初中应用题的解题技巧

合集下载

数学应用题答题技巧

数学应用题答题技巧

数学应用题答题技巧
1. 嘿,仔细读题可是关键啊!就像你走路得看清路一样。

比如题目说小明有 5 个苹果,给了小红 2 个,问还剩几个。

你要是没看清数字,那不就答错啦!所以读题要认真仔细,可别马虎哟!
2. 画图解题超有用的呀!这就好比给你一团乱麻,你画个图不就理清啦。

像有道题是算几个图形的面积,你画个图出来,一目了然,答案不就轻松找到啦!
3. 找关键信息很重要呢!好比在一堆东西里找宝贝。

比如题目里说周末去公园,那这就是个重要提示呢,做题可得抓住这些关键啊,不然咋答对呢!
4. 大胆假设也不错呀!就像摸着石头过河。

比如算一个数除以另一个数是多少,你先假设一个数试试看,说不定就能找到规律呢!
5. 检查答案可不能忘啊!这就像出门前得照照镜子看看有没有问题。

做完题检查下步骤对不对,算的数对不对,这样才放心呀!
6. 多思考几种方法呀,别在一棵树上吊死!好比去一个地方可以走好几条路呢。

一道题可能有多种解法,都试试,说不定有更简单快捷的呢!
7. 不要死磕难题呀,该放就放!就像爬山遇到陡壁,先绕过去嘛。

要是一道题难住了,别一直纠结,先去做后面的,最后再回来看看,说不定就有灵感啦!
总之,掌握这些数学应用题答题技巧,做题就会又快又准,不信你试试呀!。

初中数学应用题解法大全

初中数学应用题解法大全

初中数学应用题解法大全初中数学应用题在学习中起到了非常重要的作用,它们能够帮助我们将数学知识应用到实际生活中,培养我们的数学思维和解决问题的能力。

在本文中,我将为大家整理一份初中数学应用题解法大全,帮助大家更好地掌握这类题目的解题方法。

1. 空间几何题解法空间几何题是初中数学中比较常见的一类应用题。

在解决空间几何题时,我们可以采用以下方法:首先,通过画图的方式来帮助理解题意。

其次,根据已知条件,使用几何图形的性质,如平行线、垂直线等来进行分析。

然后,运用相应的定理和定律,如平行线的性质、垂直线的性质等来得出结论。

最后,对得到的结论进行验证。

2. 线性方程组的解法线性方程组是初中数学中另一类常见的应用题。

解决线性方程组时,我们可以采用以下方法:首先,列出方程组。

其次,通过化简、消元等方法,将方程组化简为较简单的形式。

然后,根据方程组的特点,选择最适合的解方程法进行求解,如代入法、消元法、等式法等。

最后,对得到的解进行验证。

3. 百分数的应用解法百分数是数学中的重要概念,应用广泛。

在解决百分数的应用题时,我们可以采用以下方法:首先,明确题意,将题目中的百分数转化为小数或分数形式。

其次,根据题目要求,运用百分数的性质进行计算,如利用百分数的乘除法性质、比例关系等。

然后,根据题目的给定条件,运用所学的知识来解决问题。

最后,对结果进行合理性的判断和验证。

4. 几何变换题解法几何变换是初中数学中的一大考点。

在解决几何变换题时,我们可以采用以下方法:首先,通过观察题目中给出的图形,找出与变换前后相关的性质,如长度、角度、位置等。

其次,根据所学的几何变换知识,选择合适的变换方法,如平移、旋转、翻转等。

然后,根据题目要求进行变化、计算或判断。

最后,对得到的结果进行合理性的判断和验证。

5. 统计与概率题解法统计与概率是初中数学中的一大考点。

在解决统计与概率题时,我们可以采用以下方法:首先,明确题目中给出的问题和已知条件。

初中数学中的应用题如何解决?

初中数学中的应用题如何解决?

初中数学中的应用题如何解决?在初中数学的学习中,应用题一直是让很多同学感到头疼的部分。

应用题不仅考查我们对数学知识的掌握,还考验我们将理论知识应用于实际问题的能力。

那么,如何才能有效地解决初中数学中的应用题呢?首先,要认真审题。

这是解决应用题的关键一步。

在审题时,要逐字逐句地读题,理解题目所描述的情境和问题。

注意题目中的关键词、数字、单位以及条件之间的关系。

比如,“多”“少”“倍”“共”等关键词往往能提示我们解题的思路和方法。

同时,要边读题边思考,将题目中的文字信息转化为数学语言。

其次,选择合适的解题方法。

初中数学应用题常见的解题方法有方程法、算术法、图表法等。

方程法是解决应用题的常用方法之一,尤其是对于较为复杂的问题。

通过设未知数,根据题目中的等量关系列出方程,然后解方程求解。

算术法相对来说更直接,但对于一些复杂的问题可能不太容易找到思路。

图表法可以帮助我们更直观地理解题目中的数量关系,比如行程问题、工程问题等。

以行程问题为例,假设一辆汽车以每小时 60 千米的速度行驶,2 小时后另一辆汽车以每小时 80 千米的速度追赶,问多长时间能追上?我们可以通过画线段图来直观地表示两车的行驶过程,然后根据路程相等列出方程:60×2 + 60x = 80x ,解得 x = 6 ,即 6 小时能追上。

再比如工程问题,一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?我们设两人合作需要 x 天完成,根据工作总量等于工作效率乘以工作时间,可以列出方程:(1/10 + 1/15)x = 1 ,解得 x = 6 ,即两人合作需要 6 天完成。

然后,要找出题目中的等量关系。

等量关系是列方程或列式的依据。

在寻找等量关系时,可以从题目中的关键语句入手,比如“一共”“相等”“比……多(少)”等。

例如,一个数的 3 倍比这个数的 2 倍多 5 ,我们可以设这个数为 x ,那么等量关系就是 3x 2x = 5 。

七年级列方程解应用题技巧

七年级列方程解应用题技巧

七年级列方程解应用题技巧
引言
列方程解应用题是初中数学研究中的一个重要内容。

掌握了列方程的技巧,可以帮助我们更好地理解和解决实际生活和研究中的问题。

本文将介绍一些七年级列方程解应用题的常用技巧。

技巧一:读题仔细,理解问题
在解决列方程问题之前,我们首先要仔细阅读题目,理解问题的要求和限制条件。

有时候,一个关键的细节可能会影响到我们列方程的过程和方程的解。

技巧二:定义未知数
在列方程时,我们需要定义一个或多个未知数来表示问题中的未知量。

我们可以使用字母或其他符号来表示未知数,并结合题目信息设定其含义。

技巧三:利用问题中的已知条件
题目中往往会给出一些已知条件,我们可以利用这些条件列出方程,从而推导出未知数的值。

在列方程时,我们要根据已知条件设定等式的两边,并进行适当的运算。

技巧四:解方程求解未知数
列好方程后,我们可以通过解方程的方法来求解未知数。

常用的解方程方法有平衡法、代入法、加减消元法等。

根据题目的要求选择合适的方法进行求解,并得出未知数的值。

技巧五:检查解的合理性
在解决问题后,我们应该对得到的解进行检查,以确保解的合理性。

如果解符合题目的要求和已知条件,那么我们可以得出最终的答案;如果不符合,我们需要重新检查方程的列写和解方程的过程。

总结
通过掌握这些列方程解应用题的技巧,我们可以更好地解决七年级数学中的列方程问题。

在实际操作中,我们应该多做练,加强对技巧的熟练掌握,提高解决问题的能力。

文档结束。

初中数学应用题解题方法归纳

初中数学应用题解题方法归纳

初中数学应用题解题方法归纳初中数学应用题解题方法是学生在学习数学应用题时需要掌握和运用的技巧和方法。

针对不同类型的应用题,学生们可以通过分析题目、建立数学模型、解决问题等步骤来解决问题。

在本文中,将对常见的初中数学应用题解题方法进行归纳总结。

一、关键词辨析法许多数学应用题给出的信息很多,但关键信息只有一些。

学生可以通过仔细辨析题目中的关键词,找出问题的焦点。

例如,题目中出现的“买”、“打折”、“减少”等词汇都是需要注意的关键词。

通过读懂题意和归纳关键词,可以更好地理解题目的要求。

二、建立数学模型解决复杂的应用题,建立数学模型是十分重要的。

数学模型是将现实问题映射到数学概念中,通过建立数学关系来解决问题。

不同类型的应用题需要采用不同的数学模型。

例如,比例应用题可以采用比例关系建立模型,面积和体积题可以采用图形的相关公式建立模型。

与数学模型相配合的是方程或方程组,学生需要建立符合题目要求的数学方程或方程组,再用解方程的方法求解。

三、分类讨论法有时,一个应用题存在多种情况,学生可以通过分类讨论的方法来逐一解决。

首先,将问题进行分类,并针对每个分类给出解决的具体步骤,最后将各个分类的解决方法汇总得出最终的解答。

例如,一个购物问题中,商品可以打折也可以不打折,学生可以分别讨论这两种情况,得到不同的解答。

四、工作原理法某些问题需要学生理解问题的工作原理,通过分析问题的过程来解决问题。

例如,在速度、时间、距离应用题中,学生需要理解速度是根据时间和距离的比值计算得出的,可以应用速度公式来解决问题。

五、逆向思维法逆向思维法是指通过从问题的结果、答案出发,逆向思考问题的过程和条件。

对于一些求解最值问题或反推问题的应用题,学生可以通过逆向思维法辅助解题。

首先,确定所需要的结果或答案,然后通过逆向的思维过程,找到问题的条件和步骤。

六、列式化简法在一些复杂的应用题中,学生可以通过列式的方式把问题简化为更容易解决的等式或不等式。

初一数学应用题解题技巧

初一数学应用题解题技巧

初一数学应用题解题技巧一、审题技巧1. 仔细读题,明确已知条件和所求问题- 例如:某班有男生25人,女生比男生少5人,问这个班共有多少人?- 解析:已知条件是男生有25人,女生比男生少5人。

所求问题是这个班共有的人数。

首先根据已知条件求出女生人数为25 - 5=20人,然后将男生人数和女生人数相加,得到班级总人数为25+20 = 45人。

2. 标注关键信息- 例如:一件商品按进价提高20%后标价,又以9折优惠卖出,结果每件仍获利20元,求这件商品的进价。

- 解析:关键信息有“进价提高20%标价”“9折优惠卖出”“获利20元”。

设这件商品的进价为x元,标价就是(1 + 20%)x元,售价就是(1 + 20%)x×0.9元,根据售价 - 进价=利润,可列方程(1 + 20%)x×0.9−x = 20,1.08x−x = 20,0.08x = 20,解得x = 250元。

3. 理解题目中的隐含条件- 例如:在一个等腰三角形中,一个角是80°,求另外两个角的度数。

- 解析:隐含条件是等腰三角形两底角相等。

这里80°的角可能是顶角也可能是底角。

当80°是顶角时,底角为(180° - 80°)÷2 = 50°,另外两个角是50°、50°;当80°是底角时,另一个底角也是80°,顶角为180° - 80°×2 = 20°,另外两个角是80°、20°。

二、建立数学模型(方程或算式)的技巧1. 对于等量关系明显的问题,直接设未知数建立方程- 例如:甲、乙两人相距30千米,甲的速度是5千米/小时,乙的速度是4千米/小时,两人同时相向而行,几小时后相遇?- 解析:等量关系是甲走的路程+乙走的路程 = 30千米。

设x小时后相遇,根据路程 = 速度×时间,可列方程5x+4x = 30,9x = 30,解得x=(10)/(3)小时。

初中数学应用题的解题思路以及方法

初中数学应用题的解题思路以及方法

初中数学应用题的解题思路以及方法
初中数学应用题是学生在学习数学的过程中必须掌握的一种题型。

这种类型的数学题通常涉及到实际生活中的应用,需要学生结合所学的数学知识,运用逻辑思维和数学方法来解决问题。

如果学生能够掌握解题思路和方法,他们就能够在考试中取得不错的成绩。

下面是初中数学应用题的解题思路以及方法:
1.阅读题目:首先,要认真阅读题目,理解问题背景和要求。

对于不理解的问题,可以反复读题,分析题目,确定题目中的数据和条件。

2.找到关键词:在阅读题目的过程中,可以找到一些关键词,例如“比例”,“百分数”,“面积”,“周长”等等。

这些关键词可以帮助学生确定问题类型,并且指导他们找到正确的解题方法。

3.建立方程式:对于需要进行运算的问题,可以通过建立方程式来解决。

建立方程式是初中数学应用题解题的重要方法,学生需要根据问题中的条件和数据,确定未知量,并建立方程式。

4.选择正确的数学方法:学生应该根据问题的要求选择正确的数学方法。

例如,如果问题是关于面积的,学生可以使用面积公式来计算;如果问题是关于比例的,学生可以使用比例方法来解决。

5.检验结果:解决问题后,学生需要对答案进行检验,确保答案正确。

如果答案与题目要求不符,学生应该重新检查计算过程并修正错误。

总之,学生需要掌握解题思路和方法,加强练习,提高自己的数学能力。

通过应用题的练习,学生可以培养自己的逻辑思维能力和解决问题的能力,这对于未来的学习和职业发展都是非常重要的。

初中应用题解题方法和技巧

初中应用题解题方法和技巧

初中应用题解题方法和技巧初中应用题解题方法和技巧引言初中应用题是数学学习中的一项重要内容,它能培养学生的逻辑思维能力和解决实际问题的能力。

然而,对于许多学生来说,解决应用题常常是一项难事。

本文将介绍一些方法和技巧,帮助学生更好地解题。

技巧1:仔细阅读题目•通读题目,了解题意和要求。

•确定所需求的量,理解问题背景和语境。

•注意关键信息,划出重要条件和关键词。

技巧2:分析问题•利用已知信息,找出问题的关键点和关系。

•确定问题的求解思路和方向。

•将问题转化为数学语言,建立数学模型。

技巧3:解决问题•选择合适的解题方法,如列方程、利用图表等。

•逐步推理和计算,正确运用数学知识。

•检查答案的合理性,特别是涉及实际问题时。

技巧4:思维灵活•尝试不同的解题角度,利用多种方法进行求解。

•将问题与已学知识进行联系,寻找相关性。

•善于利用辅助线、图形变换等辅助工具。

技巧5:加强实践•利用练习册、试题库等工具进行反复训练。

•遇到解答困难的题目,多请教老师或同学。

•参加应用题解题竞赛,提高解题能力和速度。

结论初中应用题解题需要全面的思维能力和数学知识,但通过掌握上述方法和技巧,学生可以更好地应对各种应用题。

希望本文对学生解决初中应用题的过程有所帮助,让数学学习更加轻松和有趣。

以上是初中应用题解题方法和技巧的介绍,希望大家能够灵活运用这些技巧,提高解题的效率和准确性。

祝愿大家在数学学习中取得更好的成绩!技巧6:举例法•如果你遇到一个抽象、难以理解的问题,可以尝试通过举例子来帮助理解和解决问题。

•选择一个适当的例子,将其代入问题中进行分析和计算。

•通过具体的例子,找出问题的规律和解题方法。

技巧7:近似估算•当问题给出的数据复杂或计算方法繁琐时,可以利用近似估算方法来快速得到一个接近答案的结果。

•忽略掉一些细枝末节,简化计算过程。

•利用数学常识和经验进行合理的估算。

技巧8:反证法•反证法是一种常用的解题方法,通过假设问题的反面来逐步推导,最终得到问题的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用问题的解题技巧(三课时)
教学目标:应用问题是中学数学的重要内容.它与现实生活有一定的联系,它通过量与量的关系以及图形之间的度量关系,形成数学问题.应用问题涉及较多的知识面,要求学生灵活应用所学知识,在具体问题中,从量的关系分析入手,设定未知数,发现等量关系列出方程,获得方程的解,并代入原问题进行验证.这一系列的解题程序,要求对问题要深入的理解和分析,并进行严密的推理,因此对发展创造性思维有重要意义.
重点:解应用问题的技能和技巧.
1.直接设未知元
在全面透彻地理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,这种设未知数的方法叫作直接设未知元法.
例1某校初中一年级举行数学竞赛,参加的人数是未参加人数的3倍,如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2∶1.求参加竞赛的与未参加竟赛的人数及初中一年级的人数.
分析本例中要求三个量,即参赛人数、未参赛人数,以及初中一年级人数.由已知条件易知,可直接设未参赛人数为x,那么参赛人数便是3x.于是全年级共有(x+3x)人.
由已知,全年级人数减少6人,即(x+3x)-6,①而未参加人数增加6人时,则参加人数是未参加人数的2倍,从而总人数为
(x+6)+2(x+6).②
由①,②自然可列出方程.
解设未参加的学生有x人,则根据分析,①,②两式应该相等,所以有方程
(x+6)+2(x+6)=(x+3x)-6,
所以
x+6+2x+12=4x-6,
所以3x+18=4x-6,
所以x=24(人).
所以未参加竞赛的学生有24人,参加竞赛的小学生有
3×24=72(人).
全年级有学生
4×24=96(人).
说明本例若按所求量次序设参加人数为x人,则未参加人数为
例2一工人在定期内要制造出一定数量的同样零件,若他每天多做
做多少个零件?
定期是多少天?
分析若直接设这个工人要做x个零件,定期为y天,则他每天做
另一方面,如果他每天少做5个,则要增加3天工期,因此,
显然,将此两式联立,解出x,y即可.
解设工人要做x个零件,定期为y天,则他每天做x/y个,依分析有方程组
整理得
②×2+①得
将x=50y代入②得
y=27,x=50y=1350,
答工人要做1350个零件,定期为27天.
例3一队旅客乘坐汽车,要求每辆汽车的旅客人数相等.起初每辆汽车乘了22人,结果剩下1人未上车;如果有一辆汽车空着开走,那么所有旅客正好能平均分乘到其他各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少名旅客?
解设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人.由于m≥2,n≤32,依题意有
22m+1=n(m-1).
所以
因为n为自然数,所以23/m-1为整数,因此
m-1=1,或m-1=23,
即m=2或m=24.
当m=2时,n=45(不合题意,舍去);当m=24时,n=23(符合题意).
所以旅客人数为:
n(m-1)=23×(24-1)=529(人).
答起初有汽车24辆,有乘客529人.
注意解方程后所得结果必须代入原题检验根的合理性,并根据情况做具体讨论.
2.间接设元
如果对某些题目直接设元不易求解,便可将并不是直接要求的某个量设为未知数,从而使得问题变得容易解答,我们称这种设未知数的方法为间接设元法.
例4若进货价降低8%,而售出价不变,那么利润可由目前的p%增加到(p+10)%,求p.
分析本题若直接设未知元为x,则不易列方程,为此,可间接设元,设进货价为x,则下降后的进货价为0.92x.由于售出价不变,它可用以下方程式表示:
x(1+p%)=0.92x[1+(10+p)%].
解设原进货价为x,则下降8%后的进货价为0.92x.根据题意售货价不变,故有以下方程
x(1+0.01p)=0.92x[1+0.01(p+10)],
约去x得
1+0.01p=0.92[1+0.01(p+10)],
所以
1+0.01p=0.92+0.0092p+0.092,
所以
(0.01-0.0092)p=0.92+0.092-1,
即0.0008p=0.012,
所以p=15.
答原利润为15%.
例5甲乙两人沿着圆形跑道匀速跑步,它们分别从直径AB两端同时相向起跑.第一次相遇时离A点100米,第二次相遇时离B点60米,求圆形跑道的总长.
分析与解如图1-76,设圆形跑道总长为2S,又设甲乙的速度分别为V,V',再设第一次在C点相遇,则第二次相遇有以下两种情况:
(1)甲乙第二次相遇在B点下方D处,此时有方程组
化简得
由③,④得
解此方程得
S=0(舍去),S=240.
所以2S=480米.经检验是方程的解.
(2)若甲乙第二次相遇在B的上方D'处,则有方程组
解此方程组得
S=0(舍去),S=360.
所以2S=720米.经检验也是方程的解.
这样,两人可能在D点处相遇,也可能在D'点处相遇,故圆形跑道总长为480米或720米.
3.设辅助元
有时为了解题方便,可设某些量为辅助量,参与列方程和运算,最后把这些辅助量约去,得出要求的值.
例6从两个重量分别为m千克和n千克,且含铜百分数不同的合金上,切下重量相等的两块,把所切下的每一块和另一种剩余的合金加在一起熔炼后,两者含铜百分数相等,问切下的重量是多少千克?
分析与解设切下的重量是x千克,并设重m千克的铜合金中含铜的百分数为q1,重n千克的铜合金中含铜的百分数为q2,则切下的两块中分别含铜xq1和xq2,而混合熔炼后所得两块合金中分别含铜[xq1+(n-x)q2]和[xq2+(m-x)q1].故依题意有方程
解此方程得
答切下的重量为mn/m+n(千克).
例7甲乙两邮递员分别从A,B两地同时以匀速相向而行,甲比乙多走了18千米(km),相遇后甲走4.5小时到达B地,乙走8小时到A地,求A,B两地的距离.
解设甲速为a千米/小时,乙速为b千米/小时,A,B两地的距离为2S,依题意有
所以
所以S-9/S+9=3/4,
所以S=63(千米),2S=126(千米).
答A,B两地相距126千米.
练习二十一
1.已知甲、乙、丙三人.甲单独做一件工作的时间是乙丙两人合作做这件工作所用时间的a倍,乙独做这件工作是甲丙两人合作做这件工作的b倍.求丙单独做这件工作是甲乙两人合作做这件工作所需时间的几倍?
2.有甲乙两容量均为20升(L)的容器,甲容器内装满纯酒精,而乙为空容器.自甲内倒出若干酒精于乙内,再将乙其余部分注满水,将此混合溶液注满甲容器,最后自甲容器回注入乙容器62/3升,则两容器内所含纯酒精量相等,问第一次自甲容器倒出多少酒精?
3.某人骑自行车从A地先以每小时12千米的速度下坡后,再以每小时15千米的速度走平路到B地,共用了55分钟.回来时他以每小时8千米的速度通过平路后,以每小时4千米的速度上坡,从B地到A地共用了11/2小时,求地面上A,B两地相距多少千米?
4.有一块长方形的场地,长比宽多4米,周围有一条宽2米的道路环绕着,已知道路的面积和这块土地的面积相等.求这块场地的周长是多少米?
5.一个四位数是奇数,它的千位数字小于其他各位数字,十位数字等于千位数字和个位数字之和的2倍,求这个四位数.。

相关文档
最新文档