矢量场的环量 旋度

合集下载

§14矢量场的环量及旋度.

§14矢量场的环量及旋度.

C l F dl
环量不为零的矢量场叫做旋涡场, 其场源称为旋涡源,矢量场的环量有 检源作用。
Ft
F
Fn
环量的计算
在直角坐标系中,设
F( x,y,z ) = Fx ( x,y,z )ex+ Fy ( x,y,z )ey+ Fz ( x,y,z )ez dl = dx ex+ dy ey+ dz ez
Sen
F dl dC l lim dS S 0 S
上式称为环量密度
l
S
P
面元法向矢量与周界 循行方向的右手关系。
过点P 的有向曲面S 取不同的方向,其环量密度将会不同。
(2)旋度
P 点的旋度定义为该点的最大的环量密度,并令其方向
为 en , 即
F dl en curlF lim l s 0 s max

dl=dxex+dyey
l
y (x,y)
F d l 2 x y dx x y dy
l l
3
o

x
设 则
x = 3cos ,y = 3sin

F d l 23cos 3sin 3sin d 3cos 3sin 3cos d 9sin cos 9sincos d
l 0 2π 2 2 0
1 2 91 sincos d 9 sin 18π 0 2 0



例 5 求矢量场 F=xyz(exey+ez) 在点 M(1,3,2)处的旋度。
解:
ex F
x
ey

矢量场的环量和旋度

矢量场的环量和旋度

)

(c)
l A dl S ( A) dS
【例1-11】求矢量 A yex xey cez (c是常量)沿曲线 (x 2)2 y2 R2 , z 0 的环量。
y
R

O (2,0) l
【解】:曲线l是以(2,0)为圆心,R为
半径的圆,故线元 dl dxex dyey
l 方向的单位矢量
lo
l l
1 3 (ex 2ey 2ez )
在点 M (1, 2,3)处沿 l 方向的环量面密度为:
A lo 5 8 6 19
M
333 3
内容小结
主要概念:
环量 旋度
旋涡源
若环量(旋度)等 于零,该矢量场为 无旋场或保守场
主要定理:
3
3
3 (1,2,3) 3

ex
ey
ez
rot A A


x
y
z
x(z y) y(x z) z(y x)
(z y)ex (z x)ey ( y x)ez
在点M (1, 2,3) 处旋度为
rot A (1,2,3)
5ex
4ey
3ez
在点M (1, 2,3) 处沿方向 l ex 2ey 2ez 的环量面密度。 ①直接应用环量面密度的计算公式; ②作为旋度在该方向的投影。
【解】:
①矢量 l ex 2ey 2ez 的方向余弦为
cos 1 , cos 2 , cos 2
3
3
3
矢量场为 A x(z y)ex y(x z)ey z(y x)ez 由环量面密度公式

13矢量场的旋度

13矢量场的旋度


证明: A dS A dl
S
C
将 S 分成许多面元 S1,S2,Si , 其相应面元的边界为 C1,C2,Ci
对每一个面元 Si,其边界Ci 的环绕方向
均取与大回路 C一致的环绕方向。
则:相邻两面元 Si 、S j的边界 Ci 、C j
在公共边界上的积分等值异号,相互抵消。
1.3 矢量场的旋度
1.3.1、矢量场的环流(环量):
A线
1 、定义:
A
量在矢A量沿A某的一场闭中合,路矢径
的线积分,称为该矢量
dl
环量是一个标量;
沿此闭合路径的环流。
可正、可负。

A dl Acosdl
C
C
2019/12/5
1
2 、有旋场、无旋场(保守场):
在某一矢量 A的场中, 矢量 A 沿任意闭合路径的线
积分,恒等于零,则该矢量场
为无旋场,在曲线C内没有产 生矢量场 A 的旋涡源;反之, 为有旋场,在C内必然有产
生矢量场 A 的旋涡源。

A dl Acosdl
C
C
2019/12/5
A线 A
dl
2
1.3.2、矢量场的旋度:



rotA A



x y z
2019/12/5
Ax Ay Az
6
例点:M求(矢1,量0场,A1 ) ex处x(z的 旋y) 度ey及y(x沿 zl)



ezz(
y


x)
2ex 6ey

3ez
方向的环流密度。

矢量场的旋度

矢量场的旋度

C2
A dl

C
A d l A d S
S
证毕
例1.4 已知A x, y e x x e y x y 2 。现有一个在x y 面内的 闭合路径C,此闭合路径由0,0 和 2, 2 之间的一段抛物
2



线 y 2 x 和两段平行于坐标轴的直线组成,如图所示。 求:(1)矢量场的A旋度; (2)计算环流 C A dl 。积分区域 为如图所示的闭合路径C; (3)验证斯托克斯定理。
任意方向的环流密度 即
2、旋度的定义:
C
A dl rot A dS
3、旋度的物理意义
矢量的旋度为矢量,是空间坐标的函数;
矢量在空间某点处的旋度表征矢量场在该点处的漩涡源密度;
旋度的计算
在直角坐标系下:
Az Ay Ax Az Ay Ax rotA ex ( ) ey ( ) ez ( ) y z z x x y
A dl < A 与 en 有一夹角 ,则 C

讨论:
A en A dl
A
max
dl
C
M
A 与 S不在同一平面上
max
A
en
当 的法向分量 en 垂直),环流密度有最大值,此即被 en 的方向就称为 A 旋度的方 称为 A 的旋度大小; 向。
0 2 0 2
利用y2 x消去一个自变量y, 有dy dx /(2 x ), y 2 dy

C
2 y dy
2
0 2
2 x x x 2 dx

2.4 旋度

2.4 旋度

0 记作: rot A ( ) n n max
旋度是由矢量场 A( M ) 派生出来的一个矢量场, 也称 旋度场.
2014年3月20日星期四
华北科技学院基础部
14
《场论初步》
§2.4
矢量场的环量及旋度
旋度的意义
旋度用于反映矢量场的漩涡源的分布情况
方向:漩涡面方向 大小:漩涡强度
2014年3月20日星期四
华北科技学院基础部
9
《场论初步》
§2.4
矢量场的环量及旋度
A dl l ( ydx xdy)
2 2 2 2
解: 由于在曲线上z=0,所以dz=0.
0 R sind (2 R cos ) 0 (2 R cos )d ( R sin )
环量只能在总量上反映场在某回路上的旋涡特性。
2014年3月20日星期四
华北科技学院基础部
6
《场论初步》
§2.4
矢量场的环量及旋度
流速场
均匀直线流动 非均匀直线流动
水流沿平行于水管 轴线方向流动
流体做涡旋运动
=0,无旋涡运动
2014年3月20日星期四
0,有产生旋涡的源
华北科技学院基础部 7
《场论初步》
2014年3月20日星期四
华北科技学院基础部
4
《场论初步》
§2.4
矢量场的环量及旋度
l A dl l P dx Q dy R dz
环量的性质: 环量是数量.
l
A
S
A
P Γ>0,场有沿着C旋转的量,旋 涡场,有旋涡源正向穿过曲面S. (a) (S的法向与C成右手螺旋关系). Γ<0,场有沿着C反向旋转的量,有旋涡源反向穿过S.

矢量场的环量旋度

矢量场的环量旋度

矢量场的环量__旋度
在矢量分析和流体力学中,矢量场的旋度(或称为旋涡)是一个重要的概念。

旋度描述了一个矢量场在某一点的变化率和方向。

具体来说,它给出了一个矢量场在某一点围绕一个点或一条线的旋转强度和方向。

旋度的数学定义是 curl(F) = ∇× F,其中 F 表示矢量场,∇表示哈密顿算子(一个矢量算子),× 表示矢量的叉乘。

这个定义表明,旋度是一个矢量,其大小等于原矢量场在三个方向上的变化率的最大差值,其方向垂直于原矢量场所在的平面。

在具体应用中,旋度有很多重要的用途。

例如,在电磁学中,根据安培定律和法拉第电磁感应定律,磁场的变化会产生电场,这个电场的大小和方向与磁场的变化率和方向有关。

这表明旋度在电磁场的变化和传播中起着重要作用。

在流体力学中,旋度描述了流体速度场的旋转情况。

如果一个流体速度场的旋度很大,那么这个流体的旋转速度就很大。

这种旋转流体在自然界和工程中有很多重要应用,例如龙卷风、旋涡星云、水涡等。

此外,在向量场中,如果一个向量场的旋度为零,那么这个向量场就是无旋的。

无旋向量场在很多实际应用中具有重要价值。

例如,无旋的电流场不会产生磁场,因此不会受到磁场的干扰。

因此,在电力工程中,无旋电流场的设计和分析是非常重要的。

总之,矢量场的旋度是一个描述矢量场在某一点的变化率和方向的重要概念。

它在矢量分析、流体力学、电磁学、工程应用等领域中有广泛的应用。

通过对旋度的计算和分析,我们可以更好地理解和描述自然现象以及设计各种实际应用。

1.7+矢量场旋度的定义与计算

1.7+矢量场旋度的定义与计算
1.7 矢量场的旋度
1. 矢量场的环量 2. 旋度的定义 3. 旋度的计算 4. 斯托科斯定理
1. 环量:
在矢量场中,任意取一闭合曲线 , 将矢量沿该曲线积分称之为环量。
C l F dl
可见:环量的大小与环面的方向有关。
2. 旋度的定义:
一矢量其大小等于某点最大环量密度,方向为该环的法线方 向,那么该矢量称为该点矢量场的旋度。
lbc F dlbc Fyy
lcd
F
dlcd
(Fz
Fz y
y)z
lda
F
dlda
(Fy
Fy z
z)y
za
d
bc
o
y
x
F dl (Fz Fy )yz
l1
y z
在 x 方向的环量密度
F dl
( F )x
lim
S 0
l1
Sx
F dl (Fz Fy )yz
l1
y z
Sx yz
表达式:
rotF
lim
S 0
1 S
[aˆn
l F dl ]max
旋度可用符号表示: rotF F
3. 旋度的计算:
以直角坐标系为例,一旋度矢量可表示为:
F ( F)x aˆx ( F)y aˆy ( F)z aˆz
其中:( F)x为 x 方向的环量密度。
za
d
F dl
( F )x
可得:
( F)x
Fz y
Fy z
同理:
( F)y
Fx z
Fz x
( F)z
Fy x
Fx y
旋度公式:
F
Fz y
Fy z

2.4矢量场的环量及旋度分析

2.4矢量场的环量及旋度分析

2. 矢量场的旋度
旋度是一个矢量,
模值等于环量密度的最大值; 方向为最大环量密度的方向。 用 rot A 表示,即:
rot A n lim

c
A dl S
max
S 0
ˆ 表示矢量场旋度的方向; 式中:n
3. 旋度的物理意义
1)矢量的旋度为矢量,是空间坐标的函数; 旋度完整的反映了矢量场的旋涡在各点上的分布情况。 而某个方向的环量密度是旋度在该方向上的投影。 2)矢量在空间某点处的旋度表征矢量场在该点处的漩涡源密度; 旋度可以反映引起矢量场旋涡的源(旋度源)在空间的 分布情况。
2) 在圆柱坐标系下:
1 (er e ez ) r r z 1 (rFr ) 1 F Fz F (r ) r r r z
3) 在球面坐标系下: 1 1 (er e e ( ) ) r r r sin
du el dl
max
式中:el 为垂直于等值面(线)的方向。
2、梯度的物理意义 1)、标量场的梯度为一矢量,且是坐标位置的函数;
2)、标量场的梯度表征标量场变化规律:其方向为标量场 变化最快的方向,其幅度表示标量场的最大变化率。
3、梯度的运算
2 2 2 2 2 2 Az Az Ay Ay Ax Ax xy yx zx xz yz zy
=0
小结
1)矢量场的环量 2)环量密度
3)旋度的定义 4)旋度的计算 5)斯托克斯定理
思考题
1、矢量场的环量、环量密度及旋度各表示什么意义? 2、环量与环量密度以及环量密度与旋度之间各有什么关系? 3、斯托克斯定理中如果闭合线积分给定,那么积分面是唯一的吗?为什么? 4、矢量场旋度的方向和使场涡旋的方向有什么关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在矢量场中,一个给定点 M处沿不同方向n,其环量面密度
的值是不同的。
二、矢量场旋度
1、旋度的定义
方向:环量面密度取最大值的面元正法线方向。
大小:等于该环量面密度最大值。即
rotA
nlim
l
A dl
S0 S
max
2、旋度在坐标系下的表示 ro A t A
在直角坐标系中的表示
ex ey ez A
x y z Ax Ay Az
在圆柱坐标系中的表示
e e ez
A
1
z
A A Az
在球坐标系中的表示
er re rsine
A
r2
1
sin
r
Ar rA rsinA
3、旋度的性质
矢量场的旋度是一个矢量。
矢量场在某点处的旋度表示该点的旋涡源密度。
矢量场在某点处沿 n方向的环量面密度,等于旋度在该
方向上的投影。
4、旋度运算的基本公式
C0 (C 为常 ) 矢量
(cA )c A
( A B ) A B
( u A ) u A u A
( A B ) B A A B
三、斯托克斯定理
斯托克斯定理是矢量场的曲面积分与曲线积分之间的一个转
【例题1】求矢量场A=x(z-y)ex+y(x-z)ey+z(y-x)ez在点M(1,0, 1)处的旋度以及沿n=2ex+6ey+3ez方向的环量面密度。
【解】矢量场A的旋度
ex
roAt A
x
ey
ez
y
z
x(zy) y(xz) z(yx)
( z y ) e x ( x z ) e y ( y x ) e z 在点M(1,0,1 )处 的A 旋度M e x2 e ye z
求自由空间任意点(r≠0)电场强度的旋度。
【解】
ex
ey
ez
E
q
4 x y z
xyz r3 r3 r3
4q0 yrz3zry3e x
zrx3xrz3ey
xry3yrx3ez
0
§1.3 矢量场的环量 旋度
一、矢量场的环量与环量面密度
1、矢量场的环量
矢量场 A(r) 沿场中的一条闭合路径 l的曲线积分称为矢量场
A(r) 沿闭合路径 l的环量。
SnS
Adl
l
P A
C
环流的计算
物理意义:若某一矢量场的环量不等于零,则场中有产生该矢
量场的旋涡源。 2、环量面密度
Adl
rontAlSi m0பைடு நூலகம்l S
n方向的单位矢量
n 2 2 1 6 2 3 2(2 e x 6 e y 3 e z) 7 2 e x 7 6 e y 7 3 e z
在点M(1,0,1)处沿n方向的环量面密度
A Mn7 27 627 31 77
【例题2】在坐标原点处放置一点电荷q,在自由空间产生的
电场强度为
E 4 q r3 r 4 q r3 (xe xy e yze z)
换关系。
AdSAdl
S
l
四、旋度与散度的区别
矢量场的旋度是矢量函数,矢量场的散度是标量函数。 旋度描述场量与旋涡源的关系,散度描述场量与通量源的关系。
如果矢量场的旋度为零,则称为无旋场(或保守场);如果 矢量场散度为零,则称为无源场。
旋度描述场分量在与其垂直的方向上的变化规律;散度描 述场分量沿着各自方向上的变化规律。
相关文档
最新文档