四川省广安市岳池县城关中学校2019届中考模拟试题(一)
四川省岳池县联考2019-2020学年中考数学模拟试卷

四川省岳池县联考2019-2020学年中考数学模拟试卷一、选择题1.分式方程216111x x x +-=--的解是( ) A .x =﹣2 B .x =2 C .x =3 D .无解2.若正比例函数y =(a ﹣4)x )A.a ﹣3B.3﹣aC.(a ﹣3)2D.(3﹣a )2 3.以下多边形中,既是轴对称图形又是中心对称图形的是( )A .正五边形B .矩形C .等边三角形D .平行四边形 4.在一个不透明的袋子中放有a 个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a 的值约为( )A.10B.15C.20D.245.如图,抛物线()()142L y x t x t =---+:(常数0t >),双曲线6(0)y x x=>.设L 与双曲线有个交点的横坐标为0x ,且满足034x <<,在L 位置随t 变化的过程中,t 的取值范围是( )A .322t <<B .34t <<C .45t <<D .57t <<6.如果a :b =3:2,且b 是a 、c 的比例中项,那么b :c 等于( )A .4:3B .3:4C .2:3D .3:2 7.如图,AB 是⊙O 的弦,作OC ⊥OA 交⊙O 的切线BC 于点C ,交AB 于点D .已知∠OAB =20°,则∠OCB的度数为( )A .20°B .30°C .40°D .50° 8.如图,在矩形ABCD 中,点F 在AD 上,射线BF 交AC 于点G,交CD 的延长线于点E,则下列等式正确的为( )A.AB EF ED BF =B.AF AB BC CE =C.FG CG BG AG =D.FD ED BC CD= 9.如图,A 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 点出发,在⊙O 上以每秒一个的速度匀速单位运动:回A 点运动结束.设运动时间为x ,弦BP 长为y ,那么图象中可能表示数关y 与x 的函数关系的是( )A .①B .②C .①或④D .③或④10.如图,四边形纸片ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折得到△FMN.若MF ∥AD ,FN ∥DC ,则∠B 等于( )A .70°B .90°C .95°D .100°11.下列说法不一定成立的是( )A .若a >b ,则a+c >b+cB .若a+c >b+c ,则a >bC .若a >b ,则ac 2>bc 2D .若a >b ,则1+a >b ﹣112.如图,正方形ABCD 的对称中心在坐标原点,AB ∥x 轴,AD ,BC 分别与x 轴交于E ,F ,连接BE ,DF ,若正方形ABCD 的顶点B ,D 在双曲线y =a x上,实数a 满足a 1﹣a =1,则四边形DEBF 的面积是( )A .12B .32C .1D .2二、填空题13.二次函数y =ax 2+bx+c 的图象如图所示,给出下列说法:①abc <0;②方程ax 2+bx+c =0的根为x 1=﹣1、x 2=3;③当x >1时,y 随x 值的增大而减小;④当y >0时,﹣1<x <3.其中正确的说法是_____.A .①;B .①②;C .①②③;D .①②③④14.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为________.15.在直角坐标系中,直线l :y =3x ﹣3与x 轴交于点B 1,以OB 1为边长作等边△A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边△A 2A 1B 2,过点A 2作A 1B 2平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边△A 3A 2B 3,…,则等边△A 2017A 2018B 2018的边长是_____.16.定义符号{}min a,b 的含义为:当a b ≥时,{}min a,b b =;当a b <时,{}min a,b a.=如:{}min 1,33-=-,{}min 4,2--= 4.-则{}2min x 2,x -+-的最大值是______.17.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD ,E ,F 分别是AB 和AD 的中点,以EF 为边画一个菱形;(2)图2是正方形ABCD ,E 是对角线BD 上任意一点(BE >DE ),以AE 为边画一个菱形.18.将数67500用科学记数法表示为____________.三、解答题19.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).20.如图是某种品牌的篮球架实物图与示意图,已知底座BC =0.6米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF 的长为2.5米,篮板顶端F 点到篮框D 的距离FD =1.4米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,求篮框D 到地面的距离.(精确到0.1米.参考数据:cos75°≈0.3,≈1.4)21.如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连OD 交BE 于点M ,且MD =2.(1)求BE 长;(2)求tanC 的值.22.先化简,再求值:()()()2b a a b a b +-+-其中a = -2,b =1 2.23.已知AB 是O 的直径,弦CD 与AB 相交,BAC 40∠=︒.(1)如图,若D 为弧AB 的中点,求ABC ∠和ABD ∠的度数; (2)如图,若D 为弧AB 上一点,过点D 作O 的切线,与AB 的延长线交于点P ,若DP//AC ,求∠OCD 的度数.24.已知A,B,C是半径为2的O上的三个点,四边形OABC是平行四边形,过点C作O的切线,交AB的延长线于点D.∠的大小;(Ⅰ)如图1,求ADC(Ⅱ)如图2,取AB的中点F,连接OF,与AB交于点E,求四边形EOCD的面积.25.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【参考答案】***一、选择题13.Dπ14.415.2017216.1217.(1)作图见解析;(2)作图见解析.18.46.7510⨯三、解答题19.(1)3;(2)﹣x+4.【解析】【分析】(1)先化简二次根式、负整数指数幂、代入三角函数值及零指数幂,再先后计算乘法和加减运算即可;(2)先计算完全平方式和单项式乘多项式的积,再合并同类项即可得.【详解】(1)原式=+2+1=+2﹣=3;(2)原式=x 2﹣4x+4﹣x 2+3x =﹣x+4.【点睛】本题主要考查实数和整式的混合运算,解题的关键是熟练掌握实数和整式的混合运算顺序和运算法则.20.篮框D 到地面的距离是2.9米.【解析】【分析】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论.【详解】解:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,在Rt △ABC 中,tan ∠ACB =,AB BC∴AB =BC•tan75°=0.60×3.732=2.22,∴GM =AB =2.22,在Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =,FG AF∴sin60°=,2.52FG = ∴FG =2.125,∴DM =FG+GM ﹣DF≈2.9米.答:篮框D 到地面的距离是2.9米.考查解直角三角形的应用,构造直角三角形,选择合适的锐角三角函数是解题的关键.21.(1)BE =8;(2)tanC=4.【解析】【分析】(1)连接AD ,由圆周角定理可知∠AEB =∠ADB =90°,由等腰三角形的性质可得BD =CD ,再利用中位线求出CE 的长,然后根据勾股定理求出BE 的长;(2)在直角三角形CEB 中,根据正切的定义求解即可.【详解】解:(1)连接AD ,如图所示:∵以AB 为直径的⊙O 与BC 交于点D ,∴∠AEB =∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,∵OA =OB ,∴OD 是ABC 的中位线,∴OD ∥AC ,∴BM =EM ,∴CE =2MD =4,∴AE =AC ﹣CE =6,∴BE 8;(2)在直角三角形CEB 中,∵CE =4,BE =8,∴tanC =82BE CE ==4. 【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形中位线判定与性质,勾股定理及锐角三角函数的知识.证明OD 是ABC 的中位线是解(1)的关键,熟记锐角的正切等于对边比邻边是解(2)的关键. 22.()32b ,2a b +-【解析】【分析】根据完全平方公式、平方差公式和多项式乘多项式可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】原式=()()b a b a b a ++-+=()2b a b +当a = -2,b =12 时,原式=11322222⎛⎫⨯⨯-+=- ⎪⎝⎭.本题考查整式的混合运算-化简求值,解答此类问题的关键是明确整式的混合运算的计算方法.23.(1)∠ABC=50°,45ABD ∠=︒;(2)∠OCD=25°.【解析】【分析】(1)由AB 为直径可得∠ACB=90°,进而可求出∠ABC 的度数;根据D 为AB 的中点可得∠BOD=90°,由等腰三角形的性质即可求出∠ABD 的度数;(2)连接OD ,由切线性质可得90ODP ∠=︒,根据平行线的性质可得∠P=∠CAB=40°,根据外角性质可求出∠AOD 的度数,根据圆周角定理可得∠ACD 的度数,由等腰三角形的性质可得40OCA BAC ∠∠==︒,根据OCD ACD OCA ∠∠∠=-即可得答案.【详解】(1)如图1,连接OD ,∵AB 为直径,∴∠ACB=90°,∴∠ABC=90°-∠BAC=50°,∵D 为弧AB 的中点,180AOB ∠=︒,∴90BOD ∠=︒,∵OD OB =,∴45ABD ∠=︒;(2)如图2,连接OD ,∵DP 切O 于点D ,∴OD DP ⊥,即90ODP ∠=︒.由DP AC ,又40BAC ∠=︒,∴40P BAC ∠∠==︒.∵AOD ∠是ODP 的一个外角,∴130AOD P ODP ∠∠∠=+=︒.∴65ACD ∠=︒.∵,40OC OA BAC ∠==︒,∴40OCA BAC ∠∠==︒.∴654025OCD ACD OCA ∠∠∠=-=︒-︒=︒.【点睛】本题主要考查了切线的性质、圆周角定理,圆的切线垂直于过切点的半径;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;直径所对的圆周角等于90°.熟练掌握相关性质和定理是解题关键.24.(Ⅰ)∠ADC=90°;(Ⅱ)EOCD S =四边形【解析】【分析】(Ⅰ)由切线的性质可得出∠OCD=90°,根据平行线的性质可得∠ADC=180°-∠OCD ,即可得出答案;(Ⅱ)连接OB ,由四边形OABC 是平行四边形可证明△AOB 是等边三角形,根据F 是AB 的中点可求出∠FOB=∠FOA=30°,进而可求出OE 的长,根据∠OCD=∠ADC=90°,可证明四边形EOCD 是矩形,根据矩形面积公式即可得答案.【详解】(Ⅰ)∵CD 是O 的切线,C 为切点.∴OC CD ⊥,即90OCD ∠=︒.∵四边形OABC 是平行四边形,∴AB OC ,即AD OC .有180ADC OCD ∠+∠=︒.∴18090ADC OCD ∠=︒-∠=︒.(Ⅱ)如图,连接OB ,则OB OA OC ==.∵四边形OABC 是平行四边形,∴OC AB =.∴OA OB AB ==.即AOB ∆是等边三角形.∴60AOB ABO ∠=∠=︒,∵F 是AB 的中点,∴=AF BF , ∴1302FOB FOA AOB ∠=∠=∠=︒. ∴90BEO ∠=︒.在Rt BEO ∆中,30FOB ∠=︒,2OB =,∴302OE cos OB =︒=,可得OE =又由(Ⅰ):D 90OCD A C ∠∠==︒∴四边形EOCD 为矩形.∴EOCD S OE OC =⋅=四形边.【点睛】本题考查切线的性质、等边三角形的判定、矩形的判定及锐角的三角函数,证明△AOB 是等边三角形是解题关键.25.(1)见解析;(2)四边形EGFH 是菱形,理由见解析【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AD=BC ,OB=OD ,由平行线的性质得出∠FBH=∠EDG ,∠OHF=∠OGE ,得出∠BHF=∠DGE ,求出BF=DE ,由AAS 即可得出结论;(2)先证明四边形EGFH 是平行四边形,再由等腰三角形的性质得出EF ⊥GH ,即可得出四边形EGFH 是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠FBH=∠EDG ,∵AE=CF ,∴BF=DE ,∵EG ∥FH ,∴∠OHF=∠OGE ,∴∠BHF=∠DGE ,在△BFH 和△DEG 中,FBH EDG BHF DGEBF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BFH ≌△DEG (AAS );(2)解:四边形EGFH 是菱形;理由如下:连接DF ,设EF 交BD 于O .如图所示:由(1)得:BFH ≌△DEG ,∴FH=EG ,又∵EG ∥FH ,∴四边形EGFH 是平行四边形,∵DE=BF ,∠EOD=∠BOF ,∠EDO=∠FBO ,∴△EDO ≌△FBO ,∴OB=OD ,∵BF=DF ,OB=OD ,∴EF ⊥BD ,∴EF ⊥GH ,∴四边形EGFH 是菱形.【点睛】此题考查全等三角形的判定与性质,矩形的性质,解题关键在于利用平行四边形的性质求证。
广安市2019年中考数学模拟试卷及答案

广安市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1.2017年按照济南市政府“拆违拆临,建绿透绿”决策部署,济南市各个部门通力协作,年内共拆除违法建设约32900000平方米,拆违拆临工作取得重大历史性突破,数字32900000用科学计数法表示为 A. 329×105B. 3.29×105C. 3.29×106D. 3.29×1072.下面的图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.3.一组数据1,2,a 的平均数为2,另一组数据-l ,a ,1,2,b 的唯一众数为-l ,则数据-1,a ,b ,1,2的中位数为A .-1B .1C .2D .34. 如右图,已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD = A.45° B. 60° C.90° D. 30°5.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是A.1<a ≤7B.a ≤7C.a <1或a ≥7D.a =76.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y =x 2+1,则原抛物线的解析式不可能的是A .y =x 2-1B .y =x 2+6x +5C .y =x 2+4x +4D .y =x 2+8x +177.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是A .平行四边形B .矩形C .对角线相等的四边形D .对角线互相垂直的四边形 8.若A (x 1,y 1)、B (x 2,y 2)是一次函数2-+=x ax y 图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是 A .a <0B .a >0C .a <1-D .a >1-OD CBA(第5题图)9. 完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部 分的周长是A . 6(m -n )B . 3(m +n )C . 4nD . 4m10.如图,OM =2,MN =6,A 为射线ON 上的动点,以OA 为一边作内角∠OAB =120°的菱形OABC ,则BM +BN 的最小值为 CA .26B . 6C .132D .152二、填空题(本大共6小题,每小题5分,满分30分)11.若关于x 的一元二次方程(a -2) x 2-2x +1=0有两个实数根,则a 的取值范围是 . 12.已知关于x 的分式方程2332+-=--x mx x 无解,则m 的值是 . 13.面积为40的△ABC 中,AC =BC =10,∠ACB >90°,半径为1.5的⊙O 与AC 、BC 都相切,则OC的长为 .14.(5分)九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S 2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选 . 15.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,︒=∠601则2∠的度数为________。
四川省广安岳池县联考2019-2020学年中考数学模拟调研试卷

四川省广安岳池县联考2019-2020学年中考数学模拟调研试卷一、选择题1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )A. B. C. D.2.如图,O 为坐标原点,△OAB 是等腰直角三角形,∠OAB =90°,点B 的坐标为(0,),将该三角形沿x 轴向右平移得到Rt △O′A′B′,此时点B′的坐标为(OA 在平移过程中扫过部分的图形面积为( )A.4B.3D.13.如图,直线AD ∥BC ,若∠1=40°,∠BAC =80°,则∠2的度数为( )A.70°B.60°C.50°D.40°4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >5.下列说法正确的是( ) A .367人中至少有2人生日相同B .天气预报说明天的降水概率为90%,则明天一定会下雨C .任意掷一枚均匀的骰子,掷出的点数是奇数的概率是13D .某种彩票中奖的概率是11000,则买1000张彩票一定有1张中奖 6.已知反比例函数2y x=-,下列说法不正确的是( ) A .图像必经过点()1,2- B .y 随着x 的增大而增大 C .图像分布在第二,四象限内 D .若1x >,则20y -<<7.如图,O 是平行四边形ABCD 的对角线交点,E 为AB 中点,DE 交AC 于点F ,若平行四边形ABCD 的面积为16. 则△DOE 面积是( )A.1B.32C.2D.948.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是( )A.1一定不是方程x 2+bx+a =0的根 B.0一定不是方程x 2+bx+a =0的根 C.﹣1可能是方程x 2+bx+a =0的根D.1和﹣1都是方程x 2+bx+a =0的根9.如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN AB ⊥,垂足为N 、P 、Q 分别是·AM 、·BM上一点(不与端点重合),如果MNP MNQ ∠=∠,下面结论:①12∠=∠;②180P Q ∠+∠=;③Q PMN ∠=∠;④PM QM =;⑤2MN PN QN =⋅.其中正确的是( )A .①②③B .①③⑤C .④⑤D .①②⑤10.如图所示,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ∥BC ,EF 与AB 、CD 分别相交于点E 、F ,则△DOF 的面积与△BOA 的面积之比为( )A .1:2B .1:4C .1:8D .1:1611.如图,正方形ABCD ,对角线AC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是( )A. B. C. D.12.如图,菱形OABC 的一条边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,若OA =2,∠C =120°,则点B′的坐标为( )A.)B.)C.(3D.(3二、填空题13.计算的结果是________.14.若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn=_____.15.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________._____.16.计算:617.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是_____.18.某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为_____名.三、解答题19.某商场计划购进A、B两种新型节能台灯,已知B型节能台灯每盏进价比A型的多40元,且用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同.(1)求每盏A型节能台灯的进价是多少元?(2)商场将购进A、B两型节能台灯100盏进行销售,A型节能台灯每盏的售价为90元,B型节能台灯每盏的售价为140元,且B型节能台灯的进货数量不超过A型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?20.在一块直角三角形的废料上,要裁下一个半圆形的材料,并且要半圆的直径在斜边AB上,且充分利用原三角形废料.(1)试画出你的设计(用圆规、直尺作图,不写作法,但要保留作图痕迹.)(2)若AC=4,BC=3,试计算出该半圆形材料的半径.21.计算:2 020193tan30-+-⎝⎭︒.22.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为400人,如表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率为;(2)表中A=,B=;(3)该校学生平均每人读多少本课外书?23.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.求证:AE⊥BF.24.如图,已知矩形ABCD,AB=4,BC=5.请用尺规作图画出符合要求的图形,并标注必要的字母及结论(保留作图痕迹,不要求写作法).(1)在图1的矩形ABCD中画出一个面积最大的菱形.(2:1的矩形称为标准矩形,请你在图2的矩形ABCD中画出一个面积最大的标准矩形.25.阅读下列材料,解决材料后的问题:材料一:对于实数x 、y ,我们将x 与y 的“友好数”用f (x ,y )表示,定义为:f (x )=2xy +,例如17与16的友好数为f (17,16)=17162+=1718.材料二:对于实数x ,用[x]表示不超过实数x 的最大整数,即满足条件[x]≤x<[x]+1,例如: [﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……(1)由材料一知:x 2+2与1的“友好数”可以用f (x 2+2,1)表示,已知f (x 2+2,1)=2,请求出x 的值; (2)已知[12a ﹣1]=﹣3,请求出实数a 的取值范围; (3)已知实数x 、m 满足条件x ﹣2[x]=72,且m≥2x+112,请求f (x ,m 2﹣32m )的最小值.【参考答案】*** 一、选择题13.14.7 15.-1 16.6 17.16 18.160 三、解答题19.(1)每盏A 型节能台灯的进价是60元;(2)A 型台灯购进34盏,B 型台灯购进66盏时获利最多,利润为3660元. 【解析】 【分析】(1)设每盏A 型节能台灯的进价是x 元,则B 型节能台灯每盏进价为(x+40)元,根据用3000元购进的A 型节能台灯与用5000元购进的B 型节能台灯的数量相同,列方程求解;(2)设购进B 型台灯m 盏,根据商场购进100盏台灯且规定B 型台灯的进货数量不超过A 型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润. 【详解】解:(1)设每盏A 型节能台灯的进价是x 元,则B 型节能台灯每盏进价为(x+40)元, 根据题意得,3000500040x x =+ , 解得:x =60,经检验:x =60是原方程的解, 故x+40=100,答:每盏A 型节能台灯的进价是60元,则B 型节能台灯每盏进价为100元; (2)设购进B 型节能台灯m 盏,购进A 型节能台灯(100﹣m )盏,依题意有m≤2(100﹣m),解得m≤6623,90﹣60=30(元),140﹣100=40(元),∵m为整数,30<40,∴m=66,即A型台灯购进34盏,B型台灯购进66盏时获利最多,34×30+40×66=1020+2640=3660(元).此时利润为3660元.答:(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.20.(1)答案见解析;(2)127.【解析】【分析】(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.图中半圆即为所求.(2)作OH⊥BC于H.首先证明OE=OH,设OE=OH=r,利用面积法构建方程求出r即可.【详解】解:(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.(2)∵OC平分∠ACB,OE⊥AC,OH⊥BC,∴OE=OH,设OE=OH=r,∵S△ABC=12•AC•BC=12•AC•r+12•BC•r,∴r=127.【点睛】本题考查作图-应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用面积法构建方程解决问题.21.12.【解析】【分析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.【详解】原式=1 1332 -⨯+=1 12=12.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1)40%;(2)960;0.4;(3)4(本).【解析】【分析】(1)八年级的人数占全校总人数的百分率=1-32%-28%;(2)由频率的意义可知,B=1﹣0.32﹣0.24﹣0.04,再求出样本容量,利用样本容量×0.24即可求出A 的值;(3)先求出全校总人数,再求该校学生平均每人读的本数即可.【详解】解:(1)该校八年级的人数占全校总人数的百分率为1﹣32%﹣28%=40%,故答案为40%;(2)B=1﹣0.32﹣0.24﹣0.04=0.4,由160÷0.04=4000得图书总数是4000本,所以A=4000×0.24=960(本);故答案为960;0.4;(3)因为八年级的人数是400人,占40%,所以求得全校人数有:400÷40%=1000(人),所以全校学生平均每人阅读:4000÷1000=4(本).【点睛】本题考查的是频数分布表和扇形统计图的综合运用,考查分析频数分布直方图和频率的求法.扇形统计图直接反映部分占总体的百分比大小.23.证明见解析【解析】【分析】由E,F分别是正方形ABCD边BC,CD的中点知CF=BE,证Rt△ABE≌Rt△BCF得∠BAE=∠CBF,根据∠BAE+∠BEA=90°即可得∠CBF+∠BEA=90°,据此即可得证.【详解】证明:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∵AB BCABE BCF BE CF=⎧⎪∠=∠⎨⎪=⎩,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.【点睛】本题主要考查正方形的性质,全等三角形的的判定与性质,解题的关键是掌握正方形的性质与全等三角形的判定与性质.24.(1)如图1,菱形BEDF即为所求;见解析;(2)以BC=5为长,则宽AE为2,此时矩形AEFD 的面积最大.画图见解析【解析】【分析】(1)以BD或AC为对角线,E、F在AD,BC上,且EF垂直平分BD或AC,则菱形BEDF即为所求(2)以BC=5为长,则宽AE为2,此时矩形AEFD的面积最大【详解】(1)如图1:以BD或AC为对角线,E、F在AD,BC上,且EF垂直平分BD或AC,则菱形BEDF即为所求;(2)如图2,以BC=5为长,则宽AE为2,此时矩形AEFD的面积最大.【点睛】此题主要考查菱形和矩形的性质,其中涉及尺规作图25.(1)x=±2;(2)﹣4≤a<﹣2;(3)当m=34时,y有最大值是﹣238,此时f(x,m2﹣32m)有最小值,最小值是﹣40 23.【解析】【分析】(1)由题意得到22212x +=+,计算即可得到答案;(2)由题意得到131312a -≤-<-+,解不等式即可得到答案; (3)先由题意得到171712424x x x -≤<-+,则7322x -≤<-,设1724x k -=,由题意得到111222m x ≥+=,设y =﹣2m 2+3m ﹣4,根据二次函数的性质即可得到答案. 【详解】解:(1)∵f (x 2+2,1)=2,∴22212x +=+,∴x 2=4, ∴x =±2;(2)∵[x]≤x<[x]+1, ∴131312a -≤-<-+, 解得﹣4≤a<﹣2; (3)∵x ﹣2[x]=74, ∴[x]=1724x -, ∴171712424x x x -≤<-+, ∴7322x -≤<-, 设1724x k -=, 又x =2k+72,∴7522k -≤<-,∴整数k =﹣3, ∴x =52-, 又111222m x ≥+=, ∴f (x ,m 2﹣32m ),=2322xm m -+,=252322m m --+, =25234m m -+-, 设y =﹣2m 2+3m ﹣4, 则y =﹣2(m 34-)2238-, ∵﹣2<0,∴当m =34时,y 有最大值是238-,此时f (x ,m 2﹣32m )有最小值,最小值是5238-=﹣4023,此时最小值为﹣4023. 【点睛】本题考查分式方程的计算和二次函数,解题的关键是读懂题意,掌握分式方程的计算和二次函数的性质.。
2019年四川省广安市岳池县中考数学一诊试卷-含答案解析

2019年四川省广安市岳池县中考数学一诊试卷一、选择题(每小题只有一项符合题意,请将正确选项填在答题卡上,每小题3分,共30分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=153.下列成语中描述的事件必然发生的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长4.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠07.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.8.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为()A.B.4C.D.29.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.910.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论(1)4a+2b+c>0;(2)方程ax2+bx+c=0两根之和小于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是()A.4 个B.3个C.2个D.1个二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共24分)11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.12.若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.14.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD 的圆心分别为点A、点B,且AC=2,则图中阴影部分的面积为(结果不取近似值).15.10月14日,韵动中国•2018广安国际红色马拉松赛激情开跑.上万名跑友将在小平故里展开激烈的角逐.某校决定从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是.16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为.17.若△ABC的周长为20cm,面积为32cm2,则△ABC的内切圆半径为.18.抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为.三、解答题(本大题共2个小题,第19题每小题8分,第20题6分,共14分)19.解下列方程:(1)x2﹣3x=1.(2)(y+2)2﹣6=0.20.已知实数a满足a2+2a﹣15=0,求﹣÷的值.四、实践应用(本大题共4小题,每小题8分,共32分)21.某校开展了以“人生观、价值观”为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如图所示的扇形统计图.(1)该班学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐”和“感恩”观点的概率.22.如图,下列网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于x轴、y轴、原点的对称图形;(2)求出四边形ABCD的面积.23.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.24.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?五、推理与论证(10分)25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.六、拓展探究26.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.参考答案与试题解析一、选择题(每小题只有一项符合题意,请将正确选项填在答题卡上,每小题3分,共30分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2﹣8x=1,∴x2﹣8x+16=1+16,即(x﹣4)2=17,故选:C.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.3.下列成语中描述的事件必然发生的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长【分析】分别根据确定事件与随机事件的定义对各选项进行逐一分析即可.【解答】解:A、水中捞月是不可能事件,故本选项错误;B、瓮中捉鳖是一定能发生的事件,属必然事件,故本选项正确;C、守株待兔是可能发生也可能不发生的事件,是随机事件,故本选项错误;D、拔苗助长是一定不会发生的事件,是不可能事件,故本选项错误.故选:B.【点评】本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解答此题的关键.4.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定【分析】由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.【解答】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点评】解答此题要明确概率和事件的关系:①P(A)=0,为不可能事件;②P(A)=1为必然事件;③0<P(A)<1为随机事件.6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选:B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【解答】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选:C.【点评】本题主要考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.8.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为()A.B.4C.D.2【分析】由于直线AB与⊙O相切于点A,则∠OAB=90°,而OA=2,∠OBA=30°,根据三角函数定义即可求出OB.【解答】解:∵直线AB与⊙O相切于点A,则∠OAB=90°.∵OA=2,∴OB===4.故选:B.【点评】本题主要利用了切线的性质和锐角三角函数的概念解直角三角形问题.9.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.9=,【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB 计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S==×6×3=9.扇形DAB故选:D.=.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论(1)4a+2b+c>0;(2)方程ax2+bx+c=0两根之和小于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是()A.4 个B.3个C.2个D.1个【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(1)由图象可知:x=2,y>0,∴4a+2b+c>0,故(1)正确;(2)方程ax2+bx+c=0两根之和为,而抛物线的对称轴为:x=,且>0,∴>0,故(2)错误;(3)当x<时,y随着x的增大而减少,当x>时,y随着x的增大而增大,故(3)错误;(4)由图象可知:c<0,a>0,b<0,∴bc>0,∴一次函数一定不过第四象限,故(4)错误,故选:D.【点评】本题考查二次函数的图象,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共24分)11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.12.若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=3.【分析】先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【解答】解:∵x1,x2是方程x2+x﹣1=0的两个根,∴x1+x2=﹣=﹣=﹣1,x1•x2===﹣1,∴x12+x22=(x1+x2)2﹣2x1•x2=(﹣1)2﹣2×(﹣1)=1+2=3.故答案是:3.【点评】本题考查了根与系数的关系、完全平方公式.解题的关键是先求出x1+x2和x1•x2的值.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.【点评】此题主要考查了圆内接四边形的性质,关键是熟练掌握圆内接四边形的性质定理. 14.如图,在等腰直角三角形ABC 中,∠C =90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD的圆心分别为点A 、点B ,且AC =2,则图中阴影部分的面积为 2﹣ (结果不取近似值).【分析】用三角形ABC 的面积减去扇形EAD 和扇形FBD 的面积,即可得出阴影部分的面积.【解答】解:∵BC =AC ,∠C =90°,AC =2,∴AB =2,∵点D 为AB 的中点,∴AD =BD =,∴S 阴影=S △ABC ﹣S 扇形EAD ﹣S 扇形FBD=×2×2﹣×2,=2﹣.故答案为:2﹣.【点评】本题考查了扇形面积的计算以及等腰直角三角形的性质,熟记扇形的面积公式:S =. 15.10月14日,韵动中国•2018广安国际红色马拉松赛激情开跑.上万名跑友将在小平故里展开激烈的角逐.某校决定从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是 .【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出一男一女的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,选出一男一女的有12种情况,∴选出一男一女的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为x(x﹣1)=110.【分析】设有x人参加聚会,则每人送出(x﹣1)件礼物,根据共送礼物110件,列出方程.【解答】解:设有x人参加聚会,则每人送出(x﹣1)件礼物,由题意得,x(x﹣1)=110.故答案是:x(x﹣1)=110.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.17.若△ABC的周长为20cm,面积为32cm2,则△ABC的内切圆半径为 3.2cm.【分析】利用圆的内切圆的性质,以及三角形的面积公式:三角形的面积=×三角形的周长×内切圆的半径即可求解.【解答】解:设内切圆的半径是r,则×20r=32,解得:r=3.2.故答案是:3.2cm.【点评】本题考查了三角形的面积公式以及三角形的内切圆,理解三角形的面积=×三角形的周长×内切圆的半径是关键.18.抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为.【分析】联立抛物线和直线的解析式,求得两个交点的横坐标,然后观察d n表达式的规律,根据规律进行求解即可.【解答】解:依题意,联立抛物线和直线的解析式有:n(n+1)x2﹣(3n+1)x+3=﹣nx+2,整理得:n(n+1)x2﹣(2n+1)x+1=0,解得x1=,x2=;所以当n为正整数时,d n=﹣,故代数式d1+d2+d3+…+d2018=1﹣+﹣+…+﹣=1﹣=,故答案为.【点评】此题主要考查的是函数图象交点坐标的求法,能够发现所求代数式中的规律是解决问题的关键.三、解答题(本大题共2个小题,第19题每小题8分,第20题6分,共14分)19.解下列方程:(1)x2﹣3x=1.(2)(y+2)2﹣6=0.【分析】(1)利用公式法求解即可;(2)利用直接开方法解即可;【解答】解:(1)将原方程化为一般式,得x2﹣3x﹣1=0,∵b2﹣4ac=13>0∴.∴,.(2)(y+2)2=12,∴或,∴,.【点评】本题考查一元二次方程的解法,解题的关键是熟练掌握一元二次方程的解的方法,灵活运用所学知识解决问题,属于中考常考题型.20.已知实数a满足a2+2a﹣15=0,求﹣÷的值.【分析】先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.【解答】解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.【点评】此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.四、实践应用(本大题共4小题,每小题8分,共32分)21.某校开展了以“人生观、价值观”为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如图所示的扇形统计图.(1)该班学生选择“和谐”观点的有5人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是36°.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有420人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐”和“感恩”观点的概率.【分析】(1)选择“和谐”观点的人数等于总人数乘以和谐观点的百分率,圆心角就是用圆周角乘以和谐观点的百分率;(2)用总人数乘以持感恩观点的所占的百分比即可得到选择感恩观点的学生数;(3)列出表格,然后求解答案.【解答】解:(1)共调查了50名学生,选择“和谐”观点的占10%,50×10%=5,360°×10%=36°;(2)∵选择“感恩”的占28%,∴1500×28%=420人,(3)∴恰好选到“和谐”和“感恩”观点的概率=.【点评】本题考查的是扇形统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.如图,下列网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于x轴、y轴、原点的对称图形;(2)求出四边形ABCD的面积.【分析】(1)分别作A,B,C,D关于x轴、y轴、原点的对称点的坐标,即可得出答案;(2)根据三角形底乘以高除以2,即可得出答案.【解答】解:(1)如图所示:(2)四边形ABCD的面积=.【点评】此题主要考查了关于坐标轴以及原点对称的图形作法和三角形面积求法,得出对应点的坐标是解决问题的关键.23.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.【分析】(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB的结论,即可求出PA的长;(2)根据三角形的内角和求出∠ADC和∠BEC的度数和,然后根据切线长定理,得出∠EDO和∠DEO的度数和,再根据三角形的内角和求出∠DOE的度数.【解答】解:(1)∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,PA=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的长为6;(2)∵∠P=60°,∴∠PCE+∠PDE=120°,∴∠ACD+∠CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴∠OCE=∠OCA=∠ACD;同理:∠ODE=∠CDB,∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,∴∠COD=180﹣120°=60°.【点评】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.24.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【分析】(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.【解答】解:(1)由题意,可设y=kx+b(k≠0),把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W元,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.【点评】本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.五、推理与论证25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.【分析】(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC 的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证;(2)在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE求出BC的长,确定出AC的长,再由∠C=60°,DE=EC得到三角形EDC为等边三角形,可得出DC的长,由AC﹣CD即可求出AD的长.【解答】(1)证明:连接OD,OE,BD,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.【点评】此题考查了切线的判定,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.六、拓展探究26.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC 的长.在三角形BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴解得:∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为x==﹣1,∴设P点坐标为(﹣1,a),当x=0时,y=3,∴C(0,3),M(﹣1,0)∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=,∴P点坐标为:P1(﹣1,);∴当CM=PM时,(﹣1)2+32=a2,解得a=±,∴P点坐标为:P2(﹣1,)或P3(﹣1,﹣);∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P点坐标为:P4(﹣1,6)综上所述存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S=BF•EF+(OC+EF)•OF四边形BOCE=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)==﹣+∴当a=﹣时,S最大,且最大值为.四边形BOCE此时,点E坐标为(﹣,).【点评】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.。
2019年四川省广安市岳池县中考数学一诊试卷

2019年四川省广安市岳池县中考数学一诊试卷一、选择题(每小题只有一项符合题意,请将正确选项填在答题卡上,每小题3分,共30分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=153.下列成语中描述的事件必然发生的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长4.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠07.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.8.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为()A.B.4C.D.29.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.910.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论(1)4a+2b+c>0;(2)方程ax2+bx+c=0两根之和小于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是()A.4 个B.3个C.2个D.1个二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共24分)11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.12.若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.14.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD 的圆心分别为点A、点B,且AC=2,则图中阴影部分的面积为(结果不取近似值).15.10月14日,韵动中国•2018广安国际红色马拉松赛激情开跑.上万名跑友将在小平故里展开激烈的角逐.某校决定从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是.16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为.17.若△ABC的周长为20cm,面积为32cm2,则△ABC的内切圆半径为.18.抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为.三、解答题(本大题共2个小题,第19题每小题8分,第20题6分,共14分)19.解下列方程:(1)x2﹣3x=1.(2)(y+2)2﹣6=0.20.已知实数a满足a2+2a﹣15=0,求﹣÷的值.四、实践应用(本大题共4小题,每小题8分,共32分)21.某校开展了以“人生观、价值观”为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如图所示的扇形统计图.(1)该班学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐”和“感恩”观点的概率.22.如图,下列网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于x轴、y轴、原点的对称图形;(2)求出四边形ABCD的面积.23.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.24.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?五、推理与论证(10分)25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.六、拓展探究26.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.2019年四川省广安市岳池县中考数学一诊试卷参考答案与试题解析一、选择题(每小题只有一项符合题意,请将正确选项填在答题卡上,每小题3分,共30分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2﹣8x=1,∴x2﹣8x+16=1+16,即(x﹣4)2=17,故选:C.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.3.下列成语中描述的事件必然发生的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长【分析】分别根据确定事件与随机事件的定义对各选项进行逐一分析即可.【解答】解:A、水中捞月是不可能事件,故本选项错误;B、瓮中捉鳖是一定能发生的事件,属必然事件,故本选项正确;C、守株待兔是可能发生也可能不发生的事件,是随机事件,故本选项错误;D、拔苗助长是一定不会发生的事件,是不可能事件,故本选项错误.故选:B.【点评】本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解答此题的关键.4.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定【分析】由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.【解答】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点评】解答此题要明确概率和事件的关系:①P(A)=0,为不可能事件;②P(A)=1为必然事件;③0<P(A)<1为随机事件.6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选:B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【解答】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选:C.【点评】本题主要考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.8.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为()A.B.4C.D.2【分析】由于直线AB与⊙O相切于点A,则∠OAB=90°,而OA=2,∠OBA=30°,根据三角函数定义即可求出OB.【解答】解:∵直线AB与⊙O相切于点A,则∠OAB=90°.∵OA=2,∴OB===4.故选:B.【点评】本题主要利用了切线的性质和锐角三角函数的概念解直角三角形问题.9.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.9=,【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB 计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,==×6×3=9.∴S扇形DAB故选:D.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S=.扇形DAB10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论(1)4a+2b+c>0;(2)方程ax2+bx+c=0两根之和小于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是()A.4 个B.3个C.2个D.1个【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(1)由图象可知:x=2,y>0,∴4a+2b+c>0,故(1)正确;(2)方程ax2+bx+c=0两根之和为,而抛物线的对称轴为:x=,且>0,∴>0,故(2)错误;(3)当x<时,y随着x的增大而减少,当x>时,y随着x的增大而增大,故(3)错误;(4)由图象可知:c<0,a>0,b<0,∴bc>0,∴一次函数一定不过第四象限,故(4)错误,故选:D.【点评】本题考查二次函数的图象,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共24分)11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.12.若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=3.【分析】先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【解答】解:∵x1,x2是方程x2+x﹣1=0的两个根,∴x1+x2=﹣=﹣=﹣1,x1•x2===﹣1,∴x12+x22=(x1+x2)2﹣2x1•x2=(﹣1)2﹣2×(﹣1)=1+2=3.故答案是:3.【点评】本题考查了根与系数的关系、完全平方公式.解题的关键是先求出x1+x2和x1•x2的值.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE =110°.故答案为:110°.【点评】此题主要考查了圆内接四边形的性质,关键是熟练掌握圆内接四边形的性质定理. 14.如图,在等腰直角三角形ABC 中,∠C =90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AC =2,则图中阴影部分的面积为 2﹣ (结果不取近似值). 【分析】用三角形ABC 的面积减去扇形EAD 和扇形FBD 的面积,即可得出阴影部分的面积.【解答】解:∵BC =AC ,∠C =90°,AC =2,∴AB =2,∵点D 为AB 的中点,∴AD =BD =,∴S 阴影=S △ABC ﹣S 扇形EAD ﹣S 扇形FBD=×2×2﹣×2,=2﹣.故答案为:2﹣.【点评】本题考查了扇形面积的计算以及等腰直角三角形的性质,熟记扇形的面积公式:S =. 15.10月14日,韵动中国•2018广安国际红色马拉松赛激情开跑.上万名跑友将在小平故里展开激烈的角逐.某校决定从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是 .【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出一男一女的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,选出一男一女的有12种情况,∴选出一男一女的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为x(x﹣1)=110.【分析】设有x人参加聚会,则每人送出(x﹣1)件礼物,根据共送礼物110件,列出方程.【解答】解:设有x人参加聚会,则每人送出(x﹣1)件礼物,由题意得,x(x﹣1)=110.故答案是:x(x﹣1)=110.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.17.若△ABC的周长为20cm,面积为32cm2,则△ABC的内切圆半径为 3.2cm.【分析】利用圆的内切圆的性质,以及三角形的面积公式:三角形的面积=×三角形的周长×内切圆的半径即可求解.【解答】解:设内切圆的半径是r,则×20r=32,解得:r=3.2.故答案是:3.2cm.【点评】本题考查了三角形的面积公式以及三角形的内切圆,理解三角形的面积=×三角形的周长×内切圆的半径是关键.18.抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为.【分析】联立抛物线和直线的解析式,求得两个交点的横坐标,然后观察d n表达式的规律,根据规律进行求解即可.【解答】解:依题意,联立抛物线和直线的解析式有:n(n+1)x2﹣(3n+1)x+3=﹣nx+2,整理得:n(n+1)x2﹣(2n+1)x+1=0,解得x1=,x2=;所以当n为正整数时,d n=﹣,故代数式d1+d2+d3+…+d2018=1﹣+﹣+…+﹣=1﹣=,故答案为.【点评】此题主要考查的是函数图象交点坐标的求法,能够发现所求代数式中的规律是解决问题的关键.三、解答题(本大题共2个小题,第19题每小题8分,第20题6分,共14分)19.解下列方程:(1)x2﹣3x=1.(2)(y+2)2﹣6=0.【分析】(1)利用公式法求解即可;(2)利用直接开方法解即可;【解答】解:(1)将原方程化为一般式,得x2﹣3x﹣1=0,∵b2﹣4ac=13>0∴.∴,.(2)(y+2)2=12,∴或,∴,.【点评】本题考查一元二次方程的解法,解题的关键是熟练掌握一元二次方程的解的方法,灵活运用所学知识解决问题,属于中考常考题型.20.已知实数a满足a2+2a﹣15=0,求﹣÷的值.【分析】先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.【解答】解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.【点评】此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.四、实践应用(本大题共4小题,每小题8分,共32分)21.某校开展了以“人生观、价值观”为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如图所示的扇形统计图.(1)该班学生选择“和谐”观点的有5人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是36°.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有420人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐”和“感恩”观点的概率.【分析】(1)选择“和谐”观点的人数等于总人数乘以和谐观点的百分率,圆心角就是用圆周角乘以和谐观点的百分率;(2)用总人数乘以持感恩观点的所占的百分比即可得到选择感恩观点的学生数;(3)列出表格,然后求解答案.【解答】解:(1)共调查了50名学生,选择“和谐”观点的占10%,50×10%=5,360°×10%=36°;(2)∵选择“感恩”的占28%,∴1500×28%=420人,(3)互动平等思取和谐感恩互动(互动,平等)(互动,思取)(互动,和谐)(互动,感恩)平等(平等,互动)(平等,思取)(平等,和谐)(平等,感恩)思取(思取,互动)(思取,平等)(思取,和谐)(思取,感恩)和谐(和谐,互动)(和谐,平等)(和谐,思取)(和谐,感恩)感恩(感恩,互动)(感恩,平等)(感恩,思取)(感恩,和谐)∴恰好选到“和谐”和“感恩”观点的概率=.【点评】本题考查的是扇形统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.如图,下列网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于x轴、y轴、原点的对称图形;(2)求出四边形ABCD的面积.【分析】(1)分别作A,B,C,D关于x轴、y轴、原点的对称点的坐标,即可得出答案;(2)根据三角形底乘以高除以2,即可得出答案.【解答】解:(1)如图所示:(2)四边形ABCD的面积=.【点评】此题主要考查了关于坐标轴以及原点对称的图形作法和三角形面积求法,得出对应点的坐标是解决问题的关键.23.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.【分析】(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于PA+PB的结论,即可求出PA的长;(2)根据三角形的内角和求出∠ADC和∠BEC的度数和,然后根据切线长定理,得出∠EDO和∠DEO的度数和,再根据三角形的内角和求出∠DOE的度数.【解答】解:(1)∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,PA=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的长为6;(2)∵∠P=60°,∴∠PCE+∠PDE=120°,∴∠ACD+∠CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴∠OCE=∠OCA=∠ACD;同理:∠ODE=∠CDB,∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,∴∠COD=180﹣120°=60°.【点评】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.24.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【分析】(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.【解答】解:(1)由题意,可设y=kx+b(k≠0),把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W元,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.【点评】本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.五、推理与论证25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.【分析】(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC 的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证;(2)在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE求出BC的长,确定出AC的长,再由∠C=60°,DE=EC得到三角形EDC为等边三角形,可得出DC的长,由AC﹣CD即可求出AD的长.【解答】(1)证明:连接OD,OE,BD,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.【点评】此题考查了切线的判定,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.六、拓展探究26.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC 的长.在三角形BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴解得:∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为x==﹣1,∴设P点坐标为(﹣1,a),当x=0时,y=3,∴C(0,3),M(﹣1,0)∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=,∴P点坐标为:P1(﹣1,);∴当CM=PM时,(﹣1)2+32=a2,解得a=±,∴P点坐标为:P2(﹣1,)或P3(﹣1,﹣);∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P点坐标为:P4(﹣1,6)综上所述存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S=BF•EF+(OC+EF)•OF四边形BOCE=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)==﹣+最大,且最大值为.∴当a=﹣时,S四边形BOCE此时,点E坐标为(﹣,).【点评】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.。
四川省广安市岳池县城关中学2019年中考物理模拟试题及答案

四川省广安市岳池县城关中学2019年中考物理模拟试题及答案一、填空题(每空1分,共l4分)1.(3分)一切正在发声的物体都在振动,声的传播需要介质.在空气、水和铁三种介质中,传声最快的是铁.某飞机的速度是2倍的音速,则这架飞机在5秒内的飞行距离是2018 .(声速取340m/s),2.(4分)现有一瓶某品牌的饮用纯净水.(1)瓶盖上刻有一道道竖直的条纹,其目的是增大摩擦(选填“增大”或“减小”).(2)用手握住水瓶在空中静止不动,此时水瓶受到的重力和手对瓶的摩擦力是平衡力.(3)瓶中水的体积是550mL.则水的质量是0.55 kg.(4)瓶中水喝光后,从瓶口向外吸气,瓶子变瘪,是由于瓶子受到大气压的作用.)瓶盖上刻有一道道竖直的条纹,是3.(2分)一玉石收藏者在新疆寻得一块1.8t的“和田玉”后引起关注,经省地质科学研究所宝石鉴定中心的鉴定师鉴定,这块“和田玉”原来只不过是一块石英岩.如果凿下一小块让你鉴定是不是和田玉,可以用天平测量它的质量,用量筒和水测量它的体积,还需要知道和田玉的密度是多少,通过计算就可以知道它是不是和田玉.如果石英岩的密度是2.6×103kg/m3,收藏者寻得的这块石英岩的体积是0.69 m3(保留两位有效数字).天平是测量质量的工具,量筒是测量体积的工具,根据密度公式算出这块“和田玉”的密进行计算,计算时要注意将质量的单位解:测量密度的实验原理是:ρ=,所以要测量物体的密度,我们就需要测量出物体的质量和体积这两ρ==4.(1分)某家庭的电能表上标着2018r/kW•h,如果电能表一分钟内的转数是5,那么家庭电路中消耗的总电功率是100 W.kW•h=6×10=5.(2分)两只定值电阻,甲标有“10Ω 1A”,乙标有“15Ω 0.6A”,把它们串联在同一电路中,电路中允许通过的最大电流为0.6 A,两端允许加的最大电压为15 V.本题考查了欧姆定律的简单计算,难点是知道串联时允许通过的最大电流为两个6.(2分)一个物体所受的重力为10N,将其全部浸没在水中时,排开的水受到的重力为20N,此时它所受的浮力为20 N,浮力的方向竖直向上,放手后物体将上浮(选填“上浮”、“下沉“或“悬浮”).二、作图题(每小题2分,共4分)7.(2分)电视机的遥控器通过发射一种不可见光﹣﹣红外线,来实现对电视机的控制.有时不把遥控器对准电视机的控制窗口,而是对着墙壁按一下按钮,利用光的反射也可以控制电视机.请在图中画出红外线经过墙壁反射的光路.接像与遥控器,交于墙壁的点8.(2分)如图所示,用笔画线代替导线将电灯、开关、三眼插座接到电路中.三、实验探究题(共12分)9.(4分)(2018•贵阳)如图所示是探究“浮力大小与哪些因素有关”实验的若干操作,根据此图请你回答下列问题.(1)分析比较图①②③,说明物体所受浮力的大小与物体排开液体的体积(或V排)因素有关.(2)在图③与图④中保持了物体排开液体的体积(或V排)不变,得到的结论是浮力大小与液体的密度有关.这种研究问题的方法叫做控制变量法.请再举一个应用这种研究方法的实验:研究摩擦或压强与哪些因素有关.)物体排开液思想方法,广泛地运用在各种科学探索和科学实验研究之中.10.(3分)在探究“压力作用的效果与哪些因素有关”的活动中,同学们首先进行了热烈讨论和大胆猜想,接着设计了多种验证方案.然后,李洁同学按图甲所示进行操作,她觉得左拇指受压的感觉比右拇指要强得多;并且越用力,受压感觉越明显.徐震同学的实验如图乙,他观察到与手掌接触部分气球的形变较小,而用手指顶着的那部分气球形变明显;且手指用力越大,形变越明显.实验完毕,同学们互相进行了交流,并得出结论:(1)当压力相同时,受力面积越小,压力作用的效果越明显;(2)当受力面积相同时,压力越大,压力作用的效果越明显;(3)在物理学中,压力作用的效果用物理量压强表示.:量法,它是科学探究中的重要思想方法,控制变量法是初中物理中常用的探索问题和分析解决问题的科11.(5分)小豪在“测定小灯泡电功率”的实验申,小灯泡的额定电压为2.5V,电阻约为10Ω.(1)如图1所示是他连接的实验电路,其中有一根导线连接错误.请你在错误的导线上画“×”,并用笔画线代替导线画出正确的导线.(2)电路连接正确后,闭合开关,发现小灯泡不亮,电压表有示数,电流表指针几乎不动,产生这个现象的原因是灯泡断路.(3)排除故障后,继续实验,并根据实验数据画出如图2所示的U﹣I图象,计算出小灯泡的额定功率是0.625 W,请你将小灯泡正常工作时的电流在如图3的电流表中标出.(4)根据图象可判断小灯泡的电阻随电压升高逐渐增大,原因是灯丝的电阻随温度升高而变大.计算灯泡在R=四、计算题(每小题5分,共10分)12.(5分)(2018•宿迁)一个质量为0.6kg,边长为0.1m的正方体物块,放置在水平地面上,g取10N/kg.求:(1)物块受到的重力.(2)物块对地面的压强.(3)若将物块浸没在水中后松手,通过计算判断该物块的浮沉情况.计算即可;==13.(5分)小明家利用天然气灶烧水,把质量为1kg的20℃的水烧开(在标准大气压下).【水的比热容c水=4.2×103J/(kg•℃)】(1)通过观察天燃气表得知消耗了0.01m3的天然气,如果天然气的密度为0.7kg/m3,烧水时消耗天然气多少千克?(2)在此过程中水需要吸收多少热量?(3)用额定功率是800W的电热壶在220V额定电压下,烧开同样质量的水,若电能转化为内能的效率是84%,则通电时间是多少?求通电时间.==这是一道的综合题目,考查了密度公式、热。
四川省广安市岳池县城关中学校中考语文模拟试题(一) 人教新课标版

岳池县城关中学校二○一二年中考模拟考试(一)语文试卷(考试时间120分钟,满分120分)注意:1.本试卷1-6页为阅读卷(选择题内容和阅读材料),请不要在上面答题;第7-14页为答题卷,请将除选择题外的全部答案写在答题卷上。
2.答题之前,请先将“学校”、“姓名”、“考号”等内容按要求填写(涂)在答题卡、答题卷相应的位置上。
阅读卷一、积累与运用(30分)(一)选择题(请将下面各小题正确选项的序号按要求填在答题卷上相应栏内)(8分)1.下列词语中加点字注音有误的一项是A.连亘.(gèn)薄.荷(bò)环谒.(yè)佝偻..(gōu lóu)B. 糟蹋.(tà)朴.刀(pō)案牍.(dú) 襁褓..(qiǎng bǎo)C.伫.立(zhù)间.或(jiàn)容臭.(xiù)轩榭..(xuān xiè)D.悲怆.(cuàng)扁.舟(piān)阻遏.(é)羸弱..(léi ruò)2.下列词语书写完全正确的一项是A.击磬磐石锐不可挡重峦迭嶂B.募捐蓦然相形见拙匪夷所思C.瓦砾闪烁笑容可掬谆谆告诫D.挑衅河畔时过境迁惹事生非3.下列加点词语使用正确的一句是A. 在女子短道速滑1500米决赛中,周洋以2分16秒的好成绩夺得冠军,并打破奥运会纪录,韩国选手只能望其项背....,眼睁睁地看着冠军旁落。
B. 假装买主,拨打墙上的电话号码,公安人员按图索骥....,几经周折,终于破获了一个特大的贩假、造假的团伙。
C. 李女士勇敢地站出来,在媒体上现身说法....自己的遭遇,提醒广大市民不要因为贪小便宜而上骗子的当。
D. 元宵节晚会上,刘谦挖空心思....表演的近景魔术仍然遭到不少网友的质疑,事实上,能全卷共14页第1页够让观众感到惊奇和疑惑就是魔术的意义,何必追问是真是假呢?4. 填入下面横线上的句子,排列恰当的一项是从大门通向公园深处,尽植芙蓉。
2019年四川省广安市中考数学模拟试卷

23、(8分)已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线 上的一个动点
(1)求证:以点P为圆心,PM为半径的圆与直线 相切
(2)设直线PM与抛物线 的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM
24、(10分)已知,如图, 是 切线,切点为 , 交 于C且过圆心 , 是 中点,连结 并延长交 于 ,若 , ,求 的长
11、已知 ,则锐角 的取值范围是________________
12、已知 是一元二次方程 的一根,则 ____________
13、已知直角三角形两边 、 的长满足 ,则第三边长为__________
14、如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心、BC为半径的圆弧外切,则sin∠EAB=_____________
(3)如图(2),已知点Q是CD的中点,在第(2)问的条件下,点P在 轴上,从原点O出发,沿 轴负方向运动,设四边形PCQE的面积为 ,△DEQ的面积为 ,当∠PCD=90°时,求P点坐标及 的值(4分)
26、(10分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为 (吨)时,所需的全部费用 (万元)与 满足关系式 ,
15、如图,等腰 中,底边 , , 的平分线交 于 , 的平分线交 于 ,设 ,则 ______________
16、如图,梯形 的两条对角线与两底所围成的两个三角形的面积分别为 、 ,则梯形的面积为____________
17、如图, 是半圆 的直径, 为 延长线上一点, 切半圆于点 , 于点 ,交半圆于 。已知 ,设 , ,则 与 的函数关系式是________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岳池县城关中学校二○一二年中考模拟考试(一)数 学 试 卷注意事项:1、本试卷共 页,满分120分,考试时间120分钟。
2、第一大题“选择题”用2B 铅笔填涂在机读卡上,其余各题用蓝、黑墨水笔直接答在本试卷上。
3.答卷前将密封线内的项目填写清楚.密封线内不得答题。
4.解答题要写出必要的文字说明、证明过程或演算步骤.一、选择题:每小题给出的四个选项中,只有一个选项符合题意要求,请将符合要求的选项的代号填入机读卡内。
(本大题共10小题,每小题3分,共30分) 1、2012-的相反数的倒数是( )A 、2018B 、-2018C 、20121-D 、201212、下列运算正确的是( ) A 、523a a a =+B 、632a a a =∙C 、22))((b a b a b a -=-+ D 、222)(b a b a +=+3、有二十二位同学参加智力竞赛,他们的分数互不相同,按分数高低选十一位同学进入下一轮比赛,小明知道了自己的分数后, 还需知道哪个统计量,就能判断自己能否进入下一轮比赛( ) A 、中位数 B 、众数 C 、方差 D 、平均数4、将函数32212+-=x x y 进行配方,正确的结果是( ) A 、1)2(212++-=x y B 、1)2(212-+=x yC 、1)2(212++=x y D 、1)2(212+-=x y5、三角形ABC 的面积一定,BC 的长为y ,BC 边上的高为x ,则x 与y 的函数关系用图象大致表示为( )………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………全卷共8页 第1页6、在一口袋中,有大小、形状完全相同的小球,其中有x 个红色球和y 个蓝色球,从盒中随机取出一颗球,取得红色球的机率是52,如果再往口袋中放进4个蓝球,取得蓝球的机率是21,则将来口袋中有蓝球( ) A 、10个 B 、8个 C 、6个 D 、4个7、将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( ) A 、1种 B 、2种 C 、3种 D 、无数种 8、在同一直角坐标系中,函数m mx y +=和222++-=x mx y (m 是常数,且m ≠0),则图象可能是( )9、如图1是由6个小正方体搭成的几何体,它的俯视图是( )10、如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相切,点E ,F 分别在AD ,DC 上,现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE=2,则正方形ABCD 的边长是( ) A 、3 B 、4C 、22+D 、22二、填空题(每小题3分,共18分) 11.使代数式212++-x x 有意义的x 的取值范围是 . 12.已知二次函数的图象经过原点及点)1,1(--,且图象与x 轴的另一个交点到原点的距离为2,那么该二次函数的解析式为 . 13.已知∠A 为锐角,且21cos ≤A ,那么∠A 的范围是 . CDCB第15题图全卷共8页 第2页14.如果代数式y xa 124-与ba yx +-3561是同类项,那么a=______,b=_______。
15.如图,AB 是的⊙O 直径,BC 交⊙O 于点D ,DE⊥AC 于点E ,要使DE 是⊙O 的切线,需添加的条件是 .(不添加其他字母和线条)16、如图,在平面直角坐标系中,A (-3,0),B (0,1),形状相同的抛物线Cn (n=1,2,3,4,…)的顶点在直线AB 上,其对称轴与x 轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C 2的顶点坐标为(_________) ;抛物线C 8的顶点坐标为(_________)。
三、解答题(本大题共4个小题,第17题5分,第18、19、20题各6分,共23分) 17、计算:1030)2()2012(830tan 33-----+-π(5分)18.(本小题6分)已知01562=+++x x x1-÷x x的值19、(本小题6分)如图,在梯形ABCD 中,AD//BC ,BC ⊥AB ,AD=3,BC=4,E 点在AB 上,且AE=2,∠CED=90°.求CD 的长.20.(本小题满分6分)如图,一次函数b kx y +=与反比例函数)0('<=x xk y 的图象相交于A ,B 两点,且与坐标轴的交点为)0,6(-,)6,0(,点B 的横坐标为4-, (1)试确定反比例函数的解析式; (2)求△AOB 的面积;(3)直接写出不等式xk b kx '>+的解集.四、实践应用题(本大题共4个小题,第21题6分,第22、23、24题各8分,共30分)21.(本小题满分6分)在北京举行的2008年奥运会中,某校学生会为了了解全校同学喜欢收看奥运会比赛项目的情况,随机调查了若干名同学(每人只能选其中一项),根据调查结果制作了频数分布表和统计图。
请根据图中提供的信息解答下列问题: (1)补全频数分布表和条形统计图;;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看篮球比赛的人数. (3)根据统计图和统计表,谈谈你的想法。
.................第20题图…………得…………答…………题………………………………全卷共8页 第4页22.(本小题满分8分)如图,甲船从港口A 出发沿北偏东15°方向行驶,同时,乙船也从港口A 出发沿西北方向行驶。
若干小时之后,甲船位于点C 处,乙船位于港口B 的北偏东60°方向,距离岸边BD 10海里的P 处。
并且观测到此时点B 、P 、C 在同一条直线上。
求甲船航行的距离AC 为多少海里(结果保留根号)?23.(本小题满分8分)张先生前年在美美家园住宅小区订购了一套住房,图纸如图所示。
已知:①该住房的价格15000 a 元/平方米;②楼层的电梯、楼梯及门厅前室面积由两户购房者平均负担;③每户配置车库16平方米,每平方米以6000元计算; 根据以上提供的信息和数据计算: (1)张先生这次购房总共应付款多少元?(2)若经过两年,该住房价格变为21600元/平方米,那么该小区房价的年平均增长率为多少?车库价格变为多少? (3)张先生打算对室内进行装修,甲、乙两公司推出不同的优惠方案:在甲公司累计购买10000元材料后,再购买的材料按原价的90%收费;在乙公司累计购买5000元材料后,再购买的材料按原价的95%收费.张先生怎样选择能获得更大优惠?BACDP第21题图单位:毫米24.(本小题满分8分)小明打算用一张半圆形的纸做一个圆锥。
在制作过程中,他先将半圆剪成面积比为1:2的两个扇形.(1)请你在图中画出他的裁剪痕迹.(要求尺规作图,保留作图痕迹)(2)若半圆半径是3,大扇形作为圆锥的侧面,则小明必须在小扇形纸片中剪下多大的圆才能组成圆锥?小扇形纸片够大吗(不考虑损耗及接缝)?五、计算与推理题25.(本小题9分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB 。
(1)求证:PC 是⊙O 的切线;(2)求证:BC=21AB ;(3)若M 是弧AB 的中点,CM 交AB 于点N ,AB=4,求MN ·MC 的值。
第24题图全卷共8页 第6页六、拓展探究题26.(本小题满分10分)如图,在平面直角坐标系中,以点A (3,0)为圆心,以5为半径的圆与x 轴相交于点B 、C ,与y 轴相交于点D 、E . (1)若抛物线 c bx x y ++=241经过C 、D 两点,求此抛物线的解析式,并判断点B 是否在此抛物线上? (2)若在(1)中的抛物线的对称轴有一点P ,使得△PBD 的周长最短,求点P 的坐标。
(3)若点M 为(1)中抛物线上一点,点Q 为其对称轴上一点,是否存在以点B 、C 、Q 、M 为顶点的平行四边形?若存在,直接写出点M 、Q 的坐标;若不存在,请说明理由。
数学答案一、选择题(每小题3分,共30分) 1—5:CCADB 6—10:DDDDC二、11、2<x 且2-≠x 12、x x y 22+=或x x y 32312+-=13、009060 A ≤ 14、a=3 b=-815、AB=AC 或D 为BC 中点(答案不唯一) 16、(3,2) (55,358) 三、17、222- 18、解:0562=++x x1,50)1)(5(21-=-=∴=++x x x x '2经检验,12-=x 是增根,舍去,所以5-=x 是该方程的解.'11)1212(2-÷-+++x x x x x =x x x x x x x 112)1)(1(222-⨯⎥⎦⎤⎢⎣⎡-++-+- =131)1)(1(3+=-⨯-+x x x x x x 2将5-=x 代入,原式=43153-=+-'118. 解:(1)作图略'3 (2)3=OAππ23180120=⨯=∴AC l 弧∴小圆半径1=r '2∴正好够剪'1 (能简单描述即可) 19、解:如图,在△AED 和△BCE 中,∵AB ∥BC ,BC ⊥AB , ∴AD ⊥AB , ∴∠A=∠B=90°, ∵∠CED=90°, ∴∠1+∠2=90°, ∵∠1+∠3=90°, ∴∠2=∠3, ∴△AED ∽△BCE , ∴∴即BE=6,过D 作DF ⊥BC ,交BC 于F ,则DF ∥AB ,∴四边形ABFD 为矩形, ∴DF=AB=2+6=8,FC=BC-BF=BC-AD=4-3=1,∴CD2=DF2+FC2=82+1=65, ∴CD=。
20、解:(1)设一次函数解析式为b kx y +=,根据与坐标轴的交点坐标可求得⎩⎨⎧==61b k ,6+=∴x y )2,4(-∴B , x y 8-=∴'2 (2)可得)4,2(-A ,626266=⨯-÷⨯=∆AOB S '2第18题AOBC(3) 24-<<-x '221、解:(1)最喜欢收看的项目 频数(人数) 频率足球 12(2)最喜欢收看篮球比赛的人数=1800×25%,=450(人);(3)因为喜欢看乒乓球的人数最多,所以在观看比赛时优先安排看乒乓球. 22、解:过A 作AE⊥BC,过P 作PQ⊥BD310,31tan ,10=∴==BQ B PQ 同理,10310,10+==AB AQ535,21sin +=∴=AE B 可求得 ∠EAC=45°, AE⊥BC 2565+=∴AC 23、解:(1)室内面积=41.1007.54.86.652.465.4=⨯+⨯+⨯(平方米) 楼梯电梯面积=38.3456.32.49.3=⨯+⨯(平方米) 需张先生负担的面积=6.117238.3441.100=÷+(平方米) 总费用=1860000600016150006.117=⨯+⨯(元) (2)设年增长率为x ,则有21600)1(150002=+x 2.2,2.021-==∴x x (舍去) 年增长率为0.2(或20%)(3)①如果累计购物不超过5000元,两个公司购物花费一样多;②如果累计购物超过5000元而不超过10000元,在乙公司购物省钱; ③如果累计购物超过10000元,设累计购物为元(10000>x ).如果在甲公司购物花费小,则)100(9.010000)5000(95.05000-+>-+x x15000>x如果在乙公司购物花费小,则)100(9.010000)5000(95.05000-+<-+x x15000<x而当花费恰好是15000元时,在两个店花费一样多.所以,累计购物超过10000元而不到15000元时,在乙公司购物省钱;累计购物等于15000元,两个公司花费一样多;而累计购物超过15000元时,在甲公司购物省钱.'424、解:(1)作图略'3 (2)3=OAB ACD P QE Cππ23180120=⨯=∴AC l 弧∴小圆半径1=r ∴正好够剪(能简单描述即可) 25、(1)∵AC=PC ∴∠A=∠P ∵∠COB=2∠PCB ,∠COB=2∠A ,∴∠PCB=∠A=∠P ∴∠ACO=∠PCB因为∠ACB=90°所以∠PCO=90°即PC 是圆O 的切线 (2)因为∠A=∠P ,∠ACO=∠PCB ,BAC=PC所以△ACO 全等于△PCB所以BC=CO 因为CO=1/2AB ,所以BC=1/2AB (3)连接MA,MB ,∵点M 是弧AB 的中点, ∴弧AM=弧BM ∴∠ACM=∠BCM∵∠ACM=∠ABM ∴∠BCM=∠ABM 。