无人机飞行管理规定

无人机飞行管理规定
无人机飞行管理规定

无人机飞行管理规定

1.从事通用航空飞行活动的单位、个人使用机场飞行空域、航路、航线,应当按照国家有关规定向飞行管制部门提出申请,经批准后方可实施。

2.从事通用航空飞行活动的单位、个人,根据飞行活动要求,需要划设临时飞行空域的,应当向有关飞行管制部门提出划设临时飞行空域的申请。划设临时飞行空域的申请,应当在拟使用临时飞行空域7个工作日前向有关飞行管制部门提出。负责批准该临时飞行空域的飞行管制部门应当在拟使用临时飞行空域3个工作日前作出批准或者不予批准的决定,并通知申请人。

以下摘取的部分无人机法规:

(1)无人机(UA:Unmanned Aircraft),是由控制站管理(包括远程操纵或自主飞行)的航空器。也称远程驾驶航空器(RPA:Remotely Piloted Aircraft)

(2)无人机系统(UAS:Unmanned Aircraft System),也称远程驾驶航空器系统(RPAS:Remotely Piloted Aircraft Systems),是指由无人机、相关的控制站、所需的指令与控制数据链路以及批准的型号设计规定的任何其他部件组成的系统。

(3)无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵无人机的人。

(4)无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。

(5)无人机观测员,由运营人指定的训练有素的人员,通过目视观测无人机,协助无人机驾驶员安全实施飞行,通常由运营人管理,无证照要求。

(6)运营人,是指从事或拟从事航空器运营的个人、组织或企业。

(7)控制站(也称遥控站、地面站),无人机系统的组成部分,包括用于操纵无人机的设备。

(8)指令与控制数据链路(C2:Commandand Control datalink),是指无人机和控制站之间为飞行管理之目的的数据链接。

(9)感知与避让,是指看见、察觉或发现交通冲突或其他危险并采取适当行动的能力。

(10)无人机感知与避让系统,是指无人机机载安装的一种设备,用以确保无人机与其它航空器保持一定的安全飞行间隔,相当于载人航空器的防撞系统。在融合空域中运行的Ⅺ、Ⅻ类无人机应安装此种系统。

(11)视距内(VLOS:Visual Line of Sight)运行,无人机在驾驶员或观测员与无人机保持直接目视视觉接触的范围内运行,且该范围为目视视距内半径不大于500米,人、机相对高度不大于120米。

(12)超视距(BVLOS:Beyond VLOS)运行,无人机在目视视距以外的运行。

(13)扩展视距(EVLOS:Extended VLOS)运行,无人机在目视视距以外运行,但驾驶员或者观测员借助视觉延展装置操作无人机,属于超视距运行的一种。

(14)融合空域,是指有其它有人驾驶航空器同时运行的空域。

(15)隔离空域,是指专门分配给无人机系统运行的空域,通过限制其它航空器的进入以规避碰撞风险。

(16)人口稠密区,是指城镇、乡村、繁忙道路或大型露天集会场所等区域。

(17)空机重量,是指不包含载荷和燃料的无人机重量,该重量包含燃料容器和电池等固体装置。

(18)无人机云系统(简称无人机云),是指轻小民用无人机运行动态数据库系统,用于向无人机用户提供航行服务、气象服务等,对民用无人机运行数据(包括运营信息、位置、高度和速度等)进行实时监测。接入系统的无人机应即时上传飞行数据,无人机云系统对侵入电子围栏的无人机具有报警功能。

由于民用无人机在全球范围内发展迅速,国际民航组织已经开始为无人机系统制定标准和建议措施(SARPs)、空中航行服务程序(PANS)和指导材料。这些标准和建议措施

预计将在未来几年成熟,因此多个国家发布了管理规定。本咨询通告针对目前出现的无人机系统的驾驶员实施指导性管理,并将根据行业发展情况随时修订,最终目的是按照国际民航组织的标准建立我国完善的民用无人机驾驶员监管体系。

轻小型民用无人机系统运行管理暂行规定(修改20151206)

中国民用航空局飞行标准司 编号:AC-91-FS-2015-XX 咨询通告下发日期:2015年12月XX日 编制部门:FS

目录 1.目的 (3) 2.适用范围及分类 (3) 3.定义 (4) 4.民用无人机机长的职责和权限 (7) 5.民用无人机驾驶员 (8) 6.民用无人机使用说明书 (8) 7.禁止粗心或鲁莽的操作 (8) 8.摄入酒精和药物的限制 (9) 9.飞行前准备 (9) 10.限制区域 (9) 11.视距内运行(VLOS) (10) 12.视距外运行(BVLOS) (10) 13.民用无人机运行的仪表、设备和标识要求 (11) 14.管理方式 (11) 15.无人机云提供商须具备的条件 (13) 16.植保无人机运行要求 (14) 17.无人飞艇运行要求 (16) 18.废止和生效 (16)

1.目的 近年来,民用无人机的生产和应用在国内外蓬勃发展,特别是低空、慢速、轻小型无人机数量快速增加,占到民用无人机的绝大多数。为了规范轻小型民用无人机的运行,依据CCAR-91部,发布本咨询通告。 2.适用范围及分类 本咨询通告适用于轻小型民用无人机运行管理。其涵盖范围包括: 2.1空机重量小于等于116千克、起飞全重不大于150千克的无人机,且动能不大于95千焦,校正空速不超过100千米每小时; 2.2起飞全重不超过5700千克,距受药面高度不超过15米的植保类无人机; 2.3充气体积在4600立方米以下的无人飞艇; 2.4本咨询通告适用于除I类以外的所有轻小型无人机,某些特定条款中仅适用于特定类别无人机的内容将在条款中另行说明。 2.5 轻小型无人机运行管理分类:

(完整版)无人机安全飞行注意事项

无人机安全飞行注意事项 安全飞行的定义 飞行安全是指航空器在运行过程中,不出现由于运行失当或外来原因而造成航空器上的人员或者航空器损坏的事件。事实上,由于航空器的设计,制造与维护难免有缺陷,其运行环境包括起降场地,运行空域,助航系统,气象情况等又复杂多变,机组人员操纵也难免出现失误等原因。 飞行前,注意气象观察 影响无人机飞行的气象环境主要包括:风速,雨雪,大雾,空气密度,大气温度等。 风速:建议飞行风速在4级(5.5-7.9米/秒)以下,遇到楼层或者峡谷等注意突风现象。通常起飞重量越大,抗风性越好。 雨雪:市面上多数无人机设备无防水功能,故雨雪行程的水滴会影响飞行器电子电路部分短路或漏电的情况,其次机械结构部分零件为铁或钢等金属材料,进水后会腐蚀或生锈,影响机械运动正常运行。 大雾:主要影响操纵人员的视线和镜头画面,难以判断实际安全距离。 空气密度:大气层空气密度随着海拔高度的增加,空气密度减小。在空气密度较低的环境中飞行,飞行器的转速增加,电流增大,进而减少续航时间。 大气温度:飞行环境温度非常重要,主要不利于电机/电池/电调等散热,大多数无人机采用风冷自然散热。温度环境与飞行器运行温度温差越小,散热越慢。 飞行前,注意观察飞行区域周边电磁干扰源情况 现在主流的飞行器无线电遥控设备采用2.4G频段,现在家用的无线路由均采用2.4G模段,发射功率虽然不高,城市区的数量大,难免会干扰遥控器的无线操控,导致失控。 其次,为是保证手机信号的覆盖率,所以国内三大(电信,移动,联通)电信运营公司,在城中或乡镇地区密集性建设地面基站网络。虽然次无线发射信号的频率和无人机遥控设备的频率相差较大,但由于地面基站发射功率较大,无人机靠近时,直接影响飞控的正常工作。最后,部分较大型无线电设备直接影响飞行。例如:雷达,广播电视信号塔,高压线(电弧区)等。 另外,尽量避免在人群稠密或闹市区飞行,例如:公园,树多,空间狭小的地方。注意地面相对环境的变化,起飞和降落时,注意小孩,宠物的位置。 飞行前注意事项 1)飞行前进行全面的设备检查 2)确保设备电量充足 3)飞行前应从谷歌图上对飞行区地形地势进行一个初步的了解,选择一个开阔无遮挡的场地进行飞行。请勿超过安全飞行高度(相对高度120米) 4)飞机要在视线范围内飞行,时刻保持对飞机的控制 5)在GPS信号良好的情况下飞行 6)遵守当地法律法规(不要在禁飞区飞行,如机场附近、军事基地周边等) 无人机的飞行前检查 对飞机的检查:部件的衔接是否牢靠(检查螺旋桨和电机是否安装正确和稳固,并确认正旋和反旋螺旋桨安装位置正确。检测时切勿贴近或接触旋转中的电机或螺旋桨,避免被螺旋桨割伤),布线是否安全,机载设备是否工作正常(遥控器、电池以及所有部件供电量充足);对遥控器的检查:检查遥控器操控模式(美国手、日本手、中国手等)、信号连接情况、电量是否充足、各键位是否复位、天线位置等;

无人机飞行控制方法概述

2017-10-08 GaryLiu 于四川绵阳 无人机的飞行控制是无人机研究领域主要问题之一。在飞行过程中会受到各种干扰,如传感器的噪音与漂移、强风与乱气流、载重量变化及倾角过大引起的模型变动等等。这些都会严重影响飞行器的飞行品质,因此无人机的控制技术便显得尤为重要。传统的控制方法主要集中于姿态和高度的控制,除此之外还有一些用来控制速度、位置、航向、3D轨迹跟踪控制。多旋翼无人机的控制方法可以总结为以下三个主要的方面。 1.线性飞行控制方法 常规的飞行器控制方法以及早期的对飞行器控制的尝试都是建立在线性飞行控制理论上的,这其中就有诸如PID、H∞、LQR以及增益调度法。 1)PID PID控制属于传统控制方法,是目前最成功、用的最广泛的控制方法之一。其控制方法简单,无需前期建模工作,参数物理意义明确,适用于飞行精度要求不高的控制。 2)H∞ H∞属于鲁棒控制的方法。经典的控制理论并不要求被控对象的精确数学模型来解决多输入多输出非线性系统问题。现代控制理论可以定量地解决多输入多输出非线性系统问题,但完全依赖于描述被控对象的动态特性的数学模型。鲁棒控制可以很好解决因干扰等因素引起的建模误差问题,但它的计算量非常大,依赖于高性能的处理器,同时,由于是频域设计方法,调参也相对困难。 3)LQR LQR是被运用来控制无人机的比较成功的方法之一,其对象是能用状态空间表达式表示的线性系统,目标函数是状态变量或控制变量的二次函数的积分。而且Matlab软件的使用为LQR的控制方法提供了良好的仿真条件,更为工程实现提供了便利。 4)增益调度法 增益调度(Gain scheduling)即在系统运行时,调度变量的变化导致控制器的参数随着改变,根据调度变量使系统以不同的控制规律在不同的区域内运行,以解决系统非线性的问题。该算法由两大部分组成,第一部分主要完成事件驱动,实现参数调整。如果系统的运行情况改变,则可通过该部分来识别并切换模态;第二部分为误差驱动,其控制功能由选定的模态来实现。该控制方法在旋翼无人机的垂直起降、定点悬停及路径跟踪等控制上有着优异的性能。 2.基于学习的飞行控制方法 基于学习的飞行控制方法的特点就是无需了解飞行器的动力学模型,只要一些飞行试验和飞行数据。其中研究最热门的有模糊控制方法、基于人体学习的方法以及神经网络法。 1)模糊控制方法(Fuzzy logic) 模糊控制是解决模型不确定性的方法之一,在模型未知的情况下来实现对无人机的控制。 2)基于人体学习的方法(Human-based learning) 美国MIT的科研人员为了寻找能更好地控制小型无人飞行器的控制方法,从参加军事演习进行特技飞行的飞机中采集数据,分析飞行员对不同情况下飞机的操作,从而更好地理解无人机的输入序列和反馈机制。这种方法已经被运用到小型无人机的自主飞行中。 3)神经网络法(Neural networks)

无人机主要部件

1、首先介绍的是无人机的大脑——飞控 无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统,是无人机的大脑,也是区别于航模的最主要标志,简称飞控。飞控的作用就是通过飞控板上的陀螺仪,对四轴飞行状态进行快速调整(都是瞬间的事,不要妄想用人肉完成)。如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢、升力变小,自然就不再向左倾斜。如果没有飞控系统,四轴飞行器就会因为安装、外界干扰、零件之间的不一致等原因形成飞行力量不平衡,后果就是左右、上下地胡乱翻滚,根本无法飞行。 工作过程大致如下:飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。飞控系统的硬件主要包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 2、为传感器增稳的——云台 稳定平台,对于任务设备来说太重要了,是用来给相机增稳的部分,几千米的高度上误差个几分几秒就能差出去几十米。它主要通过传感器感知机身的动作,通过电机驱动让相机保持原来的位置,抵消机身晃动或者震动的影响。云台主要考察几个性能:增稳精度、兼容性(一款云台能适配几款相机和镜头)和转动范围(分为俯仰、横滚和旋转三个轴),如果遇到变焦相机,就更加考验云台

的增稳精度了,因为经过长距离的变焦,一点点轻微的震动都会让画面抖动得很厉害。 现时的航拍云台主要由无刷电机驱动,在水平、横滚、俯仰三个轴向对相机进行增稳,可搭载的摄影器材从小摄像头到GoPro,再到微单/无反相机,甚至全画幅单反以及专业级电影机都可以。摄影器材越大,云台就越大,相应的机架也就越大。 上面三个演示的是机身不动、相机动的效果,但实际上云台工作时,是相机不动,而机身动。所以在空中时,无人机的机身不断在动作,云台依然可以保相机镜头的位置,达到增稳的效果。 分类: 目前市面上常见的有三轴增稳云台和两轴增稳云台。

无人机飞行路线控制系统设计

无人机飞行路线控制系统设计 由于无人机是通过无线遥控的方式完成自动飞行和执行各种任务,具有安全零伤亡、低能耗、重复利用率高、控制方便等优点,因此得到了各个国家、各行各业的高度重视和广泛应用。尤其以美国为代表,无论是在军事、民用、环境保护还是科学研究中,都将无人机的使用发挥到淋漓尽致,其拥有全球最先进的“捕食者”和“全球鹰”战斗无人机、监测鸟类的“大乌鸦”无人机、民用用途的“伊哈纳”无人机等等。我国在无人机研制方面也取得了一定的成就,拥有技术卓越的“翔龙”和“暗箭”高空高速无人侦查机、多用途的“黔中”无人机、探测海洋的“天骄”无人机、中继通讯的“蜜蜂”无人机等等。在未来,随着现代化工业技术、信息技术、自动化技术、航天技术等高新技术的迅速发展,无人机技术将日趋成熟,性能日益完善,为此将拥有更为广阔的应用前景。为确保无人机能够有效地完成各种飞行任务,研发者开发了各种技术方式的飞行控制系统,完成对无人机的起飞、飞行控制、着陆以及相应目标任务等操作的控制。飞行路线控制是飞行控制系统中最基础也是最核心的功能控制部分,其它所有的飞行任务控制都是飞行路线控制的基础之上实现。目前对于无人机飞行路线的控制已有各种各样方式的系统,但大多数系统都存在一定缺陷,如有些系统操作过于繁杂,不够智能化;有些系统只能在视距范围遥 控无人机,严重限制了无人机的使用;有些系统过于专用化,不能适用于大多数类型的无人机;有些比较完善的系统,造价又过于昂贵,等等一系列问题。针对以上存在的这些问题,本课题提出了一种成本低、

遥控距离远、智能化、高效化、适用性广的无人机飞行路线控制系统设计方案。该系统方案包括两大部分,一部分是操作人员所处的地面监控系统,一部分是无人机端的受控系统,实现的机制主要是无人机不断地将自身的定位信息实时地传送给地面控制系统,地面控制系统将无人机位置信息通过电子地图可视化显示给操作人员,操作人员结合本次飞行任务,采用灵活的鼠标绘制方式在地图上绘制预定的飞行路线,地面控制系统对绘制路线进行自动处理生成可用的路线控制信息帧并发送给无人机受控系统,无人机受控系统接收到位置控制信息帧,不断结合实时的方位信息得到飞行控制信息,从而遥控无人机按照预定路线飞行。此外,为方便用户以后对历史数据的查看,以分析总结得到一些有价值的信息,地面监控系统还包含了对预定路线和无人机历史飞行路线的存储、查询和在地图中回放功能。基于GIS技术的地面监控系统的具体实现是在Windows操作系统上,采用Visual Basic作为系统开发环境并结合MSComm串口通信技术、Mapx二次开发组件技术、Winsock网络接口技术以及Access数据库技术完成软件设计,实现与无人机受控系统的无线通信、GIS系统操作和监控、历史数据存储和重现等,其中实验区域的电子地图采用Mapinfo Professional开发软件绘制完成,并创新性地设计并绘制了画面简洁的带高层信息的二点三维矢量地图,而对于绘制路线的优化和提取处理采用了垂距比值法和最小R值法。无人机端使用BDS-2/GPS双卫星系统对无人机实时位置进行高精度的定位,采用双串口单片机进行运算控制处理,实时的飞行控制信息采用了几何空间算法得到,另外采

小型无人机飞控系统介绍与工作原理

飞控系统是无人机的核心控制装置,相当于无人机的大脑,是否装有飞控系统也是无人机区别于普通航空模型的重要标志。在经历了早期的遥控飞行后,目前其导航控制方式已经发展为自主飞行和智能飞行。导航方式的改变对飞行控制计算机的精度提出了更高的要求;随着小型无人机执行任务复杂程度的增加,对飞控计算机运算速度的要求也更高;而小型化的要求对飞控计算机的功耗和体积也提出了很高的要求。高精度不仅要求计算机的控制精度高,而且要求能够运行复杂的控制算法,小型化则要求无人机的体积小,机动性好,进而要求控制计算机的体积越小越好。 在众多处理器芯片中,最适合小型飞控计算机CPU的芯片当属TI公司的TMS320LF2407,其运算速度以及众多的外围接口电路很适合用来完成对小型无人机的实时控制功能。它采用哈佛结构、多级流水线操作,对数据和指令同时进行读取,片内自带资源包括16路10位A /D转换器且带自动排序功能,保证最多16路有转换在同一转换期间进行,而不会增加CPU 的开销;40路可单独编程或复用的通用输入/输出通道;5个外部中断;集成的串行通信接口(SCI),可使其具备与系统内其他控制器进行异步(RS 485)通信的能力;16位同步串行外围接口(SPI)能方便地用来与其他的外围设备通信;还提供看门狗定时器模块(WDT)和CAN通信模块。 飞控系统组成模块 飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。按照功能划分,该飞控系统的硬件包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 模块功能 各个功能模块组合在一起,构成飞行控制系统的核心,而主控制模块是飞控系统核心,它与信号调理模块、接口模块和舵机驱动模块相组合,在只需要修改软件和简单改动外围电路的基础上可以满足一系列小型无人机的飞行控制和飞行管理功能要求,从而实现一次开发,多型号使用,降低系统开发成本的目的。系统主要完成如下功能: (1)完成多路模拟信号的高精度采集,包括陀螺信号、航向信号、舵偏角信号、发动机转速、缸温信号、动静压传感器信号、电源电压信号等。由于CPU自带A/D的精度和通道数有限,所以使用了另外的数据采集电路,其片选和控制信号是通过EPLD中译码电路产生的。

浅析无人机航空摄影测量系统及应用

浅析无人机航空摄影测量系统及应用 发表时间:2017-10-26T19:53:11.473Z 来源:《建筑科技》2017年9期作者:舒永国 [导读] 发展低空无人飞行器航测遥感系统是提高测绘现势性的迫切需要,是做好应急救急工作的迫切需要,是构建数字中国、数字城市建设的迫切需要。基于此,本文主要对无人机航空摄影测量系统及应用进行分析探讨。 北京市自来水集团禹通市政工程有限公司北京 100089 摘要:测绘测量技术系统是应对自然灾害、有效处置突发事件、构建完善保障系统与加强防灾减灾工作建设的重要组成部分,也是目前的一个重要战略问题。发展低空无人飞行器航测遥感系统是提高测绘现势性的迫切需要,是做好应急救急工作的迫切需要,是构建数字中国、数字城市建设的迫切需要。基于此,本文主要对无人机航空摄影测量系统及应用进行分析探讨。 关键词:无人机;航空摄影;测量系统;应用 1、前言 航空数字摄影测量是基础地理信息采集的最有效手段之一。随着计算机技术的发展和微处理机的广泛应用,政府各部门对测绘资料的需求越来越大,对资料现势性要求越来越高,对资料所能包涵的信息容量越来越多。无人机航空摄影测量作为一种新型的测量方式不断呈现在大家的面前,伴随着高科技技术环境下测绘技术与测绘装备的快速发展,融合了无人机技术、航空摄影技术、移动测量技术、数字通信技术等一系列新兴技术形态的无人机航空摄影测量系统成为防灾减灾的重要手段,它建立起一整套综合应急测绘保障服务系统。 2、无人机航空摄影测量系统 目前,国内已经投入使用的无人机航空摄影测量系统有“华鹰”、“飞象”、“QuickEye”等。无人机航空摄影测量系统主要由硬件系统和软件系统组成。硬件系统包括机载系统和地面监控系统;软件系统则涵盖了航线设计、飞行控制、远程监控、航摄检查、数据预处理等五个主要的系统。 2.1硬件系统 2.1.1无人机机载系统 在整个无人机航空摄影测量系统构成中,无人机作为主要的系统搭载平台,是整个系统集成与融合的重要基础。这一硬件系统主要由无人机、数字摄影系统、导航与飞行控制系统、通信系统等部分构成。在该系统工作的过程中,整个系统会按照预先设定的航线进行相应的自主飞行,并且完成预先设定的航空摄影测量任务,同时实时地把飞机的速度、高度、飞行状态、气象状况等参数传输给地面控制系统。 2.1.2地面飞行监控系统 这一分支系统是影响飞行平台运行的重要因素,主要有电子计算机、飞行控制软件、电子通信控制介质和电台等设备。在飞行平台的运行过程中,地面飞行控制系统可以据无人机飞行控制系统发回的飞行参数信息,实时在地图上精确标定飞机的位置、飞行路线、轨迹、速度、高度和飞行姿态,使地面操作人员更容易掌握无人机的飞行状况。 2.2软件系统 2.2.1航线设计软件 航线设计在无人机航空摄影测量系统中扮演着十分重要的角色,其直接决定了整个系统工作的方向和精准度。这一分支系统作为信息采集的关键步骤,需要对于系统运行经过的作业范围、地形地貌特点、属性精度要求、摄影测量参数以及摄影测量的结果进行综合设定。航线设计软件需要对相关的工作参数进行综合设定,诸如计算行高、重叠度和地面分辨率等飞行参数,进而获得飞行所需的曝光点坐标、基线长度等参数。此外,航线设计软件还有一个十分重要的功能,那就是对于设计好的航线进行检查,诸如:航线走向、摄影基面、行高、地面分辨率和像片重叠度等。 2.2.2数据接受与预处理系统 这是无人机系统中最为重要的软件系统,也是无人机航空摄影测量系统室外作业的最后一步,直接影响到后续的图像数据处理质量。一般情况下,无人机航空摄影测量系统在影像获取过程中,由于受外界和内部因素的影响,可能降低获取的原始图像的质量。为避免原始图像后续处理的质量问题,在影像配准、拼接之前,必须对原始影像进行预处理。这一预处理的过程,先后涵盖了图像校正、图像增强等方面。 3、项目应用实践 3.1工程概况 井山水库位于抚河流域东乡河南港支流黎圩水上游,地处江西省抚州市东乡县黎圩镇内,坝址位于南港支流东乡县黎圩镇井山村上游河段1.0km狭谷段,坝址区距黎圩镇约5km,距东乡县县城约25km,控制流域面积25.2km2,正常蓄水位83.00m(黄海高程,下同),总库容2250×104m3,是一座灌溉、供水等综合效益的中型水利枢纽工程。 3.2外业测量 3.2.1航摄 航摄仪采用Sonya7R,焦距35mm,相幅大小为:7360×4192,像元分辨率为4.88um。本次无人机航摄分两个架次进行,由GPS领航数据计算相对飞行高度为724m,地面分辨率为0.09m,航摄面积约10km2。两个架次飞行质量和影像良好,影像清晰度较高,且照片色彩均匀,饱和度良好,能够表达真实的地物信息,可以满足1:2000成图要求。本次飞行航向重叠度为75%,旁向重叠度为50%。 3.2.2像控测量 像控点的布设应能够有效控制成图的范围,测区的四周及中心位置必须布设控制点,根据测区的情况,每个测区布设控制点20多个,且都设置为平高点。 3.2.3空中三角测量 本项目采用SVS软件进行空三加密,根据航空飞行及影像分布情况,将空三区域分为两个加密区域网采用自动与手动相结合的方式进行空三加密,即采用自动匹配进行像点量测,剔除粗差。人工调整直至连接点符合规范要求,保证在2/3个像素以内。加入外业像控点对本

关于无人机飞行控制系统的全面解析

关于无人机飞行控制系统的全面解析 飞控的大脑:微控制器在四轴飞行器的飞控主板上,需要用到的芯片并不多。目前的玩具级飞行器还只是简单地在空中飞行或停留,只要能够接收到遥控器发送过来的指令,控制四个马达带动桨翼,基本上就可以实现飞行或悬停的功能。意法半导体高级市场工程师介绍,无人机/多轴飞行器主要部件包括飞行控制以及遥控器两部分。其中飞行控制包括电调/马达控制、飞机姿态控制以及云台控制等。目前主流的电调控制方式主要分成BLDC方波控制以及FOC正弦波控制。 高通和英特尔推的飞控主芯片CES上我们看到了高通和英特尔展示了功能更为丰富的多轴飞行器,他们采用了比微控制器(MCU)更为强大的CPU或是ARM Cortex-A系列处理器作为飞控主芯片。例如,高通CES上展示的Snapdragon Cargo无人机是基于高通Snapdragon芯片开发出来的飞行控制器,它有无线通信、传感器集成和空间定位等功能。Intel CEO Brian Krzanich也亲自在CES上演示了他们的无人机。这款无人机采用了RealSense技术,能够建起3D地图和感知周围环境,它可以像一只蝙蝠一样飞行,能主动避免障碍物。英特尔的无人机是与一家德国工业无人机厂商Ascending Technologies合作开发,内置了高达6个英特的RealSense3D摄像头,以及采用了四核的英特尔凌动(Atom)处理器的PCI-express定制卡,来处理距离远近与传感器的实时信息,以及如何避免近距离的障碍物。这两家公司在CES展示如此强大功能的无人机,一是看好无人机的市场,二是美国即将推出相关法规,对无人机的飞行将有严格的管控。 多轴无人机的EMS/传感器某无人机方案商总经理认为,目前业内的玩具级飞行器,虽然大部分从三轴升级到了六轴MEMS,但通常采用的都是消费类产品如平板或手机上较常用的价格敏感型型号。在专业航拍以及专为航模发烧友开发的中高端无人机上,则会用到质量更为价格更高的传感器,以保障无人机更为稳定、安全的飞行。这些MEMS传感器主要用来实现飞行器的平稳控制和辅助导航。飞行器之所以能悬停,可以做航拍,是因为MEMS传感器可以检测飞行器在飞行过程中的俯仰角和滚转角变化,在检测到角度变化

无人机飞行安全操作规范

新和莱特无人机飞行操作规范 一、目的: 为了使无人机在操作飞行的过程中,安全、高效、稳定的飞行,通过个个细节的把控,做到各项检查指标参数处于正常值或者正常值以上,方可起飞。二、范围: 规范试用于,新和莱特下属技术部门以及售后售前部门,所有技术人员和飞手。 三、内容: (一)飞行前的检查: 飞行前调试流程必须做到位,不得忽略调试流程的任何一个细节,在操作无人机飞行前应对无人机的各个部件做相应的检查,无人机的任何一个小问题都有可能导致在飞行过程中出现事故或损坏。因此在飞行前应该做充足的检查,防止意外发生。 外观机械部分: 1、上电前应先检查机械部分相关零部件的外观,检查螺旋桨是否完好,表面是否有污渍和裂纹等(如有损坏应更换新螺旋桨,以防止在飞行中飞机震动太大导致意外)。检查螺旋桨旋向是否正确,安装是否紧固,用手转动螺旋桨查看旋转是否有干涉等。 2、检查电机安装是否紧固,有无松动等现象(如发现电机安装不紧固应停止飞行,使用相应工具将电机安装固定好)用手转劢电机查看电机旋转是否有卡涩现象,电机线圈内部是否干净,电机轴有无明显的弯曲。 3、检查机架是否牢固,螺丝有无松动现象。 4、检查药箱转动是否有漏水口,药箱固定座是否安装牢固。 5、检查飞行器电池安装是否正确,电池电量是否充足。 6、检查飞行器的重心位置是否正确。 电子部分(此项为飞机出厂检查): 1、检查各个接头是否紧密,插头不焊接部分是否有松动、虚焊、接触不良等现象(杜邦线,XT60,T插头,香蕉头等)。

2、检查各电线外皮是否完好,有无刮擦脱皮等现象。 3、检查电子设备是否安装牢固,应保证电子设备清洁,完整,并做好一些防护(如防水、防尘等)。 4、检查电子罗盘指向是否和飞行器机头指向一致。 5、检查电池有无破损,鼓包胀气,漏液等现象。 6、检查地面站是否可,地面站屏幕触屏是否良好,各界面操作是否正常。上电后的检查: 1、上电后,地面站与飞机进行配对,点击地面站设置里的配对前,先插电源负极,点击配对插上正极,地面站显示配对即可。 2、电池接插方法,要注意是串联电路还是并联电路,以免差错,导致电池烧坏或者是飞控烧坏。 3、配对成功以后,先不装桨叶,解锁轻微推动油门,观察各个电机是否旋转正常。 4、检查电调指示音是否正确LED指示灯闪烁是否正常。 5、检查各电子设备有无异常情况(如异常震动,异常声音,异常发热等)。 6、确保电机运转正常后,可进行磁罗盘的校准,点击地面站上的磁罗盘校准,校准方法见飞机使用教程。 7、打开地面站,检查手柄设置是否为美国手,检查超声波是否禁用,飞机的参数设置是否符合要求。 8、调试完成后,将喷杆安装在飞机左右两侧,插紧导管,通电测试喷洒系统是否运转正常。 9、测试飞行,以及航线的试飞,观察飞机在走航线的过程中是否需要对规划好的航线进行修改。 10、试飞过程中,务必提前观察飞机运行灯的状态,以及地面站所显示的GPS 星数,及时做出预判。 11、飞行的遥控距离为飞机左右两侧六到七米,避免站在飞机机尾的正后方。 12、飞机断电加水加药,通电测试喷头是否出水出药。 13、完成以后,根据当天天气情况和风速,通电让GPS适应当前气象情况,

最新无人机安全飞行注意事项资料

无人机安全飞行注意事项 1、安全飞行的定义 飞行安全是指航空器在运行过程中,不出现由于运行失当或外来原因而造成航空器上的人员或者航空器损坏的事件。事实上,由于航空器的设计,制造与维护难免有缺陷,其运行环境包括起降场地,运行空域,助航系统,气象情况等又复杂多变,机组人员操纵也难免出现失误等原因。 2、飞行前,注意气象观察 影响无人机飞行的气象环境主要包括:风速,雨雪,大雾,空气密度,大气温度等。 风速:建议飞行风速在4级(5.5-7.9米/秒)以下,遇到楼层或者峡谷等注意突风现象。通常起飞重量越大,抗风性越好。 雨雪:市面上多数无人机设备无防水功能,故雨雪行程的水滴会影响飞行器电子电路部分短路或漏电的情况,其次机械结构部分零件为铁或钢等金属材料,进水后会腐蚀或生锈,影响机械运动正常运行。 大雾:主要影响操纵人员的视线和镜头画面,难以判断实际安全距离。 空气密度:大气层空气密度随着海拔高度的增加,空气密度减小。在空气密度较低的环境中飞行,飞行器的转速增加,电流增大,进而减少续航时间。 大气温度:飞行环境温度非常重要,主要不利于电机/电池/电调等散热,大多数无人机采用风冷自然散热。温度环境与飞行器运行温度温差越小,散热越慢。3、飞行前,注意观察飞行区域周边电磁干扰源情况 现在主流的飞行器无线电遥控设备采用2.4G频段,现在家用的无线路由均采用2.4G模段,发射功率虽然不高,城市区的数量大,难免会干扰遥控器的无线操控,导致失控。 其次,为是保证手机信号的覆盖率,所以国内三大(电信,移动,联通)电信运营公司,在城中或乡镇地区密集性建设地面基站网络。虽然次无线发射信号的频率和无人机遥控设备的频率相差较大,但由于地面基站发射功率较大,无人机靠近时,直接影响飞控的正常工作。 最后,部分较大型无线电设备直接影响飞行。例如:雷达,广播电视信号塔,高压线(电弧区)等。 另外,尽量避免在人群稠密或闹市区飞行,例如:公园,树多,空间狭小的地方。注意地面相对环境的变化,起飞和降落时,注意小孩,宠物的位置。

(完整版)无人机飞行控制系统仿真研究本科生毕业论文

1 绪论 本章先主要介绍了无人机进无人机的特点,国内外研究现状和发展趋势及这篇文章的主要内容安排。 1.1无人机概述 无人机即无人驾驶飞机,也称为遥控驾驶飞行器,是机上没有驾驶员,靠自身程序控制装置操纵,自动飞行或者由人在地面或母机上进行遥控的无人驾驶飞行器,在它上面装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统实现远距离控制飞行。无人机大体上由无人机载体、地面站设备(无线电控制、任务控制、发射回收等起降装置)以及有效负荷三部分组成。 无人机在航空业已有一百年的历史了。第一驾遥控航模飞机于1909年在美国试飞成功。1915年10月德国西门子公司研制成功采用伺服控制装置和指令制导的滑翔炸弹,它被公认为有控的无人机的先驱。世界上第一架无人机是英国人于1917年研制的。这是一架无线电操纵的小型单翼机,由于当时的许多技术问题,所以试验失败。一直到1921年英国才研制成可付诸实用的第一驾靶机。1918年德国也研制成第一驾无人驾驶的遥控飞机。1920年简氏《世界各地飞机》首次提到无人机。20世纪30年代初无线电操纵的无人靶机研制成功。在20世纪40至50年代,无人机逐渐得到了广泛使用,但这时主要是作为靶机使用。世界各国空军于20世纪50年代大量装备了无人驾驶飞机作为空靶。进入20世纪60年代后,美国出于冷战需要,将无人机研究重点放在侦察用途方面,这标志着无人机技术开始进入了以应用需求为牵引的快速发展时代。 由于无人机具有低成本、零伤亡、可重复使用和高机动等优点,因此

深受世界各国军队的广泛欢迎,近年来得到了快速发展。对于无人机而言,其自动飞行控制系统的设计是至关重要的,它的优劣程度直接影响到无人机各项性能(包括起飞着陆性能、作业飞行性能、飞行安全可靠性能、系统的自动化性和可维护性等)。因此,研究无人机的自动飞行控制技术具有十分重要的现实意义,尤其是在军事上的重要性己经得到国内外的高度重视,而无人机飞行控制系统是无人机能够安全、有效地完成复杂战术、战略使命的基本前提,因此迫切需要加强该领域的研究工作。 无人机的研制早在 20 世纪初就开始了,几乎与有人机同步,自30年代国外首次采用无线电操纵的模型飞机作为靶机以后,无人机的发展十分迅速。40年代,低空低速的小型活塞式靶机投入使用。50年代出现了高亚音速和超音速高性能的靶机,世界各国空军开始大量装备无人机作为空靶。60年代以后,随着微电子技术、导航与控制技术的发展,一些国家研制了无人驾驶侦察机,美国率先研制成功无人驾驶侦察机,并开始用于越战。无人机受到越来越多国家的青睐,发展迅猛。在1982年的中东战争中,以色列在贝卡谷地交战中,用“侦察兵”和“猛犬”无人机诱骗叙军的地空导弹的制导雷达开机,侦查获取了雷达的工作参数并测定了其所在位置。无人机的飞速发展是在海湾战争后,以美国为首的多国部队的无人机在海湾战争中成功地完成了战场侦察、火炮校射、通信中继和电子对抗任务。无人机的研制成功和战场运用,揭开了以远距离攻击型智能化武器、信息化武器为主导的“非接触性战争”的新篇章,由此引发了无人机及其飞行控制研究的热潮。 美国、英国、法国、德国、以色列、澳大利亚等国都针对这个领域投入了相当的研究力量。究其原因,用无人机替代有人驾驶飞机可以降低生产成本,便于运输、维修和保养,而且不用考虑人的生理和心理承受极限。未来无人机在军事和民事上都有广泛的应用前景。在军事领域,采用无人

XX公司无人机安全管理规定

XXX公司部门:产品部 文件编号:XX空间-安全-001 发布日期:2015-10-10 无人机安全规则 第页,共页 目录 1.目的 2.适用范围及分类 3.定义 4.民用无人机机长的职责和权限 5.民用无人机驾驶员 6.民用无人机使用说明书 7.禁止粗心或鲁莽的操作 8.摄入酒精和药物的限制 9.飞行前准备 10.限制区域 11.视距内运行(VLOS ) 12.视距外运行(BVLOS ) 13.民用无人机运行的仪表、设备和标识要求 14.管理方式

1.目的 为确保无人机安全调试,正确飞行,减少无人机的安全事故和意外伤害,特制定此规定, 规范公司内无人机的使用和规范操作 2.适用范围及分类 本咨询通告适用于轻小型民用无人机运行管理。其涵盖范围包括: 2.1 空机重量小于等于116 千克、起飞全重小于150 千克的无人机,且动能不大于95 千焦,校正空速不超过100 千米、/小时; 2.5 轻小型无人机运行管理分类: 3.定义 3.1 无人机(UA: Unmanned Aircraft ),是一架由控制站管理(包括远程操纵或自主飞行)的航空器,也称远程驾驶航空器(RPA: Remotely Piloted Aircraft )。 3.2 无人机系统(UAS:Unmanned Aircraft System ),也称远程驾驶航空器系统(RPAS: Remotely Piloted Aircraft Systems ),是指由无人机、相关控制站、所需的指令与控制数 据链路以及批准的型号设计规定的任何其他部件组成的系统。 3.3 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适 时操纵无人机的人。 3.4 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。

无人机飞行控制系统仿真研究

无人机的数学模型 无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。可反复使用多次,广泛用于空中侦察、监视、通信、反潜和电子干扰等。因此研究无人机控制系统的设计具有重要意义。要研究无人机动力学模型的姿态仿真,首先必须建立飞机的数学模型。在忽略机体震动和变形的条件下,飞机的运动可以看成包含六个自由度的刚体运动,其中包含绕三个轴的三种转动(滚动、俯仰与偏航)和沿三个轴的线运动。为了确切的描述飞机的运动状态,必须选择合适的坐标系。 1.1常用坐标系 1.1.1地面坐标系 地面坐标系是与地球固连的坐标系。原点A固定在地面的某点,铅垂轴向上为正,纵轴与横轴为水平面内互相垂直的两轴。见图1-1。 图1-1 地面坐标系 1.1.2机体坐标系 机体坐标系原点在机的重心上,纵轴在飞机对称平面内,平行于翼弦,指向机头 为正;立轴也在飞机对称平面内并垂直于,指向座舱盖为正;横轴与平面垂直,指向右翼为正,见图1-2。 图1-2 机体坐标系

1.1.3速度坐标系 速度坐标系原点也在飞机的重心上,但轴与飞机速度向量V重合;也在对称平面内并垂直于,指向座舱盖为正;垂直于平面,指向右翼为正,见图2-3。 图1-3 速度坐标系 1.2飞机的常用运动参数 飞机的运动参数就是完整地描述飞机在空中飞行所需要的变量,只要这些参数确定了,飞机的运动也就唯一地确定了。因此,飞机的运动参数也是飞机控制系统中的被控量。被控量包括俯仰角、滚转角、偏航角、仰角、侧滑角、航迹倾斜角,航迹偏转角; 同时利用副翼、方向舵、升降舵及油门杆来进行对飞机的控制。这些称为无人机飞控系统中的控制量。 1.3.1 无人机六自由度运动方程式的建立 基于飞机运动刚体性的假设,我们就可以推导出飞机的一般数学模型为一组非线性微分方程组。根据牛顿定律,其运动方程应由两部分组成:一部分是以牛顿第二定律(动力定律)为基础的动力学方程组,由此解得无人机相对于机体坐标系的角度向量和角速度向量;另一部分则是通过坐标变换关系得出的运动学方程组确定出无人机相对于地面坐标系的位置向量和速度向量。 根据牛顿第二定律F=ma可以列出无人机三轴力的动力学方程组:

无人机航摄安全作业基本要求

1无人机航摄安全作业规程 1.1总体安全指标 (1)设计飞行高度应高于摄区和航路上最高点100m以上; (2)设计航线总航程应小于无人机能到达的最远航程。 1.2实地采集信息 工作人员需对摄区或摄区周围进行实地踏勘,采集地形地貌、地表植被以及周边的机场、重要设施、城镇布局、道路交通、人口密度等信息,为起降场地的选取、航线规划、应急预案制订等提供资料。 1.3起降场地坐标 实地踏勘时,应携带手持或车载GPS设备,记录起降场地和重要目标的坐标位置,结合已有的地图或影像资料,计算起降场地的高程,确定相对于起降场地的航摄飞行高度。 1.4场地选取: 根据无人机的起降方式,寻找并选取适合的起降场地,非应急性质的航摄作业,起降场地应满足以下要求: (1)距离军用、商用机场须在15km以上; (2)起降场地相对平坦、通视良好; (3)远离人口密集区,半径200m范围内不能有高压线、高大建筑物、重要设施等; (4)起降场地地面应无明显凸起的岩石块、土坎、树桩,也无水塘、大沟渠等; (5)附近应无正在使用的雷达站、微波中继、无限通信等干扰源,在不能确定的情况下,应测试信号的频率和强度,如对系统设备有干扰,须改变起降场地; (6)无人机采用滑跑起飞、滑行降落的,滑跑路面条件应满足其性能指标要求。

1.5飞行检查与操控 1.5.1飞行前检查 每次飞行前,须仔细检查设备的状态是否正常。检查工作应按照检查内容逐项进行,对直接影响飞行安全的无人机的动力系统、电气系统、执行机构以及航路点数据等应重点检查。每项内容须两名操作员同时检查或交叉检查。 1.5.1.1设备使用记录 记录使用设备的型号和编号(见表1),用于设备使用时间的统计、故障的查找和分析。 表1设备使用记录表 1.5.1.2地面监控站设备检查 检查地面监控站设备并记录检查结果(见表2),存在问题的应注明。 表2地面监控站设备检查项目 1.5.1.3任务设备检查 检查任务设备并记录检查结果(见表3),存在问题的须注明。此处任务设备为单反数码相机,其他类别任务设备的检查项目和检查内容参照执行,表中未列项目应根据需要按照任务设备使用说明进行检查。

多旋翼无人机飞行控制系统设计与实现研究

龙源期刊网 https://www.360docs.net/doc/5c8573156.html, 多旋翼无人机飞行控制系统设计与实现研究作者:明志舒黄鹏刘志强李乐蒙高凯 来源:《科技资讯》2017年第29期 摘要:随着社会的进步和国民经济的发展,现代高新科技的发展得到了前所未有的推 进,为各行业的进步和发展提供了良好的保障。近些年来出现的多旋翼无人机,是一种集合多项现代高新科技的成果,具有定点悬停功能,能够实现在现代军事、工业、农业等各个领域的应用。本文就四旋翼无人机为例,探讨了多旋翼无人机飞行控制系统的设计以及实现。 关键词:多旋翼无人机飞行控制系统设计与实现研究无人机飞行控制系统 中图分类号:V249 文献标识码:A 文章编号:1672-3791(2017)10(b)-0057-02 1 飞行控制系统的硬件设计 本文设计的飞行控制系统在硬件方面主要分为控制器、传感器、电源、执行机构和遥控接收等模块,具体论述如下。 1.1 控制器 我们利用美国德州仪器公司所研发的TMS320F28335当作控制器当中的主芯片,可以说它是当下功能最为强大的一种芯片,具备对信号加以处理的功能,而且还有嵌入式控制以及针对事件加以管理的功能。该芯片的外部接口基本原则为:将飞控系统作为基础而定。该芯片不管是在引脚数目上,还是在引脚功能方面都非常贴合飞控系统的全部要求,所以说只要针对芯片的接口加以少量地拓展就可以了。其主要的特征为:(1)利用到了哈弗总线结构。(2)其代码安全模块利用到了128位密码对Flash加以保护,保证相关寄存器在数据方面的安全。(3)TMS320F28335的应用,实现了对开发时间大幅度的节约,这主要是其利用到了目前应用比较广泛的C/C++语言。(4)1K×16 OTP ROM以及8K×16形式的Boot ROM,供给出了两个用于采样的电力,继而实现了对两个通道上信号实施的同步采集,所以有着非常高效的处理能力以及运算的精度,确保了信号所具备的时效性以及高速性。 1.2 传感器 1.2.1 陀螺仪 陀螺仪能够对检测指示器中的数据加以显示,是自动控制系统当中的一个非常重要的组成。应用的陀螺仪是MPU6050三轴形式的陀螺仪,具有16位的模拟、数字转换器,使输出模拟量实现向可输出数字量的转化。 1.2.2 加速度传感器

无人机飞行管理规定

无人机飞行管理规定 1.从事通用航空飞行活动的单位、个人使用机场飞行空域、航路、航线,应当按照国家有关规定向飞行管制部门提出申请,经批准后方可实施。 2.从事通用航空飞行活动的单位、个人,根据飞行活动要求,需要划设临时飞行空域的,应当向有关飞行管制部门提出划设临时飞行空域的申请。划设临时飞行空域的申请,应当在拟使用临时飞行空域7个工作日前向有关飞行管制部门提出。负责批准该临时飞行空域的飞行管制部门应当在拟使用临时飞行空域3个工作日前作出批准或者不予批准的决定,并通知申请人。 以下摘取的部分无人机法规: (1)无人机(UA:Unmanned Aircraft),是由控制站管理(包括远程操纵或自主飞行)的航空器。也称远程驾驶航空器(RPA:Remotely Piloted Aircraft) (2)无人机系统(UAS:Unmanned Aircraft System),也称远程驾驶航空器系统(RPAS:Remotely Piloted Aircraft Systems),是指由无人机、相关的控制站、所需的指令与控制数据链路以及批准的型号设计规定的任何其他部件组成的系统。 (3)无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵无人机的人。

(4)无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 (5)无人机观测员,由运营人指定的训练有素的人员,通过目视观测无人机,协助无人机驾驶员安全实施飞行,通常由运营人管理,无证照要求。 (6)运营人,是指从事或拟从事航空器运营的个人、组织或企业。 (7)控制站(也称遥控站、地面站),无人机系统的组成部分,包括用于操纵无人机的设备。 (8)指令与控制数据链路(C2:Commandand Control datalink),是指无人机和控制站之间为飞行管理之目的的数据链接。 (9)感知与避让,是指看见、察觉或发现交通冲突或其他危险并采取适当行动的能力。 (10)无人机感知与避让系统,是指无人机机载安装的一种设备,用以确保无人机与其它航空器保持一定的安全飞行间隔,相当于载人航空器的防撞系统。在融合空域中运行的Ⅺ、Ⅻ类无人机应安装此种系统。 (11)视距内(VLOS:Visual Line of Sight)运行,无人机在驾驶员或观测员与无人机保持直接目视视觉接触的范围内运行,且该范围为目视视距内半径不大于500米,人、机相对高度不大于120米。

无人机航摄安全作业基本要求1

无人机航摄安全作业基本要求 一、无人机飞行高度和总航程是影响飞行安全的重要指标,技术设计应符合以下要求: 1、设计飞行高度应高于摄区和航路上最高点100m以上; 2、设计航线总航程应小于无人机能到达的最远航程。 二、实地采集信息 工作人员需对摄区或摄区周围进行实地踏勘,采集地形地貌、地表植被以及周边的机场、重要设施、城镇布局、道路交通、人口密度等信息,为起降场地的选取、航线规划、应急预案制订等提供资料。 三、起降场地坐标 实地踏勘时,应携带手持或车载GPS设备,记录起降场地和重要目标的坐标位置,结合已有的地图或影像资料,计算起降场地的高程,确定相对于起降场地的航摄飞行高度。 四、场地选取: 1、常规航摄作业 根据无人机的起降方式,寻找并选取适合的起降场地,非应急性质的航摄作业,起降场地应满足以下要求: a)距离军用、商用机场须在15km以上; b)起降场地相对平坦、通视良好; c)远离人口密集区,半径200m范围内不能有高压线、高大建筑物、重要设施等; d)起降场地地面应无明显凸起的岩石块、土坎、树桩,也无水塘、大沟渠等; e)附近应无正在使用的雷达站、微波中继、无限通信等干扰源,在不能确定的情况下,应测试信号的频率和强度,如对系统设备有干扰,须改变起降场地; f)无人机采用滑跑起飞、滑行降落的,滑跑路面条件应满足其性能指标要求。 2、应急航摄作业 灾害调查与监测等应急性质的航摄作业,在保证飞行安全的前提下,起降场地要求可适当放宽。 五、飞行检查与操控 (一)飞行前检查 每次飞行前,须仔细检查设备的状态是否正常。检查工作应按照检查内容逐项进行,对直接影响飞行安全的无人机的动力系统、电气系统、执行机构以及航路点数据等应重点检查。每项内容须两名操作员同时检查或交叉检查。

相关文档
最新文档