指数函数比较大小PPT课件
第三章 第五节 指数函数 课件(共53张PPT)

由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为
2025届高中数学一轮复习课件《指数函数》PPT

第29页
求解与指数函数有关的复合函数问题时,首先要熟知指数函数的定义域、值域、单调性 等相关性质,其次要明确复合函数的构成,当涉及单调性问题时,要借助“同增异减”这一 性质分析判断.
高考一轮总复习•数学
第30页
对点练 4(1)(2024·山东莱芜模拟)已知函数 f(x)=|-2x-x+15|,,xx≤>22,, 若函数 g(x)=f(x)-
解析:∵y=35x 是 R 上的减函数,∴35-13 >35-14 >350,即 a>b>1,又 c=32-34 <320 =1,∴c<b<a.
高考一轮总复习•数学
第11页
4.(2024·四川成都模拟)若函数 f(x)=13-x2+4ax 在区间(1,2)上单调递增,则 a 的取值范 围为___-__∞__,__12_ _.
在(4,+∞)上单调递增.令12x≤4,得 x≥-2,令12x>4,得 x<-2, 代入外层函数的单调递减区间,得到自变量 x 的取值范围,这才是复合函数的单调递增 区间. 而函数 t=12x 在 R 上单调递减,所以函数 y=122x-8·12x+17 的单调递增区间为[-2, +∞).
高考一轮总复习•数学
所谓“底大图高”,反映指数函数的排列规律.
高考一轮总复习•数学
第8页
1.判断下列结论是否正确. (1)函数 y=a-x(a>0,且 a≠1)是 R 上的增函数.( ) (2)函数 y=ax(a>0,且 a≠1)与 x 轴有且只有一个交点.( ) (3)若 am>an,则 m>n.( ) (4)函数 y=ax 与 y=a-x(a>0,且 a≠1)的图象关于 y 轴对称.( √ )
高一数学指数函数ppt课件

图像法
运算性质法
利用指数函数的运算性质,如乘法公 式和指数法则,推导出奇偶性的判断 方法。例如,若f(x)和g(x)都是奇函数, 则f(x)*g(x)也是奇函数。
通过观察指数函数的图像,判断其是 否关于原点对称或关于y轴对称,从而 确定函数的奇偶性。
06 典型例题解析与 课堂互动环节
典型例题选讲及思路点拨
指数函数的图像关于y轴对称。
当a>1时,函数在定义域内单调递增,图 像上升;当0<a<1时,函数在定义域内单 调递减,图像下降。
指数函数图像特点 函数图像过定点(0,1)。
指数函数性质探讨
指数函数的单调性
01
当a>1时,函数在R上单调递增;当0<a<1时,函数在R上单调
递减。
指数函数的周期性
02
指数函数不是周期函数。
应用举例
$3^4 = (frac{3}{2})^4 times 2^4$
对数转换
当底数不同且难以直接 计算时,可通过对数转 换为相同底数进行计算。
应用举例
比较 $7^{10}$ 和 $10^7$ 的大小,可转 换为比较 $10 times
log7$ 和 $7 times log10$。
复杂表达式化简技巧
利用指数函数构建可持续增长模型,可以预测未来经济发展的趋势和可能遇到的问 题,帮助学生了解经济增长的复杂性和不确定性。
05 指数函数图像变 换与性质变化规 律
平移、伸缩变换对图像影响
平移变换
指数函数图像沿x轴或y轴平移,不改 变函数的形状和周期性,只改变函数 的位置。
伸缩变换
通过改变函数的参数,实现对指数函 数图像的横向或纵向伸缩,从而改变 函数的周期和振幅。
幂函数指数函数对数函数比较大小 ppt课件

(1)定义域:R (2)值域:(0, +)
(3)单调性:当01时,指数函数在定义域上是减函数 当1时,指数函数在定义域上是增函数
(4)奇偶性:非奇非偶
幂函数指数函数对数函数比较大小
幂函数指数函数对数函数比较大小
幂函数指数函数对数函数比较大小 Nhomakorabea精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
指数函数图像和性质_完整ppt课件

-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2
3
2.8
2.6
2.4
2.2
2 1.8
f x = 0.9 x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.5 -0.2
-0.4
0.5
1
1.5
2
2.5
3
3.5
4
13
练习: 1、已知下列不等式,试比较m、n的大小:
(2)m (2)n
ppt精选版
1
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
解 :根据指数函数的性质, 由图像得,
1.70.3 1 且 0.93.1 1 从而有
1.70.3 > 0.93.1
或者
1.70.3 > 1.7 0 > 0.90 > 0.93.1
ppt精选版
f x = 1.7
3.2
3
2.8
2.6
2.4
2.2
2
1.8
x
1.6
指数函数的概念PPT课件.ppt

二.图象与性质
1.图象的画法:性质指导下的列表描点法. 2.草图:
观察指数函数 f (x) ax (a 1)
性质
(1) 无论a为何值,指数函数 f (x) a x 都有定义域为R
值域为 0, ,都过点(0,1).
(2) a 1 时, f (x) a x 在定义域内为增函数; 0 a 1 时, f (x) a x 在定义域内为减函数.
(3)关于是否是指数函数的判断
请看下面函数是否是指数函数:
(1) y x
(2) y 0.3x2
(3) y ( 3)3x
(5) y 1 x 1 44
(4) y 2 ( 3 )2x 4
归纳性质
函数 y 2 x
1.定义域: R
2.值 域: 0,
3.奇偶性:既不是奇函数也不是偶函数
例2.比较下列各组数的大小.
(1) ( 1 )0.8与( 1 )1.8
4
2
(2)
(
8
)
3 7
与(
7
5
)12
7
8
(3) 1.080.3与0.983.1
小结比较大小的方法:
1.构造函数的方法: 数的特征是同底不同指 (包括可转化为同底的)
2. 搭桥比较法: 用特殊的数1或 0.
课堂小结
1.指数函数的概念 2.指数函数的图象和性质 3.简单应用
一、指数函数的概念
1.定义:形如 f (x) a x (a 0, a 1)的函数称为指数函数.
2.几点说明:
(1)关于对 a 的规定:
若 a 0 对于 x 0, a x 都无意义
《指数函数》PPT课件
商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。
。
工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随
指数函数的概念图象及性质PPT课件
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;
江苏省南京师范大学附属中学高中数学苏教版必修一课件:2.2.2指数函数 (共18张PPT)
进一步研究
不宜过早总结比较两个幂大小的方法,而应关注学生 是否认识到单调性是研究不等关系的工具.
谢谢!
在没找到重新开始的理由前,别给自己太多退却的借口。就在那一瞬间,我仿佛听见了全世界崩溃的声音。因为穷人很多,并且穷人没有钱,所以,他们才会在网络上聊 了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。分手后不可以做朋友,因为彼此伤害过;不可以做敌人,因为彼此深爱过,所以只好成了最 只有站在足够的高度才有资格被仰望。渐渐淡忘那些过去,不要把自己弄的那么压抑。往往原谅的人比道歉的人还需要勇气。因为爱,割舍爱,这种静默才是最深情的告 时光已成过往,是我再也回不去的远方。不要把自己的伤口揭开给别人看,世界上多的不是医师,多的是撒盐的人。这世界,比你不幸的人远远多过比你幸运的人,路要 的那一步很激动人心,但大部分的脚步是平凡甚至枯燥的,但没有这些脚步,或者耐不住这些平凡枯燥,你终归是无法迎来最后的'那些激动人心。一个人害怕的事,往往 都会有乐观的心态,每个人也会有悲观的现状,可事实往往我们只能看到乐观的一面,却又无视于悲观的真实。从来没有人喜欢过悲观,也没有人能够忍受悲观,这就是 就会缅怀过去,无论是幸福或是悲伤,苍白或是绚烂,都会咀嚼出新的滋味。要让事情改变,先改变我自己;要让事情变得更好,先让自己变得更好。当日子成为照片当 背对背行走的路人,沿着不同的方向,固执的一步步远离,再也没有回去的路。想要别人尊重你,首先就要学会尊重别人。所有的胜利,与征服自己的胜利比起来,都是 与失去自己的失败比起来,更是微不足道。生命不在于活得长与短,而在于顿悟的早与晚。既不回头,何必不忘。既然无缘,何须誓言。感谢上天我所拥有的,感谢上天 千万条,成功的人生也有千万种,选对适合自己的那条路,走好自己的每段人生路,你一定会是下一个幸福宠儿。活在别人的掌声中,是禁不起考验的人。每一次轻易的 笔。什么时候也不要放弃希望,越是险恶的环境越要燃起希望的意志。现实会告诉你,没有比记忆中更好的风景,所以最好的不要故地重游。有些记忆就算是忘不掉,也 满,现实很骨感。我落日般的忧伤就像惆怅的飞鸟,惆怅的飞鸟飞成我落日般的忧伤。舞台上要尽情表演,赛场上要尽力拼搏,工作中要任劳任怨,事业上要尽职尽责。 乐,今天的抗争为了明天的收获!积德为产业,强胜于美宅良田。爱情永远比婚姻圣洁,婚姻永远比爱情实惠。爱有两种,一种是抓住,你紧张他也紧张;一种是轻松拖 人无忧,智者常乐。并不是因为所爱的一切他都拥有了,而是所拥有的一切他都爱。原来爱情不是看见才相信,而是相信才看得见。磨难是化了妆的幸福。如果你明明知 者选择说出来,或者装作不知道,万不要欲言又止。有时候留给别人的伤害,选择沉默比选择坦白要痛多了。我爱自己的内心,慢慢通过它,慢慢抵达世界,或者,抵达 我忘记一切,时间不会改变痛,只会让我适应痛。人生不容许你任性,接受现实,好好努力。曾经以为爱情是甜蜜,幸福的,不知道它也会伤人,而且伤的很痛,很痛。 出的代价却是好些年的失败。时间几乎会愈合所有事情,请给时间一点时间。蚁穴虽小,溃之千里。多少人要离开这个世间时,都会说出同一句话,这世界真是无奈与凄 孵出来的却是失败。太完美的爱情,我不相信,途中聚聚散散难舍难分,终有一天会雨过天晴。我分不清东南西北,却依然固执的喜欢乱走。若是得手,便是随手可丢; 爱情不是寻找共同点,而是学会尊重不同点。总有一天我会从你身边默默地走开,不带任何声响。我错过了狠多,我总是一个人难过,3、戏路如流水,从始至终,点滴不 未变,终归大海。一步一戏,一转身一变脸,扑朔迷离。真心自然流露,举手投足都是风流戏。一旦天幕拉开,地上再无演员。 相信自己有福气,但不要刻意拥有;相信
高中数学《指数函数》ppt课件
课件•指数函数基本概念与性质•指数函数运算规则与技巧•指数函数在生活中的应用举例•指数函数与对数函数关系探讨目录•指数方程和不等式求解技巧•总结回顾与拓展延伸01指数函数基本概念与性质指数函数定义及图像特点指数函数定义形如y=a^x(a>0且a≠1)的函数称为指数函数。
指数函数图像特点当a>1时,图像上升;当0<a<1时,图像下降。
图像均经过点(0,1),且y轴为渐近线。
指数函数性质分析指数函数的值域为(0,+∞)。
当a>1时,指数函数在R上单调递增;当0<a<1时,指数函数在R上单调递减。
指数函数既不是奇函数也不是偶函数。
指数函数没有周期性。
值域单调性奇偶性周期性常见指数函数类型及其特点自然指数函数底数为e(约等于2.71828)的指数函数,记为y=e^x。
其图像上升速度最快,常用于描述自然增长或衰减现象。
幂指数函数形如y=x^n(n为实数)的函数,当n>0时图像上升,当n<0时图像下降。
特别地,当n=1时,幂指数函数退化为线性函数y=x。
对数指数函数底数为a(a>0且a≠1)的对数函数和指数函数的复合函数,记为y=log_a(a^x)=x。
其图像为一条直线,斜率为1,表示输入与输出之间呈线性关系。
复合指数函数由多个基本指数函数通过四则运算组合而成的复杂函数。
其性质取决于各基本函数的性质及组合方式。
02指数函数运算规则与技巧$a^m times a^n =a^{m+n}$,同底数幂相乘,底数不变,指数相加。
乘法法则除法法则幂的乘方法则$a^m div a^n =a^{m-n}$,同底数幂相除,底数不变,指数相减。
$(a^m)^n =a^{m times n}$,幂的乘方,底数不变,指数相乘。
030201同底数指数运算法则$a^m times b^m =(a times b)^m$,不同底数幂相乘,指数不变,底数相乘。
乘法法则$a^m div b^m =(a div b)^m$,不同底数幂相除,指数不变,底数相除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用函数图像 或中间量进行比 较
-
8
比较指数大小的方法
1、底数相同,指数不同。 做题方法:利用指数函数的单调性来判断.(数形结合)。
2、指数不同,底数也不同。 做题方法:引入中间量法(常用1)。
3、指数相同,底数不同。 做题方法:利用比商法来判断.
心中无图,一塌糊涂;心中有图,胸有成竹。
-
9
谢 谢
-
1
指数函数图像性质
左右无限上冲天, 永与横轴不沾边, 大一增,小一减, 图像恒过(0,1)点。
-
2
复习 指数函数在底数 0 a 及1
情况下的图象和性质
0 a 1
y=ax
y
(0<a<1)
图 象
(0,1)
y=1 y=1
a 这1两种
a 1
y
ቤተ መጻሕፍቲ ባይዱ
y=ax
(a>1)
(0,1)
0
x
0
x
(1)定义域:R
性 (2)值域:(0,+∞) 质 (3)过点(0,1)即x=0时,y=1
(4)在R上是减函数 (4)在R上是增函数
-
3
比较下列两个值的大小:
1.72.5 , 1.73
解 :利用函数单调性, 1.72.5 与 1.73
的底数是1.7,它们可以看成函数 y= 1.7x
当x=2.5和3时的函数值;
5
因为1.7>1,所以函数y= 1.7 x
4.5 4
在R上是增函数, ; 而2.5<3,所以,
3.5
3
fx
=
1.7x 2.5
2
1.5
1.72.5< 1.73
1 0.5
-2
-1
-0.5
1
2
3
4
5
6
-
4
36.2 ___>_____ 26.2
小结
指数相同,底数不同。 做题方法:利用比商法来判断
-
5
1.080.3 > 0.983.1
小结
指数不同,底数也不同。 做题方法:引入中间量法(常用1)。
-
同底指数幂比大 小,构造指数函数, 利用函数单调性
同底比较大小
3
1 4
0.8
与
1 2
1.8
;
4
8 7
3
7
与
7 8
5
12
不同底但可化同底
5 0.3 0.3 与0.20.3
不同底但同指数
不同底数幂比大小, 利用指数函数图像与 底的关系比较
6 1.70.3与0.93.1
底不同,指数也不同
6
例: 比较下列各题中两值的大小:
1 1.72.5与1.73; 2 0.80.1与0.80.2
3
1 4
0.8
与
1 2
1.8
;
4
8 7
3
7
与
7 8
5
12
5 0.3 0.3 与0.20.3
6 1.70.3与0.93.1
-
7
例: 比较下列各题中两值的大小:
1 1.72.5与1.73; 2 0.80.1与0.80.2
-
10