线性规划的实际应用
线性规划在生产调度中的实际应用

线性规划在生产调度中的实际应用在当今竞争激烈的市场环境中,企业要想提高生产效率、降低成本、优化资源配置,生产调度的合理性至关重要。
而线性规划作为一种有效的数学工具,在解决生产调度问题方面发挥着重要作用。
线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支。
它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题。
简单来说,就是在一组线性等式或不等式的约束条件下,求一个线性目标函数的最大值或最小值。
在生产调度中,企业通常面临着多种资源的有限性和多种任务的需求。
例如,原材料的供应有限、机器设备的产能有限、工人的工作时间有限等,而同时又需要满足订单的交付日期、产品的质量要求等。
线性规划可以帮助企业在这些限制条件下,做出最优的生产计划和调度安排。
假设一家服装厂,有三种款式的服装需要生产:衬衫、裤子和外套。
生产每种服装所需的布料、工时以及每种服装的利润都不同。
同时,工厂拥有一定数量的布料和工人工作时间。
那么,如何安排生产才能使工厂的利润最大化呢?这就是一个典型的线性规划问题。
首先,我们需要确定决策变量。
在这个例子中,决策变量可以设为生产每种服装的数量,比如生产衬衫的数量为 x1,生产裤子的数量为x2,生产外套的数量为 x3。
然后,我们需要确定目标函数。
目标是使工厂的利润最大化,利润等于每种服装的销售价格乘以生产数量再减去生产成本。
假设衬衫、裤子和外套的单位利润分别为 p1、p2 和 p3,那么目标函数可以表示为:Z = p1 x1 + p2 x2 + p3 x3接下来,我们需要确定约束条件。
约束条件包括布料的限制、工时的限制等。
假设生产一件衬衫需要 b1 米布料,生产一件裤子需要 b2米布料,生产一件外套需要 b3 米布料,工厂拥有的布料总量为 B,那么布料的约束条件可以表示为:b1 x1 + b2 x2 + b3 x3 <= B 同样,假设生产一件衬衫需要 h1 个工时,生产一件裤子需要 h2 个工时,生产一件外套需要 h3 个工时,工人的总工作时间为 H,那么工时的约束条件可以表示为:h1 x1 + h2 x2 + h3 x3 <= H 此外,还可能有其他的约束条件,比如每种服装的最低生产数量要求等。
线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用一、线性规划的基本概念线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素.二、线性规划模型在实际问题中的应用(1)线性规划在企业管理中的应用范围线性规划在企业管理中的应用广泛,主要有以下八种形式:1。
产品生产计划:合理利用人力、物力、财力等,是获利最大。
2.劳动力安排:用最少的劳动力来满足工作的需要。
3.运输问题:如何制定运输方案,使总运费最少.4.合理利用线材问题:如何下料,使用料最少.5。
配料问题:在原料供应的限制下如何获得最大利润.6。
投资问题:从投资项目中选取方案,是投资回报最大。
7.库存问题 :在市场需求和生产实际之间,如何控制库存量从而获得更高利益.8。
最有经济计划问题 :在投资和生产计划中如何是风险最小.(2)如何实现线性规划在企业管理中的应用在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源。
首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.3.3 线性规划在运输问题中的应用运输是物流活动的核心环节,线性规划是运输问题的常用数学模型,利用数学知识可以得到优化的运输方案.运输问题的提出源于如何物流活动中的运输路线或配送方案是最经济或最低成本的.运输问题解决的是已知产地的供应量,销地的需求量及运输单价,如何寻找总配送成本最低的方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题的条件包括需求假设和成本假设。
线性规划的实际应用举例

线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。
1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。
已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。
问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。
那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。
从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。
作出以上不等式组所表示的平面区域(图1),即可行域。
令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。
答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。
2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。
每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。
可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。
问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。
实际问题中的线性规划方法

实际问题中的线性规划方法线性规划是数学中一种非常重要的优化方法,广泛应用于各个领域。
在实际问题中,线性规划方法可以很好地解决很多优化问题。
本文将会介绍线性规划方法在实际问题中的应用,例如网络流问题、供应链优化问题以及航空公司航班计划问题等。
一、网络流问题网络流问题是指在具有网络形式的问题中,求得网络中一些关键指标的最优解。
这些指标可能是物流方面的,也可能是通信方面的,甚至可能与能源、水资产有关。
这个问题的形式是一组由多个变量组成的线性方程组,并且这些方程组的决策变量通常用来描述网络的流量问题。
这里的问题是要求出网络中流量的最大值图。
在实际应用中,经常使用线性规划的方法来解决这种问题。
例如,在物流配送领域,我们可能需要在多个仓库和客户之间优化货物的运输路线。
当运输网络以“源点”(例如一个集散地或一个公路)开始,并以“汇点”(例如一家客户或一个仓库)结束时,通常需要考虑许多线性限制约束,例如运输成本、运输距离和货物数量等。
使用线性规划的方法,可以快速找到最小的总运输成本以及分配给每个节点的货物数量,从而提高物流的效率并降低成本。
二、供应链优化问题供应链优化问题通常可以看作是网络流问题的一个具体实例,它也可以使用线性规划的方法以最小化成本或最大化利润的方案来求解。
这个问题涉及到优化生产和分销的方案,从而最大限度地降低整个供应链的成本或提高利润。
这种问题通常包括许多限制条件,例如合理的货物存储、库存管理、运输和分销等。
线性规划的方法可以非常有效地解决这些问题,以实现最优化的运营方案。
例如,在某个制造公司中,我们可能需要考虑如何最小化原材料和物流成本,同时最大程度地利用现有的生产能力以及最大程度地满足客户要求。
这个问题涉及到许多因素,例如供应链的表现、货物的需求、生产规模等。
使用线性规划的方法,可以快速找到最佳的物流路线、最佳的生产数量以及最佳的库存管理方案等,从而提高供应链的效率。
三、航空公司航班计划问题航空公司航班计划问题是指在规定时间内,根据市场需要以及规定的飞行路线等因素,为航空公司确定一个最佳的航班计划。
线性规划的应用与求解方法

线性规划的应用与求解方法线性规划是数学中一种重要的优化方法,被广泛应用于各个领域,如经济学、管理学、工程学等。
它可以帮助我们在给定的约束条件下,找到最优解,使得目标函数取得最大值或最小值。
本文将介绍线性规划的应用领域以及常用的求解方法。
一、线性规划的应用领域1. 生产与资源分配线性规划可以帮助企业合理安排生产资源,优化生产效率。
例如,一个工厂需要决定如何分配有限的人力、物力和财力,以满足最大产出或最小成本的要求。
线性规划可以帮助企业找到最佳的资源分配方案,提高生产效率。
2. 项目排程与调度线性规划可以用于项目排程与调度问题,帮助规划员安排项目的开始时间、结束时间和资源分配。
例如,在建设一个大型工程项目时,需要考虑多个任务的依赖关系、资源限制和时间限制,线性规划可以帮助规划员合理安排项目进度,最大程度地利用资源。
3. 物流与运输线性规划可以用于优化物流与运输问题。
例如,一个配送中心需要决定如何将货物从不同供应商配送到不同的客户,以最小化运输成本。
线性规划可以帮助物流公司找到最佳的配送路线和运输方案,提高运输效率。
4. 投资与资产配置线性规划可以用于优化投资与资产配置问题。
例如,一个投资者希望在多个资产中进行配置,以最大化收益或最小化风险。
线性规划可以帮助投资者找到最佳的资产配置方案,提高投资收益率。
二、线性规划的求解方法1. 图形法图形法是线性规划最直观的求解方法之一。
它通过绘制目标函数和约束条件所对应的直线或曲线,找到使目标函数取得最大(小)值的交点。
但是,图形法只适用于二维线性规划问题,对于多维问题并不适用。
2. 单纯形法单纯形法是线性规划最常用的求解方法之一。
它通过迭代的方式,在可行域内搜索有效解。
单纯形法首先找到一个基础解,并在每一步中通过改进的方式找到更优的基础解,直到找到最优解为止。
单纯形法可以求解多维线性规划问题,并且具有较高的效率。
3. 对偶理论对偶理论是线性规划的重要理论基础。
它将线性规划问题转化为对偶问题,并通过对偶问题的求解来获得原问题的最优解。
线性规划的应用

线性规划的应用引言概述:线性规划是一种优化问题的数学建模方法,可以用于解决许多实际问题。
本文将探讨线性规划在不同领域的应用,包括生产计划、资源分配、运输问题、金融投资和市场营销等。
一、生产计划1.1 产能规划:线性规划可以匡助企业确定最优产能规划,通过最大化产量和最小化成本,实现生产效益的最大化。
1.2 原材料采购:线性规划可以优化原材料的采购计划,确保原材料的供应充足,同时最小化采购成本。
1.3 生产调度:线性规划可以匡助企业制定最佳的生产调度方案,合理安排生产过程,提高生产效率和产品质量。
二、资源分配2.1 人力资源:线性规划可以匡助企业合理分配人力资源,根据不同部门和岗位的需求,确定最佳的人员配置方案。
2.2 设备调度:线性规划可以优化设备的调度计划,确保设备的利用率最大化,减少闲置时间和能源浪费。
2.3 资金分配:线性规划可以匡助企业合理分配资金,根据不同项目的需求,确定最佳的资金分配方案,实现资金的最大效益。
三、运输问题3.1 物流配送:线性规划可以优化物流配送路线,确定最佳的配送方案,减少运输成本和时间。
3.2 仓储管理:线性规划可以匡助企业优化仓储管理,确定最佳的仓储位置和库存量,减少库存成本和仓储空间的浪费。
3.3 运输调度:线性规划可以匡助企业制定最佳的运输调度计划,合理安排运输车辆和货物的装载,提高运输效率和减少运输成本。
四、金融投资4.1 资产配置:线性规划可以匡助投资者确定最佳的资产配置方案,平衡风险和收益,实现投资组合的最优化。
4.2 资金规划:线性规划可以优化资金的规划和运用,确保资金的最大化利用和最小化风险。
4.3 投资决策:线性规划可以匡助企业制定最佳的投资决策方案,根据不同项目的收益和风险,确定最优的投资方向。
五、市场营销5.1 定价策略:线性规划可以匡助企业确定最佳的定价策略,根据市场需求和成本考虑,确定最优的价格水平。
5.2 促销策略:线性规划可以优化促销策略,确定最佳的促销活动方案,提高产品销售量和市场份额。
高中数学突破线性规划的实际应用

高中数学突破线性规划的实际应用在高中数学的学习中,线性规划是一个重要的知识点,它不仅在数学领域有着广泛的应用,在实际生活中也发挥着巨大的作用。
线性规划问题可以帮助我们在有限的资源条件下,做出最优的决策,实现效益的最大化。
首先,让我们来了解一下线性规划的基本概念。
线性规划是研究在线性约束条件下,使某个线性目标函数取得最优值(最大值或最小值)的问题。
其数学模型通常由决策变量、目标函数和约束条件三部分组成。
决策变量表示我们需要做出决策的数量或取值;目标函数是我们想要优化的对象,比如成本最小化、利润最大化等;约束条件则限制了决策变量的取值范围。
那么,线性规划在实际生活中有哪些具体的应用呢?一个常见的应用是资源分配问题。
比如,一家工厂有一定数量的原材料、人力和设备,要生产多种产品。
每种产品的生产都需要消耗一定量的资源,并且能带来不同的利润。
那么如何安排生产计划,才能在资源有限的情况下,使总利润最大呢?这就可以通过建立线性规划模型来解决。
我们设生产产品 A 的数量为 x1,生产产品 B 的数量为 x2 等等。
然后根据每种产品所需的原材料、人力和设备等资源,列出相应的约束条件。
比如,原材料的使用总量不能超过现有的库存,人力的工作时间总和不能超过规定的时长,设备的运行时间也有一定的限制。
同时,设定目标函数为总利润,即每种产品的利润乘以其产量的总和。
通过求解这个线性规划问题,我们就能得到最优的生产计划,即每种产品应该生产多少,从而实现利润的最大化。
再比如,运输问题也是线性规划的一个重要应用场景。
假设一家物流公司要将货物从多个发货地运输到多个收货地,每个发货地有一定数量的货物,每个收货地有一定的需求,不同的运输路线有着不同的运输成本。
那么如何安排运输方案,才能在满足需求的情况下,使总运输成本最低呢?我们可以设从发货地 i 运往收货地 j 的货物数量为 xij。
然后根据发货地的货物总量和收货地的需求,列出相应的约束条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划的实际应用 The Standardization Office was revised on the afternoon of December 13, 2020线性规划的实际应用摘要线性规划模型是科学与工程领域广泛应用的数学模型。
本文应用线性规划模型,以某水库输水管的选择为研究对象,以实现输水管的选择既能保证供水,又能使造价最低为目标,根据水库的特点和实际运行情况,分析了其输水管选择过程中线性规划模型的建立方法,并分别通过单纯形法和M A T L A B软件进行求解。
关键词线性规划模型单纯形法M A T L A B一、专著背景简介《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广L ag ra ng e 方法、非线性半定规划的增广La gr an ge方法、非线性二阶锥优化的增广La gr an ge方法以及整数规划的L ag ra n ge松弛方法。
《最优化方法》注重知识的准确性、系统性和论述的完整性,是学习最优化方法的一本入门书。
最优化方法(也称做方法)是近几十年形成的,它主要运用研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
最优化方法的主要研究对象是各种有的管理问题及其生产经营活动。
最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为的重要理论基础和的方法,被人们广泛地应用到、、工程建设、国防等各个领域,发挥着越来越重要的作用。
本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。
主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用-运输问题;以及动态规划的模型、求解、应用-资源分配问题。
二、专著的主要结构内容《最优化方法》是一本着重实际应用又有一定理论深度的最优化方法教材,内容包括线性规划、运输问题、整数规划、目标规划、非线性规划(无约束最优化与约束最优化)、动态规划等最基本、应用最广又最有代表性的最优化方法。
各章都由实例引入,对主要定理进行证明,引入相应的数学模型与算法,配有算法例题与详细步骤.章末附有习题,书末有习题解答与提示。
《最优化方法》还专辟一章,列举了用新版本的M AT LA B软件包及L IN DO/L IN GO优化软件包来计算的实例。
本教材在阐述基本概念与基本理论时,力求清晰、透彻,在适当地方配置了一些思考题,以促使读者深入思考,加深对内容的理解.在文字叙述方面力求语言浅显、简易明了、深入浅出,以便于学生学习。
内容概况如下:第1章线性规划主要内容包括:线性规划问题的基本概念;单纯形法;线性规划的对偶理论;运输问题;线性目标规划;线性规划应用实例。
第2章整数规划主要内容包括:整数规划问题的数学模型;分枝定界法;割平面法;型整数规划;指派问题与匈牙利解法。
第3章非线性规划的基本概念与基本原理主要内容包括:非线性规划的数学模型;无约束问题的最优性条件;凸函数与凸规划;解非线性规划的基本思路;一维搜索。
第4章无约束问题的最优化方法主要内容包括:变量轮换法;最速下降法;牛顿法;共轭梯度法;变尺度法简介。
第5章约束问题的最优化方法主要内容包括:约束极值问题的最优性条件;可行方向法;近似规划法;制约函数法;二次规划。
第6章动态规划主要内容包括:动态规划问题实例;动态规划的基本概念;最优性定理与基本方程;动态规划的应用举例。
第7章用优化软件计算实例主要内容包括:用MA TL AB优化工具箱计算实例;用LI ND O/LI N GO软件计算实例。
三、重点分析与心得体会《最优化方法》[1]这本书,着重实际应用又有一定理论深度的最优化方法教材,内容包括:线性规划[1-5]、运输问题[1-5]、整数规划[1-5]、目标规划[1-5]、非线性规划[1-5](无约束最优化与有约束最优化),动态规划[1-5]等最基本、应用最广最有代表性的最优化方法。
本人在此着重分析一下线性规划应用的相关问题。
线性规划,是自1947年丹齐格提出了求解线性规划一般放法-单纯性法以来,线性规划在理论上趋向成熟,日臻完善。
线性规划辅助人们进行科学管理,是国际应用数学经济管理计算机科学界所关注的重要研究领域。
线性规划主要研究有限资源的最佳分配问题,即如何对有限的资源进行最佳地调配和最有利地使用,以便于最充分发挥资源的效能来获取最佳的经济效益。
线性规划运用数学语言描述某些经济活动的过程,形成数学模型,以一定的算法对模型进行计算,为制定最优计划方案提供依据。
其解决问题的关键是建立符合实际情况的数学模型,即线性规划模型。
在各种经济活动中,常采用线性规划模型进行科学定量分析,安排生产组织与计划,实现人力物力资源的最优配置,获得最佳的经济效益。
目前,线性规划模型被广泛应用于经济管理交通运输工农业生产等领域。
线性规划的数学模型[6-9]线性规划问题是求线性目标函数在线性约束条件下的最大值或最小值的问题。
这类问题的数学表达式称为线性规划模型。
线性规划模型的一般形式包括决策变量、约束条件和目标函数三部分。
决策变量都是非负的,其值代表待解决问题的一个具体方案,形式如下:12,, 0n x x x ⋅⋅⋅≥约束条件都是线性等式或线性不等式,它们反映了待解决问题对资源的客观限制及对所要完成的任务的各类要求,形式如下:()()()11112211211222221122, ,........,n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b ++⋅⋅⋅+=><+++=><+++=><其中,ij a 为第i 个约束条件中对应第j 个变量的约束条件系数,i b 是第i 个约束条件的右边常数,它表示必须满足的某种要求。
目标函数是决策变量的线性函数,根据待解决问题的不同,可要求目标函数Z 实现最大值或最小值,形式如下:()1122n n max min Z c x c x c x =++⋅⋅⋅+其中,12,,n c c c ⋅⋅⋅,是目标函数系数或价值系数。
、线性规划模型在某地区水库调节水池中的应用[10-11](1)最优化问题的提出某地区水源取自某水库,水库涵洞底标高为45m ,水输送到调节水池距离为1470m ,调节水池最高水位35m (高10m ) , 该段距离中要求输水量174/L s ;另一段,从调节水池输水到某水厂的距离为4780m ,调节水池低水位标高为30m ,水厂水池标高为17. 5m ,高差12. 5m ,要求输水量116/L s 可供铺设的输水管有四种不同直径,它们的单位长度造价和水头损失列于表中。
问应如何适当选择输水管进行铺设,既能保证供水,又能使造价最低。
表1 输水管道单位长度造价和水头损失(2)线性规划模型的建立对第一段水库到调节水池建立线性规划模型:① 选取决策变量根据水库的需要,选取管径为600500400300、 、 、 的输水营的铺设长度作为决策变量,并且决策变量分别设为1 2 34 ,, , x x x x 。
② 确定目标函数水库的目标是既能保证供水,又能使造价最低,目标函数如下:1234min 100705436x x x x +++③ 确定约束条件约束条件是由水库的特点和输水管性能决定的,它反映了决策变量与水库参数之间必须遵循的关系。
如果在建立模型时忽略了重要的约束条件,则求得的解不可信;但如果过于细微,约束条件数目增加,计算时间也将增加;同时由于变量多,关系复杂,比较容易给出互为矛盾的约束条件,造成模型无解。
供水保证约束:1 2 34 1470x x x x +++=要求输水量为174/L s 时,该段总水头损失不超过10m :12340. 873 2. 160 6. 706 31. 00010 1000x x x x +++≤⨯非负约束:1234,,,0x x x x ≥得到如下线性规划模型为:1234123412341234min 100 70 54 36. .0. 873 2. 160 6. 760 31. 00010 1000 1470, , , 0x x x x s t x x x x x x x x x x x x ++++++≤⨯+++=≥同理可得到第二段水库到调节水池建立线性规划模型:123412341 2341234 110 70 54 36 ,. .0. 419 1. 030 3. 120 13. 80012500 4780, , , 0min x x x x s t x x x x x x x x x x x x ++++++≤+++=≥、线性规划问题的分析与求解[10-11](1)单纯形法求解线性规划问题使用单纯形法求解线性规划时,首先要化问题为标准形式所谓标准形式是指下列形式:1max nj j j z c x ==∑1(1,,)0(1,2,,)nij j i j ja xb i m s t x j n =⎧==⎪⋅⋅⎨⎪≥=⎩∑当实际模型非标准形式时,可以通过以下变换化为标准形式:① 当目标函数为1min nj j j z c x ==∑时,可令Z Z '=-,而将其写成为:1min nj j j z c x ='=-∑求得最终解时,再求逆变换Z =-Z ′即可。
② 当s •t •中存在i n in i i b x a x a x a ≤+++ 2211形式的约束条件时,可引进变量:111221()0n i i i in n n x b a x a x a x x ++=-+++⎧⎨≥⎩便写原条件成为:1122110i i in n n i n a x a x a x x b x ++++++=⎧⎨≥⎩其中的1n x +称为松弛变量,其作用是化不等式约束为等式约束。
同理,若该约束不是用“≤”号连接,而是用“≥”连接,则可引进剩余变量: 111221()0n i i in n i n x a x a x a x b x ++=+++-⎧⎨≥⎩使原条件写成:11110i in n n i n a x a x x b x ++++-=⎧⎨≥⎩ 在将线性规划模型化为标准形后,便可使用单纯形法求解。
所谓单纯形法,是指1947年美国数学家乔治·丹捷格发明的一种求解线性规划模型的一般性方法。