高三物理一轮复习教案圆周运动

合集下载

2025年高三一轮复习物理课件第四章抛体运动圆周运动第3讲圆周运动

2025年高三一轮复习物理课件第四章抛体运动圆周运动第3讲圆周运动

=1 s,对应位移
=3 m,则在 AB 段匀速运动的最长距离 l=8 m-3 m=5 m,匀速运动的时间

5
9 7π
m
4
4
t2= = s,则从 A 到 D 最短时间 t=t1+t2+t3= +
2
s,B 项正确。
第3讲
圆周运动
考向 2 圆周运动与平抛运动结合
(2022 年河北卷)(多选)如图,广场水平地面上同种盆栽紧密排列在以 O 为圆心、
弯道时的向心加速度大小之比,并通过计算判断哪位运动员先出弯道。
答案
(1)2.7 m/s
2
225
(2)242
甲先出弯道
第3讲
解析
圆周运动
11
(1)根据速度位移公式有 v2=2ax,代入数据可得 a=2.7 m/s2。
(2)根据向心加速度的表达式
甲 甲 2 乙 225
a= ,可得甲、乙的向心加速度之比 = 2 · =242
Fn 的作用:改变速度 方向 ,产生 向心 加速度。
25
第3讲
圆周运动
2.运动轨迹既不是直线也不是圆周的曲线运动,可以称为一般的曲线运动。尽管
这时曲线各个位置的弯曲程度不一样,但在研究时,可以把这条
曲线分割为许多很短的小段,质点在每小段的运动都可以看作
圆周 运动的一部分(如图)。这样,在分析质点经过曲线上某
附近时运动的快慢,可以取一段很短的时间 Δt,物体在这段时间内由 A 运动到 B,通过的
弧长为 Δs。弧长 Δs 与时间 Δt 之比反映了物体在 A 点附近运动的快慢,如果 Δt 非常非
常小,该比值就可以表示物体在 A 点时运动的快慢,通常把它称为线速度 ,用符号 v 表示,

高三物理第一轮复习课件:第四章第三讲圆周运动

高三物理第一轮复习课件:第四章第三讲圆周运动
小球
过最高点 的临界条

由 mg=mvr2得 v 临= gr
由小球恰能做圆周 运动得 v 临=0
(1)过最高点时,v≥ (1)当 v=0 时,FN=mg,FN 为支
gr,FN+mg=mvr2,持(2)力当,0<沿v半< 径gr背时离,圆-心FN+mg=
讨论
绳、圆轨道对球产生 弹力 FN
mvr2,FN 背离圆心,随 v 的增大
1.在竖直平面内做圆周运动的物体,按运动到轨道 最高点时的受力情况可分为两类:一是无支撑(如球与绳 连接、沿内轨道运动的过山车等),称为“绳(环)约束模 型”;二是有支撑(如球与杆连接、在弯管内的运动等), 称为“杆(管)约束模型”.
2.绳、杆模型涉及的临界问题.
项目
绳模型
杆模型
常见类型 均是没有支撑的 均是有支撑的小球
(2)由于秋千做变速圆周运动,合外力既有指向圆心 的分力,又有沿切向的分力,所以合力不指向悬挂点.
[易误辨析] 判断下列说法的正误(正确的打“√”,错误的打 “×”). (1) 做 匀 速 圆 周 运 动 物 体 的 合 外 力 是 保 持 不 变 的.( ) (2)做圆周运动物体的合外力不一定指向圆心.( ) (3)随圆盘一起匀速转动的物体受重力、支持力和向 心力的作用.( ) 答案:(1)× (2)√ (3)×
A.若盒子在最高点时,盒子与小球之间恰好无作用
力,则该盒子做匀速圆周运动的周期为 2π
R g
B.若盒子以周期 π Rg做匀速圆周运动,则当盒子 运动到图示球心与 O 点位于同一水平面位置时,小球对
盒子左侧面的力为 4mg C.若盒子以角速度 2 Rg做匀速圆周运动,则当盒
子运动到最高点时,小球对盒子下面的力为 3mg

第4章 第3讲 圆周运动—2021届高中物理一轮复习讲义(机构)

第4章 第3讲  圆周运动—2021届高中物理一轮复习讲义(机构)

第四章曲线运动第3讲圆周运动【教学目标】1、理解线速度、角速度和周期的概念;2、理解向心加速度和向心力以及和各物理量间的关系;3、会用牛顿第二定律求解圆周运动问题,并能灵活解决圆周运动中的有关临界问题4、知道离心现象及发生离心现象的条件。

【重、难点】1、会用牛顿第二定律求解圆周运动问题;2、临界问题【知识梳理】1(1)匀速圆周运动是匀变速曲线运动.()(2)物体做匀速圆周运动时,其角速度是不变的.()(3)物体做匀速圆周运动时,其合外力是不变的.()(4)匀速圆周运动的向心加速度与半径成反比.()(5)做匀速圆周运动的物体角速度与转速成正比.( )(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度.()(7)匀速圆周运动的向心力是产生向心加速度的原因.()(8)做圆周运动的物体所受到的合外力不一定等于向心力.()(9)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力时,除了分析其受到的其他力,还必须指出它受到向心力的作用.()(10)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出.()(11)做圆周运动的物体所受合外力突然消失,物体将沿圆周的半径方向飞出.()(12)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.()(13)在绝对光滑的水平路面上汽车可以转弯.()(14)火车转弯速率小于规定的数值时,内轨受到的压力会增大.()(15)飞机在空中沿半径为R的水平圆周盘旋时,飞机机翼一定处于倾斜状态.()典例精析考点一描述圆周运动的物理量1.圆周运动各物理量间的关系及其理解2.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即23v A =v B 。

(2)摩擦传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即 v A =v B 。

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

g lcos
θ=
gh,所以小球 A、B 的角速度相等,
线速度大小不相等,故 A 正确,B 错误;
对题图乙中 C、D 分析,设绳与竖直方向的夹角为 θ,小球的质量为 m,绳上拉力为 FT,则有 mgtan θ=man,FTcos θ=mg,得 an=gtan θ,FT =cmosgθ,所以小球 C、D 所需的向心加速度大小相等,小球 C、D 受 到绳的拉力大小也相等,故 C、D 正确.
当转速较大,FN指向转轴时, 则FTcos θ+FN′=mω′2r 即FN′=mω′2r-FTcos θ 因ω′>ω,根据牛顿第三定律可知,小球对杆的压力 不一定变大,C错误; 根据F合=mω2r可知,因角速度变大,则小球所受合外力变大,D正确.
例5 (2022·全国甲卷·14)北京2022年冬奥会首钢滑雪大跳台局部示意图
例7 如图所示,质量相等的甲、乙两个小球,在光滑玻璃漏斗内壁做 水平面内的匀速圆周运动,甲在乙的上方.则 A.球甲的角速度一定大于球乙的角速度
√B.球甲的线速度一定大于球乙的线速度
C.球甲的运动周期一定小于球乙的运动周期 D.甲对内壁的压力一定大于乙对内壁的压力
对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,
√B.弹簧弹力的大小一定不变
C.小球对杆压力的大小一定变大
√D.小球所受合外力的大小一定变大
对小球受力分析,设弹簧弹力为FT,弹簧与水平方向 的夹角为θ, 则对小球竖直方向有 FTsin θ=mg,而 FT=kcMosPθ-l0 可知θ为定值,FT不变,则当转速增大后,小球的高度 不变,弹簧的弹力不变,A错误,B正确; 水平方向当转速较小,杆对小球的弹力FN背离转轴时,则FTcos θ- FN=mω2r 即FN=FTcos θ-mω2r

2020高三物理一轮复习教学案(27)圆周运动中的临界问题

2020高三物理一轮复习教学案(27)圆周运动中的临界问题

2020高三物理一轮复习教学案(27)圆周运动中的临界问题【学习目标】1.熟练处理水平面内的临界咨询题2.把握竖直面内的临界咨询题【自主学习】一.水平面内的圆周运动例1:如图8—1所示水平转盘上放有质量为m的物快,当物块到转轴的距离为r时,假设物块始终相对转盘静止,物块和转盘间最大静摩擦力是正压力的μ倍,求转盘转动的最大角速度是多大?注:分析物体恰能做圆周运动的受力特点是关键图8—1 二.竖直平面内圆周运动中的临界咨询题图8—2甲图8—3甲图8—3乙1.如图8—2甲、乙所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情形○1临界条件○2能过最高点的条件,现在绳或轨道对球分不产生______________○3不能过最高点的条件2.如图8—3甲、乙所示,为有支撑物的小球在竖直平面做圆周运动过最高点的情形竖直平面内的圆周运动,往往是典型的变速圆周运动。

关于物体在竖直平面内的变速圆周运动咨询题,中学时期只分析通过最高点和最低点的情形,同时经常显现临界状态,下面对这类咨询题进行简要分析。

○1能过最高点的条件,现在杆对球的作用力○2当0<V<gr时,杆对小球,其大小当v=gr时,杆对小球当v>gr时,杆对小球的力为其大小为____________讨论:绳与杆对小球的作用力有什么不同?例2.长度为L=0.50m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图8—4所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,〔g=10m/s2〕那么现在细杆OA受的〔〕A. 6.0N的拉力B. 6.0N的压力C.24N的压力D. 24N的拉力【针对训练】图8—4 1.汽车与路面的动摩擦因数为μ,公路某转弯处半径为R〔设最大静摩擦力等于滑动摩擦力〕咨询:假设路面水平,汽车转弯不发生侧滑,汽车最大速度应为多少?2.长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v,使小球在竖直平面内做圆周运动,同时刚好过最高点,那么以下讲法中正确的选项是:〔〕A.小球过最高点时速度为零B.小球开始运动时绳对小球的拉力为mLv2C.小球过最高点时绳对小的拉力mgD.小球过最高点时速度大小为gL3.如图8—5所示,细杆的一端与小球相连,可绕过O点的水平轴自由转动,先给小球一初速度,使它做圆周运动。

高考物理一轮复习 第四章 曲线运动 第20讲 常见的圆周运动动力学模型教学案

高考物理一轮复习 第四章 曲线运动 第20讲 常见的圆周运动动力学模型教学案

第20讲常见的圆周运动动力学模型能力命题点一水平面内的圆周运动1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

2.几种典型的运动模型运动模型向心力的来源图示飞机水平转弯火车转弯(以规定速度行驶)圆锥摆飞车走壁的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T(sin37°=0.6,cos37°=0.8, g取10 m/s2,结果可用根式表示)。

求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析 (1)小球刚好离开锥面时,小球受到重力和细线拉力,如图所示。

小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得mg tan θ=mω20l sin θ解得ω0= gl cos θ=522 rad/s 。

(2)当细线与竖直方向成60°角时,小球已离开锥面,由牛顿第二定律及向心力公式得mg tan60°=mω′2l sin60°解得ω′= g l cos60°=2 5 rad/s 。

答案 (1)522rad/s (2)2 5 rad/s 求解圆周运动问题的“一、二、三、四”1.(2019·北京期末)(多选)如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法不正确的是( )A .球A 的线速度必定大于球B 的线速度B .球A 的角速度必定等于球B 的角速度C .球A 的运动周期必定小于球B 的运动周期D .球A 对筒壁的压力必定大于球B 对筒壁的压力答案 BCD解析 以A 为例对小球进行受力分析,可得支持力和重力的合力充当向心力,设圆锥筒的锥角为θ,则F N =mg sin θ,F n =mg tan θ=m v 2r =mω2r =m 4π2T 2r ,A 、B 质量相等,A 做圆周运动的半径大于B 做圆周运动的半径,所以球A 的线速度必定大于球B 的线速度,球A 的角速度必定小于球B 的角速度,球A 的运动周期必定大于球B 的运动周期,球A 对筒壁的压力必定等于球B 对筒壁的压力,A 正确,B 、C 、D 错误。

物理步步高一轮复习第四章 第3课时圆周运动的规律

物理步步高一轮复习第四章 第3课时圆周运动的规律

本 课 栏 目 开 关
角速度 心连线扫过角 度的 快慢 周期 描述物体做圆
Δθ 弧度数与所用时间的比值,ω= Δt
周期 T:物体沿圆周运动一周所用 的时间. 转速 n:物体单位时间内转过的圈数 an=
周期单位:s 转速单位:r/s 或 r/min 方向:总是沿半径指向圆 心,与线速度方向垂直. 单位:m/s2
课堂探究·突破考点
典例剖析 例2 有一种叫“飞椅”的游乐项目,示 意图如图6所示,长为L的钢绳一端系着 座椅,另一端固定在半径为r的水平转盘 边缘.转盘可绕穿过其中心的竖直轴转 动.当转盘以角速度ω匀速转动时,钢绳
图6
第3课时
本 课 栏 目 开 关
与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计 钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.
基础再现·深度思考
第3课时
[知识梳理] 描述圆周运动的物理量有线速度、角速度、周期、频率、转速、向心加 速度、向心力等,现比较如下表.
物理量 线速度 物理意义 定义和公式
Δl Δt
方向和单位 方向:沿圆弧切线方向. 单位:m/s 单位:rad/s
描述物体做圆 物体沿圆周通过的弧长与所用时 周运动的 快慢 间的比值,v= 描述物体与圆 运动物体与圆心连线扫过的角的
本 课 栏 目 开 关
图3
向心力. ④当F>mrω2时,物体逐渐向 圆心 靠近,做 向心 运动.
基础再现·深度思考
第3课时
思考:1.物体做离心运动是因为受到离心力的缘故吗? 2.物体做离心运动时是沿半径方向远离圆心吗? 答案 1.物体做离心运动不是物体受到所谓离心力作
本 课 栏 目 开 关
用,而是物体惯性的表现. 2.物体做离心运动时,并非沿半径方向飞出,而是运动 半径越来越大,沿切线方向飞出.

2024届高考一轮复习物理教案(新教材粤教版):圆周运动的临界问题

2024届高考一轮复习物理教案(新教材粤教版):圆周运动的临界问题

专题强化六圆周运动的临界问题目标要求 1.掌握水平面内、竖直面内和斜面上的圆周运动的动力学问题的分析方法.2.会分析水平面内、竖直面内和斜面上圆周运动的临界问题.题型一水平面内圆周运动的临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态.1.常见的临界情况(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.2.分析方法分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.确定了物体运动的临界状态和临界条件后,选择研究对象进行受力分析,利用牛顿第二定律列方程求解.例1(2018·浙江11月选考·9)如图所示,一质量为2.0×103kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104 N,当汽车经过半径为80 m的弯道时,下列判断正确的是()A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力B.汽车转弯的速度为20 m/s时所需的向心力为1.4×104 NC.汽车转弯的速度为20 m/s时汽车会发生侧滑D.汽车能安全转弯的向心加速度不超过7.0 m/s2答案 D解析汽车转弯时所受的力有重力、弹力、摩擦力,向心力是由摩擦力提供的,A错误;汽,得所需的向心力为1.0×104 N,没有超过最大静摩车转弯的速度为20 m/s时,根据F=m v2R=擦力,所以汽车不会发生侧滑,B、C错误;汽车安全转弯时的最大向心加速度为a m=fm7.0 m/s 2,D 正确.例2 (多选)(2023·广东省广州五中月考)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l .木块与圆盘间的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增大时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a 有f a =mωa 2l ,当f a =kmg 时,kmg =mωa 2l ,ωa =kgl;对木块b 有f b =mωb 2·2l ,当f b =kmg 时,kmg =mωb 2·2l ,ωb =kg2l,则ω=kg2l是b 开始滑动的临界角速度,所以b 先达到最大静摩擦力,即b 比a 先开始滑动,选项A 、C 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,则f b =mω2·2l ,f a <f b ,选项B 错误;ω=2kg3l<ωa =kg l ,a 没有滑动,则f a ′=mω2l =23kmg ,选项D 错误. 例3 细绳一端系住一个质量为m 的小球(可视为质点),另一端固定在光滑水平桌面上方h 高度处,绳长l 大于h ,使小球在桌面上做如图所示的匀速圆周运动,重力加速度为g .若要小球不离开桌面,其转速不得超过( )A.12π g l B .2πgh C.12πh gD.12πg h答案 D解析对小球受力分析,小球受三个力的作用,重力mg、水平桌面支持力F N、绳子拉力F.小球所受合力提供向心力,设绳子与竖直方向夹角为θ,由几何关系可知R=h tan θ,受力分析可知F cos θ+F N=mg,F sin θ=m v2R=mω2R=4mπ2n2R=4mπ2n2h tan θ;当球即将离开水平桌面时,F N=0,转速n有最大值,此时n m=12πgh,故选D.例4(2023·广东深圳市调研)如图所示,用两根长l1、l2的细线拴一小球a,细线另一端分别系在一竖直杆上O1、O2处,当竖直杆以某一范围角速度(ω1≤ω≤ω2)转动时,小球a保持在图示虚线的轨迹上做圆周运动,此时两根细线均被拉直,圆周半径为r,已知l1∶l2∶r=20∶15∶12,则ω1∶ω2为()A.3∶4 B.3∶5C.4∶5 D.1∶2答案 A解析设绳l1与竖直杆的夹角为θ1,绳l2与竖直杆的夹角为θ2,将绳子拉力沿竖直方向和水平方向分解,竖直方向的分力大小等于重力,水平方向分力提供向心力,则有F向1=mg tan θ1=mω12r,F向2=mg tan θ2=mω22r,由几何关系可得r=l1sin θ1=l2sin θ2,又l1∶l2∶r=20∶15∶12,联立解得ω1∶ω2=3∶4,B、C、D错误,A正确.题型二竖直面内圆周运动的临界问题1.两类模型对比轻绳模型(最高点无支撑) 轻杆模型(最高点有支撑)实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力示意图F 弹向下或等于零F 弹向下、等于零或向上力学方程mg +F 弹=m v 2Rmg ±F 弹=m v 2R临界特征F 弹=0mg =m v min 2R即v min =gRv =0 即F 向=0 F 弹=mg讨论分析(1)最高点,若v ≥gR ,F 弹+mg =m v 2R,绳或轨道对球产生弹力F 弹(2)若v <gR ,则不能到达最高点,即到达最高点前小球已经脱离了圆轨道(1)当v =0时,F 弹=mg ,F 弹背离圆心 (2)当0<v <gR 时,mg -F 弹=m v 2R ,F 弹背离圆心并随v 的增大而减小 (3)当v =gR 时,F 弹=0(4)当v >gR 时,mg +F 弹=m v 2R ,F 弹指向圆心并随v 的增大而增大2.解题技巧(1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律方程; (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系;(3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛顿第三定律求出压力.例5 (2023·陕西延安市黄陵中学)如图所示,一质量为m =0.5 kg 的小球(可视为质点),用长为0.4 m 的轻绳拴着在竖直平面内做圆周运动,g =10 m/s 2,下列说法不正确的是( )A .小球要做完整的圆周运动,在最高点的速度至少为2 m/sB .当小球在最高点的速度为4 m/s 时,轻绳拉力为15 NC .若轻绳能承受的最大张力为45 N ,小球的最大速度不能超过4 2 m/sD .若轻绳能承受的最大张力为45 N ,小球的最大速度不能超过4 m/s 答案 D解析 设小球通过最高点时的最小速度为v 0,则根据牛顿第二定律有mg =m v 02R ,解得v 0=2 m/s ,故A 正确;当小球在最高点的速度为v 1=4 m/s 时,设轻绳拉力大小为F T ,根据牛顿第二定律有F T +mg =m v 12R ,解得F T =15 N ,故B 正确;小球在轨迹最低点处速度最大,此时轻绳的拉力最大,根据牛顿第二定律有F Tm -mg =m v m 2R ,解得v m =4 2 m/s ,故C 正确,D 错误.例6 (2023·山东枣庄市八中月考)如图,轻杆长2l ,中点装在水平轴O 上,两端分别固定着小球A 和B (均可视为质点),A 球质量为m ,B 球质量为2m ,重力加速度为g ,两者一起在竖直平面内绕O 轴做圆周运动.(1)若A 球在最高点时,杆的A 端恰好不受力,求此时B 球的速度大小;(2)若B 球到最高点时的速度等于第(1)问中的速度,求此时O 轴的受力大小和方向; (3)在杆的转速逐渐变化的过程中,能否出现O 轴不受力的情况?若不能,请说明理由;若能,求出此时A 、B 球的速度大小. 答案 (1)gl (2)2mg 方向竖直向下(3)能;当A 、B 球的速度大小为3gl 时,O 轴不受力解析 (1)A 在最高点时,对A 根据牛顿第二定律得mg =m v A 2l ,解得v A =gl ,因为A 、B 两球的角速度相等,半径相等,则v B =v A =gl ;(2)B 在最高点时,对B 根据牛顿第二定律得2mg +F T OB ′=2m v B 2l代入(1)中的v B ,可得F T OB ′=0 对A 有F T OA ′-mg =m v A 2l可得F T OA ′=2mg根据牛顿第三定律,O 轴所受的力大小为2mg ,方向竖直向下;(3)要使O 轴不受力,根据B 的质量大于A 的质量,设A 、B 的速度为v ,可判断B 球应在最高点对B有F T OB″+2mg=2m v2l对A有F T OA″-mg=m v2lO轴不受力时有F T OA″=F T OB″联立可得v=3gl所以当A、B球的速度大小为3gl时,O轴不受力.题型三斜面上圆周运动的临界问题物体在斜面上做圆周运动时,设斜面的倾角为θ,重力垂直斜面的分力与物体受到的支持力大小相等,解决此类问题时,可以按以下操作,把问题简化.物体在转动过程中,转动越快,最容易滑动的位置是最低点,恰好滑动时:μmg cos θ-mg sin θ=mω2R.例7(多选)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5 m处有一小物体(可视为质点)与圆盘始终保持相对静止,设最大静摩擦力等于滑动摩擦力,盘面与水平面的夹角为30°,g取10 m/s2,则以下说法中正确的是()A.小物体随圆盘以不同的角速度ω做匀速圆周运动时,ω越大时,小物体在最高点处受到的摩擦力一定越大B.小物体受到的摩擦力可能背离圆心C.若小物体与盘面间的动摩擦因数为32,则ω的最大值是1.0 rad/sD.若小物体与盘面间的动摩擦因数为32,则ω的最大值是 3 rad/s答案BC解析当物体在最高点时,也可能受到重力、支持力与摩擦力三个力的作用,摩擦力的方向可能沿斜面向上(即背离圆心),也可能沿斜面向下(即指向圆心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受到的摩擦力越小,故A 错误,B 正确;当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向圆心的摩擦力,由沿斜面的合力提供向心力,支持力 F N =mg cos 30°,摩擦力f =μF N =μmg cos 30°,又μmg cos 30°-mg sin 30°=mω2R ,解得ω=1.0 rad/s ,故C 正确,D 错误.课时精练1.一汽车通过拱形桥顶时速度为10 m/s ,车对桥顶的压力为车重的34,如果要使汽车在该桥顶对桥面恰好没有压力,车速为( ) A .15 m/s B .20 m/s C .25 m/s D .30 m/s答案 B解析 当F N ′=F N =34G 时,有G -F N ′=m v 2r ,所以14G =m v 2r ;当F N =0时,G =m v ′2r ,所以v ′=2v =20 m/s ,选项B 正确.2.(多选)(2023·广东广州市模拟)一质量为1.0×103 kg 的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为车重的0.6倍,g =10 m/s 2,当汽车经过弯道时,下列判断正确的是( )A .汽车转弯时所受的力有重力、弹力、摩擦力B .汽车转弯时所受到的径向静摩擦力均为6×103 NC .设计汽车转弯不发生侧滑的最大速率为20 m/s ,则弯道半径应不少于50 mD .汽车能安全转弯的向心加速度不超过6.0 m/s 2 答案 AD解析 汽车转弯时受到重力、地面的支持力以及地面的摩擦力,其中摩擦力充当向心力,A 正确;汽车转弯时所需的向心力可以小于6×103 N ,不一定取最大值,B 错误;当最大静摩擦力充当向心力时,速度为临界速度,大于这个速度则发生侧滑,根据牛顿第二定律可得f m =m v 2r ,解得r =2003 m>50 m ,C 错误;汽车能安全转弯的最大向心加速度a =0.6g ,得a =6.0 m/s 2,即汽车能安全转弯的向心加速度不超过6.0 m/s 2,D 正确.3.(2023·广东中山市模拟)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l .当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳张力可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω超过某一特定值时,b 绳将出现弹力D .若b 绳突然被剪断,则a 绳的弹力一定发生变化 答案 C解析 小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,A 错误;根据竖直方向上受力平衡得F a sin θ=mg ,解得F a =mg sin θ,可知a 绳的拉力始终不变,B 错误;当b 绳拉力为零时,有mgtan θ=mlω2,解得ω=gl tan θ,可知当角速度大于gl tan θ时,b 绳出现弹力,C 正确;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,D 错误. 4.(多选)(2023·湖北省华大新高考联盟名校联考)如图所示,在竖直平面内有一半径为R 的光滑固定细管(忽略管的内径),半径OB 水平、OA 竖直,一个直径略小于管内径的小球(可视为质点)由B 点以某一初速度v 0进入细管,之后从管内的A 点以大小为v A 的水平速度飞出.忽略空气阻力,重力加速度为g ,下列说法正确的是( )A .为使小球能从A 点飞出,小球在B 点的初速度必须满足v 0>3gRB .为使小球能从A 点飞出,小球在B 点的初速度必须满足v 0>2gRC .为使小球从A 点水平飞出后再返回B 点,小球在B 点的初速度应为v 0=5gR2D .小球从A 点飞出的水平初速度必须满足v A >gR ,因而不可能使小球从A 点水平飞出后再返回B 点 答案 BC解析 小球能从A 点飞出,则在A 点的最小速度大于零,则由机械能守恒定律有12m v 02>mgR ,则小球在B 点的初速度必须满足v 0>2gR ,选项A 错误,B 正确;为使小球从A 点水平飞出后再返回B 点,则R =v A t ,R =12gt 2,联立解得v A =gR 2,12m v 02=mgR +12m v A 2,小球在B 点的初速度应为v 0=5gR2,选项C 正确;要使小球从A 点飞出,则小球在A 点的速度大于零即可,由选项C 的分析可知,只要小球在A 点的速度为gR2,小球就能从A 点水平飞出后再返回B 点,选项D 错误.5.如图所示,质量为1.6 kg 、半径为0.5 m 的光滑细圆管用轻杆固定在竖直平面内,小球A 和B (均可视为质点)的直径略小于细圆管的内径(内径远小于细圆管半径).它们的质量分别为m A =1 kg 、m B =2 kg.某时刻,小球A 、B 分别位于圆管最低点和最高点,且A 的速度大小为v A =3 m/s ,此时杆对圆管的弹力为零.则B 球的速度大小v B 为(取g =10 m/s 2)( )A .2 m/sB .4 m/sC .6 m/sD .8 m/s答案 B解析 对A 球,合外力提供向心力,设管对A 的支持力为F A ,由牛顿第二定律有F A -m A g =m A v A 2R ,代入数据解得F A =28 N ,由牛顿第三定律可得,A 球对管的力竖直向下为28 N ,设B 球对管的力为F B ′,由管的受力平衡可得F B ′+28 N +m 管g =0,解得F B ′=-44 N ,负号表示和重力方向相反,由牛顿第三定律可得,管对B 球的力F B 为44 N ,方向竖直向下,对B球由牛顿第二定律有F B+m B g=m B v B2R,解得v B=4 m/s,故选B.6.(2023·湖南岳阳市第十四中学检测)如图所示,叠放在水平转台上的物体A、B及物体C能随转台一起以角速度ω匀速转动,A、B、C的质量分别为3m、2m、m,A与B、B和C与转台间的动摩擦因数都为μ,A和B、C离转台中心的距离分别为r和1.5r.最大静摩擦力等于滑动摩擦力,物体A、B、C均可视为质点,重力加速度为g,下列说法正确的是()A.B对A的摩擦力一定为3μmgB.B对A的摩擦力一定为3mω2rC.转台的角速度需要满足ω≤μg rD.若转台的角速度逐渐增大,最先滑动的是A物体答案 B解析由于物体A、B及物体C能随转台一起匀速转动,则三个物体受到的均为静摩擦力,由静摩擦力提供向心力,则B对A的摩擦力一定为f A=3mω2r,又有0<f A≤f max=3μmg,由于角速度大小不确定,B对A的摩擦力不一定达到最大静摩擦力3μmg,A错误,B正确;若物体A达到最大静摩擦力,则3μmg=3mω12r,解得ω1=μgr,若转台对物体B达到最大静摩擦力,对A、B整体有5μmg=5mω22r,解得ω2=μgr,若物体C达到最大静摩擦力,则μmg=mω32×1.5r,解得ω3=2μg3r,可知ω1=ω2>ω3,由于物体A、B及物体C均随转台一起匀速转动,则转台的角速度需要满足ω≤ω3=2μg3r,该分析表明,当角速度逐渐增大时,物体C所受摩擦力先达到最大静摩擦力,即若转台的角速度逐渐增大,最先滑动的是C物体,C、D错误.7.(2023·四川绵阳市诊断)如图所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B(均可视为质点),光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力.忽略空气阻力,重力加速度为g,则球B在最高点时()A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即仅重力提供向心力,则有mg =m v B 22L ,解得v B =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v A =122gL ,故B 错误;B 球在最高点时,对杆无弹力,此时A 球受到的重力和拉力的合力提供向心力,有F -mg =m v A 2L ,解得F =1.5mg ,即杆受到的弹力大小为1.5mg ,可知水平转轴对杆的作用力为1.5mg ,C 正确,D 错误.8.(2023·重庆市西南大学附属中学月考)如图所示,在倾角为α=30°的光滑斜面上有一长L =0.8 m 的轻杆,杆一端固定在O 点,可绕O 点自由转动,另一端系一质量为m =0.05 kg 的小球(可视为质点),小球在斜面上做圆周运动,g 取10 m/s 2.要使小球能到达最高点A ,则小球在最低点B 的最小速度是( )A .4 m/sB .210 m/sC .2 5 m/sD .2 2 m/s答案 A解析 小球恰好到达A 点时的速度大小为v A =0,此时对应B 点的速度最小,设为v B ,对小球从A 到B 的运动过程,由动能定理有12m v B 2-12m v A 2=2mgL sin α,代入数据解得v B =4 m/s ,故选A.9.(多选)(2023·广东惠州市模拟)如图所示为一种圆锥筒状转筒,左右各系着一长一短的绳子,绳上挂着相同的小球,转筒静止时绳子平行圆锥面,若转筒中心轴开始缓慢加速转动,不计空气阻力,则下列说法正确的是()A.角速度慢慢增大,一定是线长的那个球先离开圆锥筒B.角速度达到一定值的时候两个球一定同时离开圆锥筒C.两个球都离开圆锥筒后,它们一定高度相同D.两个球都离开圆锥筒时两绳中的拉力大小相同答案AC解析设绳子与竖直方向的夹角为θ,小球刚好离开圆锥筒时,圆锥筒的支持力为0,则有mg tan θ=mω2l sin θ,解得ω=gl cos θ,则绳子越长其角速度的临界值越小,越容易离开圆锥筒,所以A正确,B错误;两个球都离开圆锥筒后,小球都只受重力与绳子的拉力,两小球都随圆锥筒一起转动,有相同的角速度,则小球的高度为h=l cos θ,代入数据解得h=gω2,所以C正确;小球离开圆锥筒时绳子的拉力为F T=mgcos θ,由于绳子长度不同,则两绳与竖直方向的夹角也不同,所以绳中拉力大小也不相同,所以D错误.10.(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的水平细绳连接,木块与转盘间的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是(重力加速度为g)()A.当ω>2Kg3L时,A、B会相对于转盘滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D .ω在0<ω<2Kg3L范围内增大时,A 所受摩擦力一直变大 答案 ABD解析 当A 、B 所受摩擦力均达到最大值时,A 、B 相对转盘即将滑动,则有Kmg +Kmg =mω2L +mω2·2L ,解得ω=2Kg3L,A 项正确;当B 所受静摩擦力达到最大值后,绳子开始有弹力,即有Kmg =m ·2L ·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B 项正确;当ω> Kg2L时,B 已达到最大静摩擦力,则ω在Kg 2L<ω<2Kg3L范围内增大时,B 受到的摩擦力不变,C 项错误;ω在0<ω<2Kg3L范围内,A 相对转盘是静止的,A 所受摩擦力为静摩擦力,所以由f -F T =mLω2可知,当ω增大时,静摩擦力也增大,D 项正确.11.(2023·内蒙古包头市模拟)如图所示,两等长轻绳一端打结,记为O 点,并系在小球上.两轻绳的另一端分别系在同一水平杆上的A 、B 两点,两轻绳与固定的水平杆夹角均为53°.给小球垂直纸面的速度,使小球在垂直纸面的竖直面内做往复运动.某次小球运动到最低点时,轻绳OB 从O 点断开,小球恰好做匀速圆周运动.已知sin 53°=0.8,cos 53°=0.6,则轻绳OB 断开前后瞬间,轻绳OA 的张力之比为( )A .1∶1B .25∶32C .25∶24D .3∶4答案 B解析 轻绳OB 断开前,小球以A 、B 中点为圆心的圆弧做往复运动,设小球经过最低点的速度大小为v ,绳长为L ,小球质量为m ,轻绳的张力为F 1,由向心力公式有2F 1sin 53°-mg =m v 2L sin 53°,轻绳OB 断开后,小球在水平面内做匀速圆周运动,其圆心在A 点的正下方,设轻绳的张力为F 2,有F 2cos 53°=m v 2L cos 53°,F 2sin 53°=mg ,联立解得F 1F 2=2532,故B 正确.12.(多选)(2023·湖北省重点中学检测)如图甲所示的陀螺可在圆轨道的外侧旋转而不脱落,好像轨道对它施加了魔法一样,被称为“魔力陀螺”,该玩具深受孩子们的喜爱.其物理原理可等效为如图乙所示的模型:半径为R 的磁性圆轨道竖直固定,质量为m 的小铁球(视为质点)在轨道外侧转动,A 、B 两点分别为轨道上的最高点、最低点.铁球受轨道的磁性引力始终指向圆心且大小不变,重力加速度为g ,不计摩擦和空气阻力.下列说法正确的是( )A .铁球可能做匀速圆周运动B .铁球绕轨道转动时机械能守恒C .铁球在A 点的速度一定大于或等于gRD .要使铁球不脱轨,轨道对铁球的磁性引力至少为5mg 答案 BD解析 铁球绕轨道转动受到重力、轨道的磁性引力和轨道的弹力作用,而轨道的磁性引力和弹力总是与速度方向垂直,故只有重力对铁球做功,铁球做变速圆周运动,铁球绕轨道转动时机械能守恒,选项B 正确,A 错误;铁球在A 点时,有mg +F 吸-F N A =m v A 2R ,当F N A =mg +F 吸时,v A =0,选项C 错误;铁球从A 到B 的过程,由动能定理有2mgR =12m v B 2-12m v A 2,当v A =0时,铁球在B 点的速度最小,解得v B min =2gR ,球在B 点处,轨道对铁球的磁性引力最大,F 吸-mg -F N B =m v B 2R ,当v B =v B min =2gR 且F N B =0时,解得F 吸min =5mg ,故要使铁球不脱轨,轨道对铁球的磁性引力至少为5mg ,选项D 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理一轮复习教案 圆周运动课时安排:2课时教学目标:1.掌握描述圆周运动的物理量及相关计算公式2.学会应用牛顿定律和动能定理解决竖直面内的圆周运动问题本讲重点:1.描述圆周运动的物理量及相关计算公式2.用牛顿定律和动能定理解决竖直面内的圆周运动问题本讲难点:用牛顿定律和动能定理解决竖直面内的圆周运动问题 考点点拨:1.“皮带传动”类问题的分析方法2.竖直面内的圆周运动问题 3.圆周运动与其他运动的结合第一课时一、考点扫描 (一)知识整合匀速圆周运动:质点沿圆周运动,在相等的时间里通过的弧长相等。

描述圆周运动的物理量 1.线速度 (1)大小:v =ts(s 是t 时间内通过的弧长) (2)方向:矢量,沿圆周的切线方向,时刻变化,所以匀速圆周运动是变速运动。

(3)物理意义:描述质点沿圆周运动的快慢 2.角速度 (1)大小:ω=tφ(φ是t 时间内半径转过的圆心角) 单位:rad/s(2)对某一确定的匀速圆周运动来说,角速度是恒定不变的 (3)物理意义:描述质点绕圆心转动的快慢 3.描述匀速圆周运动的各物理量间的关系:r fr Trv ωππ===22 4.向心加速度a(1)大小:a =ππω442222===r Tr r v 2 f 2r (2)方向:总指向圆心,时刻变化(3)物理意义:描述线速度方向改变的快慢。

5.向心力:是按效果命名的力,向心力产生向心加速度,即只改变线速度方向,不会改变线速度的大小。

(1)大小:R f m R Tm R m R v m ma F 22222244ππω=====向 (2)方向:总指向圆心,时刻变化做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。

做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力。

(二)重难点阐释在竖直平面内的圆周运动问题在竖直平面内做圆周运动的物体,按运动轨道的类型,可分为: (1)无支撑(如球与绳连结,沿内轨道的“过山车”) 在最高点物体受到弹力方向向下.当弹力为零时,物体的向心力最小,仅由重力提供, 由牛顿定律知mg=Rvm 20,得临界速度gR v =0.当物体运动速度v <v 0,将从轨道上掉下,不能过最高点.因此临界速度的意义表示了物体能否在竖直面上做圆周运动的最小速度.(2)有支撑(如球与杆连接,车过拱桥等)因有支撑,在最高点速度可为零,不存在“掉下”的情况.物体除受向下的重力外,还受相关弹力作用,其方向可向下,也可向上.当物体实际运动速度gR v >产生离心运动,要维持物体做圆周运动,弹力应向下.当gR v <物体有向心运动倾向,物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向.(3)对于无约束的情景,如车过拱桥,当gR v >时,有N=0,车将脱离轨道.此时临界速度的意义是物体在竖直面上做圆周运动的最大速度.以上几种情况要具体问题具体分析,但分析方法是相同的。

二、高考要点精析(一)“皮带传动”类问题的分析方法 ☆考点点拨在分析传动问题,如直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,要抓住相等量和不等量的关系。

两轮边缘上各点的线速度大小相等;同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。

然后利用公式ωr v =或rv=ω即可顺利求解。

【例1】如图所示装置中,三个轮的半径分别为r 、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比。

解析:v a=v c,而v b∶v c∶v d=1∶2∶4,所以v a∶ v b∶v c∶v d=2∶1∶2∶4;ωa∶ωb=2∶1,而ωb=ωc=ωd,所以ωa∶ωb∶ωc∶ωd=2∶1∶1∶1;再利用a=vω,可得a a∶a b∶a c∶a d=4∶1∶2∶4☆考点精炼1.如图所示,一种向自行车车灯供电的小发电机的上端有一半径R0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触。

当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力。

自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm。

则大齿轮和摩擦小轮的转速之比为(假定摩擦小Array轮与自行车轮之间无相对滑动)()A.2∶175B.1∶175C.4∶175D.1∶140(二)竖直面内的圆周运动问题☆考点点拨“两点一过程”是解决此类问题的基本思路。

“两点”,即最高点和最低点。

在最高点和最低点对物体进行受力分析,找出向心力的来源,列牛顿第二定律的方程;“一过程”,即从最高点到最低点。

用动能定理将这两点的动能(速度)联系起来。

【例2】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与v0应满足的关系式是______.解析:这是一道综合运用牛顿运动定律、圆周运动、机械能守恒定律的高考题.A球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下.若要此时两球作用于圆管的合力为零,B球对圆管的压力一定是竖直向上的,所以圆管对B球的压力一定是竖直向下的.由机械能守恒定律,B球通过圆管最高点时的速度v满足方程2222221221v m R g m v m =⋅+ 根据牛顿运动定律对于A 球,Rv m g m N 2111=-对于B 球,Rv m g m N 2222=+又 N 1=N 2解得 0)5()(212021=++-g m m Rv m m 【例3】小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B ,OB =d ,初始时小球A 与O 同水平面无初速度释放,绳长为L ,为使小球能绕B 点做完整的圆周运动,如图所示。

试求d 的取值范围。

解析:为使小球能绕B 点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:dL v m mg D-≤2根据机械能守恒定律可得[])(212d L d mg mv D --= 由以上两式可求得:L d L ≤≤53☆考点精炼2.如图所示,长为L 的细线,一端固定在O 点,另一端系一个球.把小球拉到与悬点O 处于同一水平面的A 点,并给小球竖直向下的初速度,使小球绕O 点在竖直平面内做圆周运动。

要使小球能够在竖直平面内做圆周运动,在A 处小球竖直向下的最小初速度应为A.gL 7B.gL 5C.gL 3D. gL 2第二课时D dLOmB C A(三)圆周运动与其他运动的结合 ☆考点点拨圆周运动与其他运动相结合,要注意寻找这两种运动的结合点,如位移关系,速度关系,时间关系等,还要注意圆周运动的特点:如具有一定的周期性等。

【例4】如图所示,滑块在恒定外力作用下从水平轨道上的A 点由静止出发到B 点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C ,滑块脱离半圆形轨道后又刚好落到原出发点A ,试求滑块在AB 段运动过程中的加速度。

解析:设圆周的半径为R ,则在C 点:mg =m RvC 2①离开C 点,滑块做平抛运动,则2R =gt 2/2 ②v C t =s AB ③由B 到C 过程: mv C 2/2+2mgR =mv B 2/2 ④ 由A 到B 运动过程: v B 2=2as AB ⑤ 由①②③④⑤式联立得到: a =5g /4【例5】如图所示,M 、N 是两个共轴圆筒的横截面,外筒半径为R ,内筒半径比R 小很多,可以忽略不计,筒的两端是封闭的,两筒之间抽成真空。

两筒以相同的角速度 ω绕其中心轴线(图中垂直于纸面)做匀速转动。

设从M 筒内部可以通过窄缝 s (与M 筒的轴线平行)不断地向外射出两种不同速率 v 1 和v 2 的微粒,从 s 处射出时的初速度的方向都是沿筒的半径方向,微粒到达N 筒后就附着在N 筒上。

如果R 、v 1 和v 2都不变,而ω取某一合适的值,则( )A .有可能使微粒落在N 筒上的位置都在 a 处一条与 s 缝平行的窄条上B .有可能使微粒落在N 筒上的位置都在某一处如 b 处一条与 s 缝平行的窄条上C .有可能使微粒落在N 筒上的位置分别在某两处如 b 处和c 处与 s 缝平行的窄条上D .只要时间足够长,N 筒上将到处都落有微粒解析:两种粒子从窄缝 s 射出后,沿半径方向匀速直线运动,到达N 筒的时间分别为11v R t =和22v Rt =,两种粒子到达N 筒的时间差为21t t t -=∆,N 筒匀速转动,在1t 和2t 时间内转过的弧长均为周长的整数倍,则所有微粒均落在a 处一条与 s 缝平行的窄条上,A正确;若N 筒在1t 和2t 时间内转过的弧长不是周长的整数倍,且在t ∆内转过的弧长恰为周长的整数倍,则所有微粒均落在如b 处一条与 s 缝平行的窄条上,B 正确;若在1t 和2t 及t ∆内转过的弧长均不是周长的整数倍,则可能落在N 筒上某两处如 b 处和c 处与 s 缝平行的窄条上,C 正确;对应某一确定的ω值,N 筒转过的弧长是一定的,故N 筒上微粒到达的位置是一定的,D 错误。

答案:ABC ☆考点精炼3.如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求:(1)小球运动到轨道上的B 点时,对轨道的压力多大? (2)小球落地点C 与B 点水平距离s 是多少?4.如图所示,竖直薄壁圆筒内壁光滑、半径为R ,上部侧面A 处开有小口,在小口A 的正下方h 处亦开有与A 大小相同的小口B ,小球从小口A 沿切线方向水平射入筒内,使小球紧贴筒内壁运动,要使小球从B 口处飞出,小球进入A 口的最小速率v 0为( )A .hgR 2π B .hg R 2π C .g h R 2π D .hg Rπ2考点精炼参考答案1.A (大小齿轮间、摩擦小轮和车轮之间,两轮边缘各点的线速度大小相等,由nr v π2=,可知转速n 和半径r 成反比;小齿轮和车轮同轴转动,两轮上各点的转速相同。

由这三次传动可以找出大齿轮和摩擦小轮间的转速之比n 1∶n 2=2∶175)2.C (要使小球能够在竖直平面内做圆周运动,最高点最小速度满足 Lv m mg 2=,从A 到最高点,由动能定理有2202121mv mv mgL -=,解得gL v 30=) 3.解析:(1)小球由A →B 过程中,根据机械能守恒定律有: mgR =221B mv ① gR v B 2= ②小球在B 点时,根据向心力公式有;R A BhR vm mg F B N 2=- ③mg Rv m mg F BN 32=+=根据牛顿第三定律,小球对轨道的压力大小等于轨道对小球的支持力,为3mg (2)小球由B →C 过程, 水平方向有:s =v B ·t ④竖直方向有:221gt R H =-⑤解②④⑤得R R H s )(2-=4.B解析:小球从小口A 沿切线方向水平射入筒内,小球的运动可看作水平方向的匀速圆周运动和竖直方向的自由落体运动的叠加。

相关文档
最新文档