐射非常强烈而集中,通过激光辐射将焊接部位挤在一起并在焊接接头区域留下散开的激光束以焊接塑料。

激光焊接主要用于焊接敏感性塑料制品如含有线路板的配件、具有复杂几何形状的塑料制品及有严格洁净要求的塑料制品例如医药设备等[27]。

影响焊接质量的因素:
1.压力,对焊接表面施加适当的压力,焊接材料将由弹性向塑性过渡,还可以促进了分子相互扩散并挤去焊缝中的残余空气,从而增加焊接面密封性能。

2.时间,要有适当的热熔时间和足够的冷却时间。

当热功率一定时,时间不够会
出现虚焊,时间过长会造成焊件变形,熔渣溢出,有时还会在非焊接部位出现热斑(变色)。

必须保证焊接面吸收足够的热量达到充分熔融的状态,才能保证分子间充分扩散熔合,同时必须保证足够的冷却时间使焊缝达到足够的强度。

3.熔融量,热熔时间和热功率协调调整才会得到最恰当的熔融量,保证足够的分子间融合,消除虚焊的现象。

除了焊接设备和操作人员技能水平外,来之于塑料内部或外部的各种因素,对焊接质量有一定的影响,应当引起重视。

其他影响焊接质量的因素:塑料的吸湿性,如果焊接潮湿的塑料制品,内含的水分会在受热后化为蒸气跑出而在焊面上出现气泡,使焊接面密封性能减弱。

吸湿较为严重的材料有PA、ABS、PMMA等。

用这些材料做的制品,焊前必须进行干燥处理;塑料中的填充物,如玻璃纤维、滑石粉、云母等,它们改变了材料的物理特性。

塑料中填充料的含量同塑料的可焊性和焊接质量有很大的关系。

填充物含量低于20%的塑料可以正常进行焊接,不需要进行特殊的处理。

填充物含量超过30%时,由于表面塑料比例不足,分子间融合的不够,会降低密封性;焊接面的清洁,焊接表面必须清洁没有杂质,才能保证足够的焊接强度和气密性。

参考文献:1、成都工学院塑料成型加工专业编,《塑料成型工艺学》,1976
2、《工程塑料应用》,1993年01期。

相关文档
最新文档