2-STM32串口通信实验讲解学习
stm32实训报告经验总结

stm32实训报告经验总结STM32实训报告经验总结一、引言在这次STM32实训中,我深入了解了微控制器的基本原理和操作,学会了使用Keil MDK-ARM软件进行编程,掌握了STM32的GPIO、串口、定时器等基本外设的使用。
通过实际操作,我对于嵌入式系统设计和开发有了更深刻的理解。
二、实训过程1. 基础知识学习:首先,我通过阅读教材和网上资料,学习了微控制器的基本概念、STM32的体系结构和外设特性。
我了解到,STM32是一款功能强大的32位ARM Cortex-M核微控制器,具有丰富的外设接口和强大的处理能力。
2. 开发环境搭建:我按照教程安装了Keil MDK-ARM软件,配置了开发环境。
Keil软件提供了完整的开发工具链,包括代码编辑、编译链接、调试和仿真等功能。
3. 硬件平台搭建:我使用STM32开发板搭建了硬件平台。
我熟悉了开发板的电路原理图和引脚配置,了解了各个外设接口的使用方法。
4. 编程实践:在理解了基本概念和操作方法后,我开始进行编程实践。
我编写了GPIO输入输出、串口通信、定时器中断等程序,通过实际操作掌握了STM32的基本外设使用。
5. 调试与优化:在编程过程中,我遇到了许多问题,通过查阅资料和反复调试,最终解决了问题。
我还对程序进行了优化,提高了程序的效率和稳定性。
三、实训收获通过这次实训,我掌握了STM32微控制器的开发流程和基本外设的使用方法。
我学会了使用Keil MDK-ARM软件进行编程和调试,了解了嵌入式系统设计和开发的实际操作过程。
同时,我在实践中遇到了许多问题,通过解决问题,我提高了解决问题的能力。
四、展望未来这次实训让我对嵌入式系统设计和开发有了更深刻的理解。
在未来的学习和工作中,我将继续深入学习嵌入式系统的相关知识,掌握更多的技能和方法。
同时,我将尝试将所学知识应用到实际项目中,提高自己的实践能力和工程经验。
stm32实训心得体会

stm32实训心得体会篇一:STM32 实验2报告实验2MINI STM32按键控制LED灯实验一、实验目的1、掌握嵌入式程序设计流程。
2、熟悉STM32固件库的基本使用。
二、实验内容1、编程使用I/O口作为输入,控制板载的两个LED 灯。
2、使用固件库编程。
三、实验设备硬件: PC机一台MINI STM32开发板一套软件: RVMDK 一套Windows XP 一套四、实验步骤1、设计工程,使用固件库来编程设置。
、在这里我们建立一个文件夹为: STM32-Projects.点击Keil 的菜单:Project –>New Uvision Project ,然后将目录定位到刚才建立的文件夹STM32-Projecst 之下,在这个目录下面建立子文件夹shiyan1, 然后定位到 shiyan1目录下面,我们的工程文件就都保存到shiyan1 文件夹下面。
工程命名为shiyan1, 点击保存.是这个型号。
、这里我们定位到STMicroelectronics 下面的STM32F103RB( 针对我们的mini 板子、弹出对话框“Copy STM32 Startup Code to project ?.”,询问是否添加启动代码到我们的工程中,这里我们选择“否”,因为我们使用的ST固件库文件已经包含了启动文件。
、接下来,我们在 Template 工程目录下面,新建3 个文件夹 CORE, USER,STM32F10x_FWLib 。
USER 用来放我们主函数文件 , 以及其他包括system_ 等等,CORE 用来存放启动文件等,STM32F10x_FWLib 文件夹顾名思义用来存放ST官方提供的库函数源码文件.、.打开官方固件库包,定位到我们之前准备好的固件库包的目录。
STM32F10x_StdPeriph_Lib_\Libraries\STM32F10x_StdPer iph_Driver 下面,将目录下面的src,inc 文件夹 copy 到我们刚才建立的STM32F10x_FWLib 文件夹下面。
stm32串口通信实验原理

stm32串口通信实验原理STM32是一款由STMicroelectronics公司推出的基于ARM Cortex-M 内核的32位微控制器。
在STM32系列中,串口通信是一种常见的外设模块,可以实现与其他设备之间的数据传输。
本文将介绍STM32串口通信的原理及实验方法。
一、串口通信的原理串口通信是一种通过串行方式传输数据的通信方式。
在串口通信中,数据是一位一位地依次发送或接收的。
与并行通信相比,串口通信只需要两根信号线即可实现数据的传输,因此在资源有限的嵌入式系统中被广泛应用。
STM32的串口通信模块包括多个寄存器,其中包括控制寄存器、状态寄存器、数据寄存器等。
通过配置这些寄存器,可以实现串口通信的参数设置和数据的发送接收。
二、STM32串口通信的实验步骤以下是一种基本的STM32串口通信实验步骤:1. 硬件连接:将STM32开发板的串口引脚与其他设备的串口引脚通过串口线连接起来。
一般来说,串口通信需要连接的引脚包括TX (发送引脚)、RX(接收引脚)、GND(地线)。
2. 引脚配置:通过STM32的引脚复用功能,将相应的GPIO引脚配置为串口功能。
具体的引脚配置方法可以参考STM32的开发板手册或者相关的资料。
3. 时钟配置:配置STM32的时钟源,使得串口通信模块能够正常工作。
一般来说,串口通信模块使用的时钟源可以选择系统时钟或者外部时钟。
4. 串口配置:配置串口通信模块的参数,包括波特率、数据位、停止位、校验位等。
这些参数的配置需要根据实际的通信需求来确定。
5. 数据发送:通过向数据寄存器写入数据,向其他设备发送数据。
在发送数据之前,需要通过状态寄存器的标志位判断串口是否空闲,以确保数据能够正常发送。
6. 数据接收:通过读取数据寄存器的数据,从其他设备接收数据。
在接收数据之前,需要通过状态寄存器的标志位判断是否有数据到达,以确保数据能够正确接收。
7. 中断处理:在串口通信过程中,可以使用中断来实现数据的异步传输。
基于stm32的串口通信课程设计

基于stm32的串口通信课程设计基于STM32的串口通信课程设计可以涵盖以下方面的内容:硬件准备:选择适合的STM32微控制器开发板,如STM32F4 Discovery或STM32F103C8T6等。
连接串口调试器(如USB转串口模块)与开发板的串口接口。
连接相关外设(如传感器,显示器等)到开发板的其他GPIO引脚。
开发环境设置:下载并安装STM32CubeIDE或其他适用的开发环境。
配置开发环境以支持选定的STM32开发板。
串口通信基础:学习串口通信的基本原理和通信协议(如UART)。
了解STM32的串口模块的配置和使用方法。
串口发送和接收:学习如何在STM32上配置和初始化串口模块。
实现串口数据的发送和接收功能。
使用中断或DMA方式处理串口数据的发送和接收。
数据解析和显示:设计数据帧格式,包括起始标志、数据字段、校验等。
实现数据解析算法,将接收到的数据解析为可识别的信息。
将解析后的数据通过LCD显示或其他方式展示出来。
通信协议扩展:实现更复杂的通信协议,如帧同步、差错校验、数据压缩等。
添加数据加密、认证或其他安全性功能。
支持多设备通信,如主从通信或多点通信。
实际应用案例:根据实际需求设计和实现一个具体的应用,如传感器数据采集和监控系统、远程控制系统等。
在设计课程时,可以结合理论讲解、实验演示和实际项目实践,使学生能够全面理解串口通信的原理和应用。
此外,建议提供相应的教学资源,如开发板的用户手册、技术文档和示例代码,以便学生更好地学习和实践。
以下是一个基于STM32的串口通信课程设计的简单示例:课程目标:设计一个基于STM32的温度监测系统,通过串口将采集到的温度数据发送到计算机,并在计算机上进行实时显示。
课程内容:硬件准备:使用STM32F4 Discovery开发板和一个温度传感器(例如LM35)。
连接温度传感器到开发板的一个模拟输入引脚(如PA0)。
连接开发板的串口接口(如USART2)到计算机的串口调试器。
STM32串口教程

STM32串口教程STM32是一种基于ARM Cortex-M内核的32位微控制器系列。
它具有强大的处理能力和丰富的外设接口,适用于各种嵌入式应用。
其中,串口通信是STM32常用的外设之一,可以用于和其他设备进行数据的收发。
本文将介绍STM32串口的配置和使用方法。
一、串口的基本原理串口是一种以串行方式传输数据的通信方式。
在串口通信中,数据按照比特位的顺序传输,一次传输一个位。
数据的传输包括一个或多个字节,每个字节由8位组成,其中包括1位起始位、1位停止位和可选的奇偶校验位。
串口通信需要两根信号线,一根用于发送数据(TX),一根用于接收数据(RX)。
二、STM32串口的配置配置串口的步骤如下:1.设置GPIO引脚功能和模式:将串口的引脚配置为复用功能,并设置引脚的模式为推挽输出。
2.使能串口时钟:根据串口的编号,使能对应串口的时钟。
3.配置串口参数:设置串口的波特率、数据位、停止位、奇偶校验位等参数。
4.使能串口:使能串口的发送和接收功能。
三、STM32串口的使用方法配置完成后,即可使用STM32的串口进行数据的收发。
下面是使用STM32串口的一般流程:1.发送数据:将要发送的数据写入到串口的发送缓冲区,等待数据发送完成。
2.接收数据:检测是否有数据接收到,如果有则读取数据。
在发送数据时,可以使用printf函数实现方便的格式化输出。
为了使用printf函数,需要先配置printf函数的底层接口。
可以使用标准库提供的函数重定向方法,将输出重定向到串口。
在接收数据时,可以使用中断方式或轮询方式。
中断方式需要配置串口的中断,并在中断服务函数中处理接收到的数据。
轮询方式是在主循环中不断检测数据是否接收到,并进行读取。
四、常见问题及解决方法1.串口通信乱码问题:可能是波特率设置不正确导致的,可以检查波特率设置是否和目标设备匹配。
2.串口接收数据丢失问题:可能是接收缓冲区溢出导致的,可以增加接收缓冲区的大小或者使用中断方式处理接收数据。
STM32的串口通信UARTTTL

STM32的串⼝通信UARTTTL常⽤的串⼝pinSTM32的串⼝是基础通信⽅式, 每个型号都带多组串⼝, ⼀般都使⽤默认的组, 可以参考芯⽚的datasheet, 去看pinout and pin definitions, 对于stm32f103c8t6, 这是48pin的芯⽚, 提供3组串⼝, 如果使⽤3组, 各组串⼝的pin脚为USART2 - A2, A3PA0: USART2_CTSPA1: USART2_RTSPA2: USART2_TXPA3: USART2_RXPA4: USART2_CKUSART1 - A9, A10PA8: USART1_CKPA9: USART1_TXPA10: USART1_RXPA11: USART1_CTSPA12: USART1_RTSUSART3 - B10, B11PB10: USART3_TXPB11: USART3_RXPB12: USART3_CKPB13: USART1_CTSPB14: USART1_RTS串⼝通信编程⼀般通过以下的步骤实现串⼝通信1. 申请内存作为buffer, 声明标记位和buffer指针简单的例⼦u8 usart_buf[100] = {0};u16 index1 = 0, flag1 = 0;复杂的例⼦#define TTL_BufferLength ((uint16_t)0x0040)#define TTL_WriteOk ((uint16_t)0x0000)#define TTL_BufferOverrun ((uint16_t)0x0001) // full flag#define TTL_BufferUnderrun ((uint16_t)0x0002) // empty flag/* Private types -------------------------------------------------------------*/typedef struct{uint16_t size; /* The size of the buffer */uint16_t start; /* The index of the next character to send */uint16_t end; /* The index at which to write the next character */char* elems; /* The location in memory of the buffer */} TTL_BufferTypeDef;/* Private variables ----------------------------------------------------------*/TTL_BufferTypeDef cb;/* Private Methods -----------------------------------------------------------*/void TTL_Buffer_Init(){cb.size = TTL_BufferLength;cb.start = 0;cb.end = 0;cb.elems = calloc(cb.size, sizeof(char));}void TTL_Buffer_Free(){free(cb.elems);}uint16_t TTL_Buffer_IsFull(){return (cb.end + 1) % cb.size == cb.start;}uint16_t TTL_Buffer_IsEmpty(){return cb.end == cb.start;}uint16_t TTL_Buffer_Write(char c){// check for a buffer overrunif (TTL_Buffer_IsFull()) {return TTL_BufferOverrun;} else {cb.elems[cb.end] = c;cb.end = (cb.end + 1) % cb.size;}return TTL_WriteOk;}uint16_t TTL_Buffer_Read(char* c){// check for a buffer underrunif (TTL_Buffer_IsEmpty()) {return TTL_BufferUnderrun;} else {*c = cb.elems[cb.start];cb.start = (cb.start + 1) % cb.size;}}2. 初始化UART端⼝: 使能GPIO, UART, NVIC /* Public Methods -----------------------------------------------------------*/void TTL_Init(){// Structures to hold the initialisation dataGPIO_InitTypeDef GPIO_InitStruct;USART_InitTypeDef USART_InitStruct;NVIC_InitTypeDef NVIC_InitStruct;// enable the peripherals we're going to useRCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);// Usart1 Tx is on GPIOB pin 6 as an alternative functionGPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;GPIO_Init(GPIOB, &GPIO_InitStruct);// Connect pin 6 to the USARTGPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_USART1);// fill in the interrupt configurationNVIC_InitStruct.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0;NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStruct);// init the USART to 8:N:1 at 9600 baud as specified in the// TTL data sheetUSART_ART_BaudRate = 9600;USART_ART_WordLength = USART_WordLength_8b;USART_ART_StopBits = USART_StopBits_1;USART_ART_Parity = USART_Parity_No;USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_ART_Mode = USART_Mode_Tx;USART_Init(USART1, &USART_InitStruct);// Enable USART1 peripheralUSART_Cmd(USART1, ENABLE);// ensure USART1 interrupts are off until we have dataUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);// prepare the bufferTTL_Buffer_Init();}3. 实现中断处理⽅法读消息/* Public Methods -----------------------------------------------------------*//** Handles all interrupts for USART1.*/void USART1_IRQHandler(void){// is this interrupt telling us that we can send a new character?if (USART_GetITStatus(USART1, USART_IT_TXE) != RESET) {// is there something for us to read?if (TTL_Buffer_IsEmpty()) {// no, disable the interruptUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);} else {// yes, get the next character from the bufferchar c = 0x00;TTL_Buffer_Read(&c);// send it to the deviceUSART_SendData(USART1, c);}}}4. ⼯具⽅法: 写消息, 反初始化(⾮必须)注意在每次调⽤USART_SendData这个⽅法之后, 都需要阻塞判断 USART_FLAG_TC 是否为SET才能继续往下执⾏. ...USART_SendData(USART1, *str++);while( USART_GetFlagStatus(USART1, USART_FLAG_TC) != SET);...例如/* Public Methods -----------------------------------------------------------*/void TTL_DeInit(){// disable the interruptsUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);// free the bufferTTL_Buffer_Free();}uint16_t TTL_IsBufferFull(){return TTL_Buffer_IsFull();}uint16_t TTL_WriteMessage(char* text, uint16_t length){// index into the character arrayuint16_t i = 0;// return valueuint16_t rv = TTL_WriteOk;while(length--) {USART_SendData(USART1, *text++);// USART_SendData(USART1,(uint16_t) *text++);// Loop until the end of transmissionwhile(USART_GetFlagStatus(USART1, USART_FLAG_TC) != SET);}// enable the interrupt to send the messageUSART_ITConfig(USART1, USART_IT_TXE, ENABLE);return rv;}代码例⼦这是⼀个完整的代码例⼦, 适⽤于STM32F103#include "sys.h"#include "usart.h"#include "delay.h"u8 usart1_buf[100] = {0}, usart2_buf[100] = {0}, usart3_buf[100] = {0};u16 index1 = 0, index2 = 0, index3 = 0, flag1 = 0, flag2 = 0, flag3 = 0;void uart_init(u32 bound){GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2 | RCC_APB1Periph_USART3, ENABLE);//使能USART1,GPIOA时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);/*************UART1********************/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.9//USART1_RX GPIOA.10初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PA10GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.10NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = bound;//串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART1, &USART_InitStructure); //初始化串⼝1USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串⼝接受中断USART_Cmd(USART1, ENABLE); //使能串⼝1/***************UART2******************/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.2GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.3NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = bound;//串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART2, &USART_InitStructure); //初始化串⼝2USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串⼝接受中断USART_Cmd(USART2, ENABLE); //使能串⼝2/****************UART3***********************///USART3_TX GPIOB.10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PB.10GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化GPIOB.10//USART3_RX GPIOB.11GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //PB11GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输⼊GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化GPIOB.11//Usart3 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; //抢占优先级4NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = 115200; //串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART3, &USART_InitStructure); //初始化串⼝3USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); //开启串⼝接受中断USART_Cmd(USART3, ENABLE);}/**每个字节⼀个中断, 这⾥⽤0x0a作为⼀条消息读取结束*/void USART1_IRQHandler(void){u16 code;if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART1, USART_IT_RXNE);//Removal of receiving interrupt flagcode = USART_ReceiveData(USART1);usart1_buf[index1] = code;index1++;if(code == 0x0a) {index1 = 0;flag1 = 1;}}}void USART2_IRQHandler(void){u16 code;if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART2, USART_IT_RXNE);code=USART_ReceiveData(USART2);usart2_buf[index2] = code;index2++;if(code == 0x0a) {index2 = 0;flag2 = 1;}}}void USART3_IRQHandler(void){u16 code;if(USART_GetITStatus(USART3, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART3, USART_IT_RXNE);code = USART_ReceiveData(USART3);usart3_buf[index3] = code;index3++;if(code == 0x0a) {index3 = 0;flag3 = 1;}}}void USART1_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART1, USART_FLAG_TC);USART_SendData(USART1, *str++);while( USART_GetFlagStatus(USART1,USART_FLAG_TC) != SET);}USART_SendData(USART1, 0x0a);}void USART2_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART2, USART_FLAG_TC);USART_SendData(USART2, *str++);while( USART_GetFlagStatus(USART2,USART_FLAG_TC) != SET);}USART_SendData(USART2, 0x0a);}void USART3_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART3, USART_FLAG_TC);USART_SendData(USART3, *str++);while( USART_GetFlagStatus(USART3,USART_FLAG_TC) != SET); }USART_SendData(USART3, 0x0a);}/*******************main***********************/#include "led.h"#include "delay.h"#include "key.h"#include "sys.h"#include "usart.h"#include "buzzer.h"#include "string.h"int main(void){u8 Zigb_Head[]="ZigB:";u8 buf[100];delay_init();NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);uart_init(115200);Buzzer_Init();LED_Init();while(1) {if(flag2 == 1) {LED0=0;flag2=0;USART3_Send(usart2_buf);memset(usart2_buf,0,sizeof(usart2_buf));} else if(flag3==1) {LED1=0;flag3=0;memcpy(buf,Zigb_Head,sizeof(Zigb_Head));strcat(buf,usart3_buf);USART2_Send(buf);memset(buf,0,sizeof(buf));}delay_ms(500);LED1=1;LED0=1;delay_ms(500);}}参考。
SPI1SPI2_DMA通信实验(STM32)

SPI1SPI2_DMA通信实验(STM32)STM32学习笔记(⼆)——之SPI_DMA寄存器级操作⼀、实验⽬标学会配置STM32的SPI寄存器和DMA寄存器,实现STM32的SPI1与SPI2通信功能,每次发送⼀字节数据,并可多次发送,如果接收的数据正确,则点亮LED灯。
⼆、实验⽬的加⼊DMA的SPI通信相对于普通SPI通信有什么好处?ST给SPI加了DMA功能出于什么⽬的?我觉得这是很重要的⼀个问题,⼀直边学习边想。
以下是我的看法:减少CPU负荷?我想这应该是DMA最主要的功能,可是对于SPI通信来说,其实⼤部分时候我们需要根据发送的指令->⽬标器件的应答来决定下⼀个指令,所以此时CPU还是需要⼀直等待每次通信的结束。
⽽且像SD卡的操作,是⼀个顺序流的指令操作过程,⽤中断也不容易控制。
那到底加⼊了DMA有什么好处?仔细查看了STM32F10xxx的⽤户⼿册,发现这么⼀⾏字“连续和⾮连续传输:当在主模式下发送数据时,如果软件⾜够快,能够在检测到每次TXE的上升沿(或TXE中断),并⽴即在正在进⾏的传输结束之前写⼊SPI_DR寄存器,则能够实现连续的通信;此时,在每个数据项的传输之间的SPI时钟保持连续,同时BSY位不会被清除。
如果软件不够快,则会导致不连续的通信;这时,在每个数据传输之间会被清除”以及也就是说如果连续传输⽽不使⽤DMA的话,需要CPU不停检测TXE并很快地置⼊SPI->DR的值,对于复杂程序的话这是很难达到的,⽽如果使⽤DMA,就可以轻易实现连续传输,CPU只需等待其完成就好。
我想到的⼀个应⽤就是在写SD卡的时候,每次写⼀个块512字节,就可以⽤到,能提⾼SD卡的写⼊数据速率。
其次还可以降低功耗,记得数字集成电路⽼师说过⼀句话“软件上降低数字电路功耗的⼀个⽅法就是减少电平转换。
”那么连续通信的时候,像SPI的BSY电平转换会⼤⼤减少!最后⼀点,虽然效果不⼤,就是如果不是⽤DMA,那么CPU的⼯作就是搬运⼯,把SPI->DR 的内容搬到内存存储起来,⽽如果使⽤DMA,就省略了这个环节!我想,为什么实现同⼀个功能,有的执⾏起来很流畅,有的却很卡,应该和这些⼩细节的减载有关吧。
STM32F1 第12讲 串口通信基本原理-M3

处理器与外部设备通信的两种方式:
并行通信
-传输原理:数据各个位同时传输。 -优点:速度快 -缺点:占用引脚资源多
串行通信
-传输原理:数据按位顺序传输。 -优点:占用引脚资源少 -缺点:速度相对较慢
✓ 1.通信接口背景知识
串行通信:
按照数据传送方向,分为:
单工: 数据传输只支持数据在一个方向上传输
串口号 1 2 3 4 5
RXD PA10 PA3 PB11 PC11 PD2
TXD PA9 PA2 PB10 PC10 PC12
✓ 2.STM32串口通信基础
UART异步通信方式特点:
全双工异步通信。 分数波特率发生器系统,提供精确的波特率。
-发送和接受共用的可编程波特率,最高可达4.5Mbits/s 可编程的数据字长度(8位或者9位); 可配置的停止位(支持1或者2位停止位); 可配置的使用DMA多缓冲器通信。 单独的发送器和接收器使能位。 检测标志:① 接受缓冲器 ②发送缓冲器空 ③传输结束标志 多个带标志的中断源。触发中断。 其他:校验控制,四个错误检测标志。
SCK:同步时钟 MISO:主机输入,从机输出 MOSI:主机输出,从机输入 SCL:同步时钟 SDA:数据输入/输出端
通信方式
通信方向
异步通信 全双工
异步通信 同步通信
半双工 全双工
同步通信 半双工
✓ 2.STM32串口通信基础
STM32的串口通信接口
UART:通用异步收发器 USART:通用同步异步收发器
大容量STM32F10x系列芯片,包含3个USART和2个 UART
✓ 2.STM32串口通信基础
UART异步通信方式引脚连接方法:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STM32串口简介
STM32根据芯片型号的不同资源数量也不一样,103VC 系列最多可提供5路串口(本次着重讲解串口1和串口 2),有分数波特率发生器、支持同步单线通信和半双 工单线通讯、支持LIN 、支持调制解调器操作、智能卡 协议和IrDA SIR ENDEC规范、具有 DMA等。
STM32串口printf实现
本次试验中我们用到了GPIO、RCC、USART这三个外 设的库文件stm32f10x_gpio.c、stm32f10x_rcc.c、 stm32f10x_usart.c,所以试验中如果你的库文件 stm32f10x_conf.h里面将相应的头文件注释了就需要将 需要用到的几个头文件的注释去掉。
STM32的串口与其他单片机的操作方式基本相同: 1、开启串口时钟 2、设置相应I/O模式 3、配置波特率、数据位长度、奇偶校验位等
Company Logo
STM32串口原理图
Company Logo
STM32 UART库函数
Company Logo
STM32串口时钟使能
串口作为STM32的一个外设,其时钟由外设时钟使能寄存器控制, 串口1的时钟使能在APB2ENR寄存器,其他串口的时钟使能位都在 APB1ENR。(以串口1为例)
在很多串口操作中都可以直接调用printf函数打印输出信息, 但是在STM32中还需要进行一些配置才可以。接下来我们首 先会讲解如何使用printf函数进行输出,然后再讲解输入输出 函数的使用方法。
Company Logo
STM32串口printf实现
本次试验采用UART1的查询方式实现:
Company Logo
跟LED的操作一样,首先是将相应的I/O配置成串口模 式,本次函数名为USART1_Config();
Company Logo
STM32串口printf实现
Company Logo
STM32串口printf实现
USART1_Config()主要做了如下工作: 1、使能了串口1的时钟 2、配置了uart1的I/O
Company Logo
STM32串口数据的发送和接收
STM32串口的发送和接收是通过数据寄存器USART_DR来实现的, 这是一个双寄存器,包含了发送和接收两部分。当向该寄存器写数 据时,串口就会自动发送,当收到数据的时候,也在该寄存器中。
其中只用了低9位,其他位都保留且硬件强制为0。
Company Logo
3、配置了uart1的工作模式
Company Logo
STM32串口简介
上面的配置中将串口1的TX和RX引脚配置成AF_PP和 IN_FLOATING模式,因为RX是接收引脚所以设置沉高 输入模式。
而用库函数则是:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE)
Company Logo
STM32串口复位
当外设出现异常的时候可以通过复位寄存器里面的对应位设置,实 现该外设的复位,然后重新配置这个外设达到让其重新工作的目的。 一般在系统刚开始配置外设的时候都会先执行复位该外设的操作。 串口1的复位时通过配置APB2RSTR寄存器来实现的,其他的几个 串口都是通过PAB1RSTR寄存器来实现的。而用库函数则是使用 USART_DeInit(USART_TypeDef* USARTx)来实现的。USART_ DeInit函数在stm32f10x_usart.c文件中。
Company Logo
STM32串口状态
STM32串口的状态可通过状态寄存器USART_SR读取。 这里我们关注一下三个位,第5 、6 、7位RXNE 、TC和TXE。
Company Logo
STM32串口
如果理解了以上寄存器等的讲解,那么就可以对STM32进行 相关的设置和操作,就可以达到串口最基本的配置了,更详 细的介绍可参考《STM32参考手册》。
Company Logo
STM32串口波特率设置
STM32中每个串口都有一个自己独立的波特率寄存器USART_BRR, 通过设置该寄存器达到配置不同波特率的目的,该寄存器的各位描 述如下:
该寄存器中最低4为用来存放小数部分的DIV_Fraction,[15:4]这12位 用来存放整数部分DIV_Mantissa。高16位未使用(图片上小数整数 有错误,以英文手册为准)。
STM32串口数据的发送和接收
STM32串口的发送和接收在库文件中分别有对应的函数,可直接调 用,分别是:
void USART_SendData(USART_TypeDef* USARTx, u8 Data) u8 USART_ReceiveData(USART_TypeDef* USARTx)
Company Logo
STM32串口波特率设置
Comp32中每个串口都有3个控制寄存器USART_CR1~3,串口的很 多配置都是通过这3个寄存器来设置的。这里我们只要用到 USART_CR1就可以实现我们的功能了,其他的寄存器就不一一列 出了。具体各位的功能及操作方法见STM32参考手册的496~497页。 其中发送和接收的中断都通过这个寄存器进行使能。
Company Logo
STM32串口简介
4、奇偶校验位:在串口通信中一种简单的检错方式。 有4中检错方式:偶、奇、高和低。
5、硬件流控制:硬件流控制常用的有RTS/CTS流控制 盒DTR/DSR流控制。硬件流控制必须将相应的电缆线 接上,用RTS/CTS流控制时,应将通讯两端的RTS、 CTS线对应相连。常用的流控制信号还有DTR/DSR。
2-STM32串口通信实验
串口简介
串行接口简称串口,也成串行通信接口,是采用串行通 信方式的扩展接口。串口的使用对于开发调试过程的作 用是非常大的,串口可以用来查看、打印及输出相关信 息,使我们在嵌入式开发中最先与中央处理器通信的接 口。
串行通讯的特点是:数据位传送,传按位顺序进行,最 少只需一根传输线即可完成,成本低但传送速度慢。串 行通讯的距离可以从几米到几千米。