考研概率论需要注意的五大公式

合集下载

考研数学概率论备考重点公式与解题思路整理

考研数学概率论备考重点公式与解题思路整理

考研数学概率论备考重点公式与解题思路整理概率论是考研数学中的一大重点,掌握好概率论的基本公式和解题思路对于备考考研数学非常重要。

本文将对考研数学概率论的备考重点公式和解题思路进行整理,帮助考生更好地备考概率论。

一、基本概率公式1.1 事件的概率公式对于一个随机试验,其所有样本点组成的样本空间为S,一个事件A是样本空间S的一个子集。

那么,事件A发生的概率P(A)定义为: P(A) = n(A) / n(S)其中,n(A)表示事件A包含的样本点的个数,n(S)表示样本空间S 中所有样本点的个数。

1.2 事件的互斥与独立若两个事件A和B满足以下条件之一,则称事件A和事件B是互斥的:- 事件A和事件B不可能同时发生,即A∩B = ∅- 事件A和事件B的概率相加等于1,即P(A∪B) = P(A) + P(B)若两个事件A和B满足以下条件之一,则称事件A和事件B是独立的:- 事件A和事件B发生的概率等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) * P(B)二、常用的概率公式2.1 全概率公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到全概率公式:P(B) = P(A₁) * P(B|A₁) + P(A₂) * P(B|A₂) + ... + P(An) * P(B|An)其中,P(Ai)表示事件Ai发生的概率,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率。

2.2 贝叶斯公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到贝叶斯公式:P(Ai|B) = P(Ai) * P(B|Ai) / (P(A₁) * P(B|A₁) + P(A₂) *P(B|A₂) + ... + P(An) * P(B|An))其中,P(Ai|B)表示在事件B发生的条件下事件Ai发生的概率。

考研数学概率复习难点归纳

考研数学概率复习难点归纳

考研数学概率复习难点归纳概率是考研数学中难度较大的一个章节,很多考生都会感到头痛,特别是在记忆和理解方面。

为了帮助考生更好地复习,本文将归纳概率复习中的难点。

1. 基本概率公式和加法公式概率的基本公式和加法公式是概率计算的基础,也是考研数学概率考试中的必考点。

但是,很多考生往往容易混淆这两个公式,造成计算错误。

•基本概率公式:$P(A) = \\frac{N(A)}{N}$其中,P(A)代表事件A发生的概率,N(A)代表事件A发生的样本点个数,N代表总的样本点个数。

•加法公式:P(A+B)=P(A)+P(B)−P(AB)其中,P(A+B)代表事件A或事件B发生的概率,P(AB)代表事件A和事件B同时发生的概率。

需要注意的是,加法公式只适用于“或”的情况,而不是“和”的情况。

因为“和”的情况存在重复计数的问题。

2. 条件概率和乘法公式条件概率和乘法公式是概率计算中的另一个基础。

但是,很多考生容易对条件概率和条件概率公式之间的区别存在混淆,难以理解概率问题。

•条件概率:$P(A|B) = \\frac{P(AB)}{P(B)}$其中,P(A|B)代表在事件B已经发生的条件下,事件A发生的概率,而P(B)代表事件B发生的概率。

•乘法公式:$P(AB) = P(B) \\times P(A|B)$可以理解为:A和B同时发生的概率等于B发生的概率与在B发生的条件下A发生的概率的乘积。

对于条件概率和乘法公式,考生需要逐步理解它们的含义,尤其是在复杂的题目中,需要注意条件的限制和约束。

3. 独立事件和全概率公式独立事件和全概率公式是概率计算中比较复杂的内容,对于大多数考生来说,需要花费一定的复习时间才能理解。

•独立事件:如果事件A和事件B满足$P(AB) = P(A) \\times P(B)$,则事件A和事件B称为独立事件。

当事件A和事件B是独立事件时,知道事件B发生与否对事件A的概率没有影响,反之,知道事件A发生与否对事件B的概率也没有影响。

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全一、概率论部分:1.概率公式:-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A发生的可能性,n(S)表示样本空间S中的样本个数。

-互斥事件的概率:P(A∪B)=P(A)+P(B)。

-非互斥事件的概率:P(A∪B)=P(A)+P(B)-P(A∩B)。

2.条件概率公式:-事件A在事件B发生的条件下发生的概率:P(A,B)=P(A∩B)/P(B)。

3.乘法公式:-事件A、B同时发生的概率:P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)。

4.全概率公式:-事件A可以由一系列互斥且构成样本空间的事件B1、B2、..、Bn发生的概率:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)=ΣP(A∩Bi)。

5.贝叶斯公式:-已知事件A发生的条件下事件B发生的概率:P(B,A)=P(A∩B)/P(A)=P(A,B)*P(B)/P(A)。

6.重要的离散概率分布:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中n为试验次数,k为成功次数,p为每次成功的概率。

-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!,其中λ为单位时间(或单位面积)内随机事件发生的平均次数。

7.重要的连续概率分布:-均匀分布:f(x)=1/(b-a),其中a为最小值,b为最大值。

-正态分布:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。

二、数理统计部分:1.基本概念:-总体:研究对象的全体。

-样本:从总体中抽取的一部分个体。

-参数:总体的特征数值。

-统计量:样本的特征数值。

2.基本统计量:- 样本均值:x̄ = (x1 + x2 + ... + xn) / n,其中x1、x2、..、xn为样本数据,n为样本容量。

- 样本方差:s^2 = ((x1-x̄)^2 + (x2-x̄)^2 + ... + (xn-x̄)^2) / (n-1)。

考研数学概率论重要考点总结

考研数学概率论重要考点总结

考研数学概率论重要考点总结考研数学-概率论重要考点总结考研数学-概率论是考研数学中非常重要的一门课程,一部分选手往往会因为概率论考试不好而导致总分降低。

随着考研的竞争日益激烈,对于概率论重要考点的掌握也变得越来越关键。

本文将重点介绍考研数学概率论中的重要知识点和应试技巧,相信会对您的考研有所帮助。

第一部分:概率论基础知识点1.随机事件和概率特定的事件在具有一定条件的过程中发生的可能性称为其概率。

随机事件是某个试验中的可能结果,这些结果之一会被称为随机事件。

随机事件有可达成的(必然事件)和不可达成的(不可能事件)之分,而概率是在数学上给出事件发生可能性的量化值。

2.条件概率条件概率指在另一个事件发生的条件下,某个事件发生的概率。

条件概率的计算需要利用贝叶斯公式,即P(A|B)= P(A∩B)/P(B)。

其中P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

在日常生活中,常见的例子是医学诊断和安全检查。

3.全概率公式和贝叶斯公式全概率公式是指当一个事件是由许多个事件的情况复合而成时,利用每个事件的概率来计算出总体情况的概率。

贝叶斯公式是通过已知的先验概率和新的数据来推断后验概率的。

这两个公式是概率论中非常重要的基础。

4.独立事件独立事件指两个或多个事件之间不受其他事件影响的情况,即事件A和事件B之间满足P(A|B)=P(A)或者P(B|A)=P(B)。

独立事件还有一些性质,如互不影响性和乘法公式。

第二部分:概率论常见且易错的考点1.排列组合排列组合是概率论中的重要知识点,也是很多考生不太熟悉的概率论题型。

在排列组合问题中,考生一般都需要利用排列和组合的公式进行计算,以确保答案的准确性。

此外,需要注意的是,在计算排列和组合时,一定要先确定放置顺序或者不考虑顺序的问题,否则会导致答案错误。

2.抽样分布抽样分布是概率论中比较常用的知识点,也是考研数学中的重要考点之一。

数学考研复习资料概率论重点公式整理

数学考研复习资料概率论重点公式整理

数学考研复习资料概率论重点公式整理概率论是数学考研中的重要考点之一,掌握概率论的基本概念和公式对于考生来说至关重要。

在本文中,将对数学考研概率论部分的重点公式进行整理,以便考生能够更好地复习和应对考试。

请注意,以下公式仅供参考,考生在复习过程中应结合教材和习题进行深入理解和练习。

一、基本概念在进一步讨论公式之前,首先了解一些概率论中的基本概念是必要的。

1. 事件与样本空间事件是指随机试验中可以观察到的结果,样本空间是指随机试验中所有可能结果的集合。

2. 概率的定义概率是对一个事件发生的可能性的度量,通常用一个介于0和1之间的实数表示。

3. 事件的互斥与独立互斥事件是指两个事件不能同时发生,独立事件是指两个事件的发生与否互不影响。

二、概率公式了解了基本概念后,我们来看一些重要的概率公式。

1. 加法定理加法定理用于计算两个事件的并的概率。

如果事件A和事件B是两个事件,那么它们的并的概率可以表示为:P(A∪B) = P(A) + P(B) -P(A∩B)2. 乘法定理乘法定理用于计算两个事件的交的概率。

如果事件A和事件B是两个事件,那么它们的交的概率可以表示为:P(A∩B) = P(A) × P(B|A)3. 全概率公式全概率公式用于计算一个事件的概率。

如果事件A可以被划分为有限个互斥事件B₁、B₂、...,那么事件A的概率可以表示为:P(A) =P(A∩B₁) + P(A∩B₂) + ...4. 贝叶斯定理贝叶斯定理用于计算已知某个事件发生的条件下,另一个事件发生的概率。

如果事件A和事件B是两个事件,那么在已知事件B发生的条件下,事件A发生的概率可以表示为:P(A|B) = (P(B|A)×P(A)) / P(B)三、重要概率分布公式除了上述基本的概率公式外,还需要掌握一些重要的概率分布公式,以便解决具体的问题。

1. 二项分布二项分布用于描述重复进行n次伯努利试验,且每次试验的结果只有两种可能的情况下,成功的次数的概率分布。

考研数学概率论重点公式速记

考研数学概率论重点公式速记

考研数学概率论重点公式速记概率论是数学中的一个重要分支,广泛应用于各个领域。

对于考研数学概率论的学习来说,熟悉并掌握相关的重点公式是非常必要的。

本文将为大家提供一些概率论中的重点公式,帮助大家更好地进行复习和备考。

一、基本概念1. 概率的加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)2. 概率的乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A)P(B|A) = P(B)P(A|B),其中P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。

3. 全概率公式:若{B1, B2, ..., Bn}为样本空间的一个划分,即满足Bi与Bj互不相容且它们的并集为样本空间,同时假设P(Bi) > 0,那么对于任意一个事件A,有:P(A) = P(A∩B1) + P(A∩B2) + ... + P(A∩Bn) = P(B1)P(A|B1) +P(B2)P(A|B2) + ... + P(Bn)P(A|Bn)二、常用概率分布1. 二项分布:设试验成功的概率为p,则n次试验中成功次数的概率为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中C(n,k)为组合数,表示从n个元素中取出k个元素的组合数。

2. 泊松分布:设单位时间(或单位面积)内某事件发生的次数的平均值为λ,则单位时间(或单位面积)内某事件发生k次的概率为:P(X=k) = (e^(-λ) * λ^k) / k!其中e为自然对数的底数(约等于2.71828)。

3. 正态分布:对于服从正态分布N(μ,σ^2)的随机变量X,其概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2 / (2σ^2)))三、常用性质1. 期望:对于离散随机变量X,其期望值E(X)为:E(X) = Σ(x * P(X=x))对于连续随机变量X,其期望值E(X)为:E(X) = ∫(x * f(x)) dx,其中f(x)为概率密度函数。

概率论重要公式大全必看

概率论重要公式大全必看

概率论重要公式大全必看概率论是数学的一个分支,研究随机事件的概率性质和随机现象的数学模型。

在概率论中有许多重要的公式,下面是一些概率论中常用的重要公式的介绍。

1.加法法则加法法则是计算两个事件一起发生的概率的公式。

P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法法则乘法法则是计算两个事件同时发生的概率的公式。

P(A∩B)=P(A)×P(B,A)=P(B)×P(A,B)其中P(B,A)表示已知事件A发生下事件B发生的概率。

3.全概率公式全概率公式是计算一个事件的概率的公式,通过将事件分解为若干个互斥事件并计算其概率,然后加权求和得到事件的概率。

P(A)=ΣP(A∩Bi)=ΣP(Bi)×P(A,Bi)其中Bi为一组互斥事件,且它们的并集为样本空间。

4.贝叶斯定理贝叶斯定理是根据条件概率的定义,计算事件的后验概率的公式。

P(A,B)=P(B,A)×P(A)/P(B)其中P(A,B)为已知事件B发生下事件A发生的概率。

5.随机变量与概率分布随机变量是用来描述随机现象结果的变量。

概率分布则是随机变量取不同值的概率的分布情况。

6.期望和方差期望是描述随机变量平均值的概念,可以通过加权平均的方式计算。

E(X)=Σx×P(X=x)方差是描述随机变量离散程度的概念,用来衡量随机变量取值与其期望值之间的偏差。

Var(X) = E((X - E(X))^2) = Σ (x - E(X))^2 × P(X=x)7.二项分布二项分布是描述重复进行n次独立实验中成功次数的概率分布。

P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中C(n,k)表示组合数,p为单次实验的成功概率,n为实验次数,k为成功次数。

8.泊松分布泊松分布是描述事件在一定时间或空间范围内发生的次数的概率分布。

P(X=k)=(λ^k/k!)×e^(-λ)其中λ为单位时间或单位空间范围内事件发生的平均次数,k为事件发生的次数。

江苏省考研数学复习资料概率论与数理统计核心公式速记

江苏省考研数学复习资料概率论与数理统计核心公式速记

江苏省考研数学复习资料概率论与数理统计核心公式速记一、概率论核心公式1. 事件与概率公式:(1) 事件的概率:P(A) = N(A) / N(S),其中,N(A)表示事件A发生的样本点个数,N(S)表示样本空间S中的样本点个数。

(2) 互斥事件的加法公式:P(A ∪ B) = P(A) + P(B),其中,A与B 为互斥事件。

(3) 非互斥事件的加法公式:P(A ∪ B) = P(A) + P(B) - P(A ∩ B),其中,A与B为非互斥事件。

2. 条件概率公式:(1) 事件A在事件B已经发生的条件下发生的概率:P(A|B) = P(A ∩B) / P(B),其中,P(B) ≠ 0。

(2) 事件B在事件A已经发生的条件下发生的概率:P(B|A) = P(A ∩B) / P(A),其中,P(A) ≠ 0。

(3) 乘法公式:P(A ∩ B) = P(A|B) * P(B),其中,P(B) ≠ 0。

(4) 全概率公式:P(A) = ∑[P(Bi) * P(A|Bi)],其中,{Bi}为样本空间S的一个划分。

(5) 贝叶斯公式:P(Bj|A) = [P(A|Bj) * P(Bj)] / ∑[P(A|Bi) * P(Bi)],其中,{Bi}为样本空间S的一个划分。

3. 独立事件的条件:事件A与事件B相互独立的条件为:P(A ∩ B) = P(A) * P(B),或P(A|B) = P(A),P(B|A) = P(B)。

二、数理统计核心公式1. 随机变量的概率分布:(1) 二项分布:P(X = k) = C(n, k) * p^k * (1 - p)^(n-k),其中,n为试验次数,k为事件发生的次数,p为事件发生的概率。

(2) 泊松分布:P(X = k) = (λ^k * e^(-λ)) / k!,其中,λ为单位时间/空间内随机事件的平均发生率,k为事件发生的次数。

(3) 正态分布:f(x) = (1/(σ * sqrt(2π))) * exp(-(x-μ)^2 / (2σ^2)),其中,μ为均值,σ为标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研概率论需要注意的公式
五大公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。

下面进展详细介绍:
一、减法公式,P(A-B)=P(A)-P(AB)。

此公式来自事件关系中的差事件,再结合概率的可列可加性总结出的公式。

二、加法公式,P(A+B)=P(A)+P(B)-P(AB)。

此公式来自于事件关系中的和事件,一样结合概率的可列可加性总结出来。

学生还应把握三个事件相加的加法公式。

以上两个公式,在应用当中,有时要结合文氏图来讲明会更清楚明白,同时这两个公式在考试中,更多的会出此刻填空题当中。

因此记住公式的形式是全然要求。

3、乘法公式,是由条件概率公式变形取得,考试中较多的出此刻计算题中。

在温习进程中,局部同窗分不清楚何时用条件概率来求,何时用积事件概率来求。

例如“第一次抽到红球,第二次抽到黑球〞时,因为第一次抽到红球也是未知事件,因此要考虑它的概率,这时用积事件概率来求;若是“在第一次抽到红球的情形下,第二次抽到黑球的概率〞,这时因为抽到了红球,它已是一个确信的事实,因此这时不用考虑抽红球的概率,直接用条件概率,求第二次取到黑球的概率即可。

4、全概率公式
五、贝叶斯公式
以上两个公式是五大公式极为重要的两个公式。

结合起来学习比拟容易明白得。

第一,这两个公式第一背景是一样的,即,完成一件情形在逻辑或时刻上是需要两个步骤的,通常把第一个步骤称为缘故。

第二,若是是“由因求果〞的问题用全概率公式;是“由果求因〞的问题用贝叶斯公式。

例如;买零件,一个零件是由A、B、C三个厂家生产的,别离次品率是a%,b%,c%,此刻求买到次品的概率时,就要用全概率公式;假设买到次品了,问是A厂生产的概率,这就要用贝叶斯公式了。

如此咱们第一分清楚了何时用这两个公式。

那么,在应用进程中,咱们要注意的问题确实是,如何划分完备事件组。

通常咱们用“因〞来做为完备事件组划分的依据,也确实是看第一时期中,有哪些全然领件,依照他们来划分整个样本空间。

高等数学是每位考生都很畏惧的考试科目,在温习进程中有许多公式和概念命名及其相似或定理条件区分不开,致使最后题目做不出来。

为了帮忙列位考生避免显现如此的错误,中公考研总结整理了易混淆的概念和公式。

一、几个易混概念
持续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数持续,左持续,右持续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。

二、罗尔定理
设函数f(x)在闭区间[a,b]上持续(其中a不等于b),在开区间(a,b)上可导,且
f(a)=f(b),那么至少存在一点ξ∈(a、b),使得 f'(ξ)=0。

罗尔定理是以法国数学家罗尔的名字命名的。

罗尔定理的三个条件的意义:①f(x)在[a,b]上持续说明曲线连同端点在内是无裂缝的曲线;②f(x)在内(a,b)可导说明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)说明曲线的割线(直线AB) 平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,说明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

3、泰勒公式
有的同窗,看到泰勒公式就哆嗦,因为咋一看很长很恐惧,刹时大脑空白,躯体失重的感觉。

其实在弄明白一下几点后,原先的病症就没有了第一:什么情形下要进展泰勒展开;第二:以哪一点为中心进展展开;第三:把谁展开; 第四:展开到几阶?
4、中值定理
应用多次中值定理的专题:大局部的考研题,一样要考察你应用多次中值定理,最重要的确实是要培育自己对这种题目的灵敏度,要专门快反映教师出这题考哪几个中值定理,我的灵敏性是靠自己多练习综合题培育出来的。

我会常常会去温习,那样我对中值定理的题目早已没有那种刚学高数时的可怕之极。

要想对微分中值定理这块的题目有层次的把握,看我那个总结定会事半功倍的。

五、对称性,轮换性,奇偶性
对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每一年必考,要么小题中考,要么大题中要用,这是必需把握的知识,可是往往不是那么容易就靠做3,4个题目就能够了解这知识点的应用到底有多普遍。

咱们做积分题,尤其多重积分和线面积分,死算或许能算出结果,可是若是能用以上性质,那可真是三下五除二弄定,这方面的感觉相信大伙儿有过。

因此把握这局部知识是很重要的。

凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量讲课、答疑、测试、督导、报考指导、方式指导、联系导师、复试等全方位的考研效劳。

凯程考研的宗旨:让学习成为一种适应;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每一个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
效劳:以学员的前途为已任,为学员提供高效、专业的效劳,团队合作,为学员效劳,为学员引路。

如何选择考研辅导班:
在考研预备的进程中,会碰到很多困难,尤其关于跨专业考生的专业课来讲,通过报辅导班来弥补自己温习的缺乏,能够大大提高温习效率,节省温习时刻,大伙儿能够通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生能够针对辅导名师的辅导年限、辅导经历、历年辅导成效、学员评判等因素进展综合评判,询问往届学长然后选择。

判定师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。

还要深切了解教师的学术背景、资料著述成绩、辅导成绩等。

凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大量名师在凯程讲课。

而有的机构只是很一般的教师讲课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必需对该专业深刻明白得,才能深切辅导学员考取该校。

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2021 五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。

在凯程官方网站的荣耀榜,成功学员经历谈视频专门多,都是凯程战绩的最好证明。

关于如此高的成绩,凯程集训营班主任邢教师说,凯程如此优良的成绩,是与咱们凯程严格的治理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本乃至不知名的院校,还有很多是工作了连年才回来考的,大多数是跨专业考研,他们的难度大,竞争猛烈,没有严格的训练和同窗们的刻苦学习,是很难抵达优良的成绩。

最好的方式是直接和凯程教师详细沟通一下就清楚了。

建校历史:机组成立的历史也是一个参考因素,历史越久,积存的人脉资源更多。

例如,凯程教育已经成立10年〔2005年〕,一直以来专注于考研,成功率一直遥遥领先,同窗们有爱好能够联系一下他们在线教师或。

有无实体学校校区:有些机构比拟小,确实是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必需是在教学环境,大学校园如此环境。

凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的表达。

另外,最好还要看一下他们的营业执照。

相关文档
最新文档