二年级数学上册第八单元测试卷及答案

合集下载

【三套试卷】小学二年级数学上册第八单元教材检测卷带答案

【三套试卷】小学二年级数学上册第八单元教材检测卷带答案

第八单元知识点测试卷(包含答案)一、填一填1.用4、6和7组成两位数,每个两位数的十位数和个位数不能一样,能组成()个两位数,它们分别是()。

2.用4、0和7可以组成()个不同的三位数,其中最大的数是(),最小的数是()。

3.3位小朋友每两个人通一次电话,一共要通()次话。

4.一辆客车往返于合肥、南京、上海三地载客,要准备()种不同的车票。

5. 34、35、43、45、53、54这些数是用()、()和()这三个数字组成的。

考查目的:通过操作、观察等活动,巩固学生对于简单事物排列和组合的规律的知识,进一步渗透排列和组合的思想方法,培养学生有序,全面地思考问题的意识。

答案:1. 6 ;46、47、64、67、74、76 2.4 ;740 ;407 3. 3 4. 6 5. 3、4、5解析:第1题,学生在组数时一定要做到有序,不漏、不重复。

可以灵活运用交换数字的位置、固定十位数或固定个位数等排列的方法。

第2题,学生组数时要注意“0”不能放在十位上,因此只能组成4个不同的两位数。

第3题,可以用画一画的方法解决问题,如下图。

第4题,要准备6种不同的车票。

客车需要往返于三地,往:合肥→南京,合肥→上海,南京→上海,3种车票;返:上海→南京,上海→合肥,南京→合肥,3种车票。

共6种车票。

也可以合肥南京,往返2种车票;合肥上海,2种车票;南京上海,2种车票,共6种车票。

第5题,学生能用三个不同数字组成6个不同两位数,现在通过给出的6两位数判断出用哪三个数字来组成,可以根据34、35得出用了3,43、45得出用了4,53、54得出用了5,因此是用3、4、5这三个数字组成的。

二、选一选1.用5、0、2可以组成()个不同的两位数。

A.4 B.5 C.62.我和爸爸、妈妈坐成一排合影,有()种坐法。

A.2 B.4 C.63.莉莉和她的3个好朋友,每两人握一次手,一共要握()次手。

A.3 B.4 C.64.可以有( )种早餐搭配方法?A.2 B.4 C.65.有一些1元、5角和1角的钱币,要买一支1元5角的笔,有()种不同的付钱方法。

【三套试卷】【苏教版】小学二年级数学上册第八单元教材检测卷附答案

【三套试卷】【苏教版】小学二年级数学上册第八单元教材检测卷附答案

第八单元测试卷(附答案解析)1.从小朋友手里的卡片中,任意选出两张组成两位数。

(1)能组成( )个不同的两位数。

(2)能组成( )个不同的两位数。

2.把、和三种水果分给小明和小华每人一种,一共有多少种分法?小明小华3.用红、黄、蓝三种颜色给2朵花涂上不同的颜色,一共有多少种涂色方法?4.你看过《西游记》吗?齐天大圣孙悟空在与妖怪斗法时,把自己的名字“孙行者”三个字变化了多次,你知道他是怎样变化的吗?孙行者孙行者5.小东、小丁和小亮三个人一起去照相,如果站成一排,有多少种不同的站法?写出所有站法。

第1课时排列问题1.(1)18 14 81 84 41 48 6(2)90 96 60 69 42.6种(填表略)3.6种(涂色略)4.孙者行行孙者行者孙者孙行者行孙5.6种(站法略)第八单元学习测试卷(附答案解析)一、填一填。

(26分)1、钟面上共有()个大格,每一个大格有()个小格,钟面上共有()个小格。

时针走一大格是()时,分针走一小格是()分,走一大格是()分。

2、1时=()分3、___时___分___时___分___时___分___时___分4、过5分是 过10分是 过一刻是 过半小时是( ) ( ) ( ) ( )5、3个人一共要比赛( )场。

6、任选两项球类活动,一共有( )种不同的选法。

7、三个小姑娘分别穿着白裙子、黄裙子和花裙子。

丫丫 平平 玲玲丫丫穿( )裙子,平平穿( )裙子,玲玲穿( )裙子。

我没有穿黄裙子。

我既不穿黄裙子,也不穿花裙子。

二、选一选。

(15分) 1、用、、能摆成( )个两位数。

A 、6B 、3C 、42、爸爸、妈妈和小华站成一排照相,共有( )种不同的站法。

A 、4B 、5C 、63、三个小朋友在一起进行读书比赛,娟娟是第( )名。

红红 娟娟 妮妮A 、一B 、二C 、三 4、钟面( )再过15分钟是9:40。

A 、B 、C 、5、分针从1走到3是( )分。

A 、2 B 、10 C 、15三、连一连。

人教版数学二年级上册第八单元测试附答案

人教版数学二年级上册第八单元测试附答案

第⑧单元测试卷一、单选题(共8题;共16分)1.5、0、3这三个数字组成的不同的三位数共有()个。

A. 4B. 6C. 32.有4个同学排成一排照合照,小丽只能站在左边的第一个位置上。

有()种不同的排法。

A. 8B. 7C. 63.用能摆成()个两位数。

A. 6B. 8C. 124.用下面的3枚硬币可以组成()种不同的币值。

A. 3B. 4C. 55.小丽和父母到影楼照全家福,站成一排,他们有()种排列方法。

A. 3B. 1C. 66.有三个队参加足球比赛,每两个队进行一场比赛,一共要比赛()场。

A. 4B. 6C. 8D. 37.3个人比赛打乒乓球,每两个人打一场,3个人共打了()场。

A. 2B. 3C. 68.四年级8个班级举行拔河比赛,每2个班级之间进行1场比赛,一共要进行几场比赛,以下那种算法是正确的()。

A. 8×7÷2B. 8×7C. 8+7+6+5+4+3+2D. (7+6+5+4+3+2+1)÷2二、判断题(共5题;共10分)9.有三个同学,每两人握一次手,一共要握6次手。

()10.某学校要从4名女同学和3名男同学中各选出1人代表学校参加演讲比赛。

一共有7种不同的组队方案。

()11.从四个人选2人参加比赛有6种不同选法。

()12.2件上衣和3条裤子搭配成一件衣服,一共有5种搭配方法()13.从5、2、7、0这4个数中选出两个组成两位数,可以组成9个两位数。

()三、填空题(共8题;共16分)14.丽丽有3件上衣,4条裙子,一件上衣和一条裙子任意搭配,有________种不同穿法。

15.从2、0、8、5中选三个数组成不同的三位数,最大的是________,最小的是________,它们相差________。

16.用6、7、8组成的最大的三位数与最小的三位数的差是________,和是________。

17.小亮有两件不同的上衣,两条不同的裤子,已知一件上衣和一条裤子搭成一身,他有________种搭法。

【三套试卷】【北师大版】小学二年级数学上册第八单元精品测试题带答案

【三套试卷】【北师大版】小学二年级数学上册第八单元精品测试题带答案

第八单元教材检测卷(含答案解析)一、单选题1.要从3名男生小强、小亮、小明和3名女生小华、小丽、小文中各选一人参加乒乓球混合双打比赛,共有()种不同的组队方案。

A. 9B. 10C. 11D. 62.王老师和10位同学玩老鹰捉小鸡游戏,他们轮流每人都当一回鸡妈妈,共有()种不同的选择.A. 10B. 11C. 203.三个人并排站成一个横排照相,他们有几种站法?()A. 6B. 8C. 3D. 14.要从10名候选人中选出一人当班长,一人当团支书,则共有多少种不同的方案?()A. 90种B. 45种C. 110种D. 55种二、判断题5.…第25个应该是。

()6.一个有四位数的密码锁,忘记了首尾两个数字,则需要试验的密码有10种。

三、填空题7.小巧用小圆片在数位表上放出888,小亚移动了一片小圆片.现在这个数是________8. 有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有________种不同的方式.9.有2件上衣和3条裤子,每次穿1件上衣和1条裤子,一共有________种穿法.10.一把钥匙只能开一把锁,现在有4把钥匙和4把锁,但不知道哪把钥匙开哪把锁,如果试一把锁需8秒,若要配好全部的钥匙,最少要用________秒,最多要用________秒.11.妈妈去买早餐,有3种主食(面包、馒头、蛋饼),3种饮料(牛奶、豆浆、豆奶),妈妈要选一种主食和一种饮料,有________种不同的买法。

四、解答题12.饭店里晚上供应A,B,C,D四种炒菜,E,F,G三种主食,如果一种炒菜和一种主食配成一份套餐,共有多少种不同的搭配方法?13.在一次有12个球队参加的足球单循环赛中,规定胜一场得3分,平一场得1分,负一场得0分,比赛结束后前三名的球队成绩如下:(1)请完成上面的表格(2)请说明你是如何确定强者队的战况的?五、综合题14.找规律填数。

(1)11,13,________,17,________,________,23,________,________。

人教版数学二年级上册第八单元达标测试卷-附答案

人教版数学二年级上册第八单元达标测试卷-附答案

人教版二年级数学上册第八单元达标检测卷一、填一填。

1.用5、7、9三张数字卡片,能摆成()个不同的两位数,它们分别是()。

如果用0代替9,能摆成()个不同的两位数。

2.用3、4、5、6这四个数字,能组成()个不同的两位数,分别是()。

3.3个小朋友互通一次电话,一共要通()次电话;4个小朋友,每两人互通一次电话,一共要通()次电话。

二、算一算。

8×9=6×7=5×4=9×7=5×7+20= 5×6=4×9=7×8=6×9=7×9-9=三、在里填上“>”“<”或“=”。

4×624 25+835 2×612 19+83×830+62434-2015 5×732 42+106×9四、按要求做题。

有3个数6、7、8,任意选取其中2个求和。

1.用列表法求得数有几种可能。

2.用连线法求得数有几种可能。

五、解决问题。

1.六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2.任选两个球,一共有多少种不同的选法?3.有4件上衣,2条裤子,有几种不同的搭配方法?4.虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。

5.用5、8、0这三张数字卡片能组成多少个不同的两位数?其中最大的数比最小的数大多少?第八单元测试卷参考答案一、 1.6 57、59、75、79、97、95 42.12 34、35、36、43、45、46、53、54、56、63、64、653.3 6二、 72 42 20 63 55 30 36 56 54 54三、 = < = > > < > <四、略五、 1.6种2.6种3.8种4.6种①②③、①③②、②③①、②①③、③①②、③②①5.4个85-50=35人教版二年级数学上册第八单元达标检测卷一、填一填。

人教版数学二年级上册《第八单元测试题》含答案

人教版数学二年级上册《第八单元测试题》含答案

人教版数学二年级上学期第八单元测试一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有( )种穿法.A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢.这个游戏规则( ).A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛( )A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法( )A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.( )A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字.如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性( ).A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案.11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案.12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛.13.30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试________次.14.奥运会男篮比赛共有12支球队参加,第一阶段把12支球队分成两个小组采用小组单循环赛(1)第一阶段共赛________场.(2)每个小组的前四名各进入下一轮,第二阶段采用淘汰制,第二轮共赛________场.(3)一共要赛________场能决出冠、亚、季军.15.从北京经南京到上海,其中北京到南京有三种不同的线路火车,从南京到上海有四种不同的线路火车.那么我们可以有________条线路从北京到上海.16.区教育局要举行第十届教职工排球赛,这届比赛共有32支球队参加,平均分成4个小组,在小组内采用单循环制,小组前2名共8支球队再进行淘汰赛,一共要进行________场比赛.三、解答题(共10题;共51分)17.小丽有2件上衣,3条裤子,又买了2顶帽子.现在有多少种搭配方法?18.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?19.画一画,填一填.20.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有多少人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同?21.甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?22.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是 ,那么确保打开保险柜至少要试几次?23.,,三种图形有多少不同的排法?把这几种排法写出来.24.四名同学参加区里围棋比赛,每两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.如果每个人最后得的总分都不相同,且第一名不是全胜,那么最多有几局平局?25.用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?26.用红、橙、黄、绿、蓝5种颜色给下面长方格子涂颜色,一个格子里涂一种颜色,一种颜色只可以使用一次,有几种不同的涂法?请把你设计的方案用图示法表示出来.答案与解析一、单选题1.【答案】 B【解析】【解答】解:衬衣①、裙子①,衬衣①、裙子②;衬衣②、裙子①;衬衣②、裙子②;衬衣③、裙子①;衬衣③、裙子②.共6种穿法.故答案为:B.【分析】每件衬衣都会有2条裙子与之搭配,共有3件衬衣,这样列举出所有穿法即可.2.【答案】 B【解析】【解答】解:积有:2×3=6,2×7=12,3×7=21,3×2=6,7×2=14,7×3=21,奇数有2个,偶数有4个,这个游戏规则不公平.故答案为:B.【分析】如果积是奇数、偶数的个数相同,这个游戏规则就公平.由此判断出所有的积即可判断是否公平.3.【答案】 A【解析】【解答】A先向右走有10种,A先向上有10种,共10+10=20(种)故答案为:A【分析】弄清楚行走的规则,先判断出向右走的路线有10种,向上走的路线也有10种,这样计算出总的种数即可.4.【答案】 C【解析】【解答】解:16×(16-1)÷2=16×15÷2=120(场)故答案为:120.【分析】每支球队在进行单循环比赛时,都要与其他球队进行一次比赛,所以用16乘15求出比赛的场次,因为有一半重复的场次,所以再除以2即可.5.【答案】 B【解析】【解答】解:(1)从A开始摘,A﹣B﹣C﹣D﹣E,A﹣B﹣D﹣C﹣E,A﹣B﹣D﹣E﹣C,A﹣D﹣B﹣C﹣E,A﹣D﹣B﹣E﹣C,A﹣D﹣E﹣B﹣C,共6种方法,(2)从D开始摘,D﹣E﹣A﹣B﹣C,D﹣A﹣E﹣B﹣C,D﹣A﹣B﹣E﹣C,D﹣A﹣B﹣C﹣E,共4种方法,共有:6+4=10(个),故选:B.【分析】根据题意,每次从某一串的最下端摘下一个礼物,摘了五次可将五件礼物全部摘下,那就从A开始摘,看看有几种方法,再从D开始摘,看看有几种方法,那问题即可解决.6.【答案】A【解析】【解答】4×3×2×1=24(个)故答案为:A【分析】0可以作为第一个数,所以左起第一位有4种选择,第二位有3种选择,第三位有2种选择,第四位只有一种选择,运用乘法原理计算数字总数.7.【答案】 A【解析】【解答】解:1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,3+1=4,3+2=5,3+3=6,3+4=7,3+5=8,4+ 1=5,4+2=6,4+3=7,4+4=8,4+5=9,4+6=10,5+1=6,5+2=7,5+3=8,5+4=9,5+5=10;和是奇数的12个,和是偶数的13个,所以小玲赢的可能性比小巧小.故答案为:A.【分析】运用排列组合的方法把所有的和都列举出来,然后数出和的奇数和偶数各有几个,哪种数多,相对应的谁赢的可能性就大.8.【答案】 C【解析】【解答】解:方法一:因为在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数的和有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,所以A、B、D是不可能的,方法二:2、5、8被3除,余数都是2,同余.所以取出7张卡片求和,余数变成了14.因为减去14,剩下的数可以被3整除(7张2的情况,和为14,减去14为0).或者14被3除,余数是2,即7张卡片求和,被3除,余数为2,只有29复合题意.故答案为:C.【分析】根据题意知道在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,由此即可做出选择.二、填空题9.【答案】 10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.10.【答案】6【解析】【解答】解:2×3=6(种)故答案为:6.【分析】根据固定排头法,每种颜色的彩纸排头时,剩下的两种颜色的彩纸都有两种不同的排列方法,所以直接用2乘3即可求出不同的购买方案.11.【答案】 12【解析】【解答】解:3×4=12(种);故答案为:12.【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.12.【答案】120;15;18【解析】【解答】单循环赛:16×(16-1)÷2=16×15=120(场)淘汰塞:8+4+2+1=15(场)决出四强赛:8+4+6=18(场)故答案为:120,15,18.【分析】在进行单循环赛时,则每个球队都要与其他球队进行比赛,所以每个球队要进行15场比赛,这样就会有一半重复的,所以再除以2即可,在进行淘汰赛时,分别求出两队两队比赛的场次,然后再相加,在决出四强后再采用淘汰赛时,先求出16支球队决出四强前的比赛的场次,再求出四强后淘汰赛的场次,然后相加即可.13.【答案】435【解析】【解答】29+28+27+26+25+…+1=(29+1)×29÷2=30×29÷2=435(次)故答案为:435【分析】从最坏的情况考虑,第一把钥匙一直试到第29把还没有配上,那么最后一把锁就不用试了,一定是第30把的钥匙;按照这样的规律,第二把需要试28次……,直到最后一把试1次就可以了,把这些次数相加,根据数列求和的知识计算即可.14.【答案】 (1)30.(2)7.(3)37.【解析】【解析】解:1.6×5÷2=15(场)15×2=30(场)2.8-1=7(场)3.30+7=37(场)故答案为:30,7,37.【分析】1.把12支球队分成两小组时,每组有6个球队,用6乘5除以2即可求出每组单循环赛的场次,乘2即可求出第一阶段比赛的场次;2.每组进行前4名的球队有4支,两组共有8支,所以用8减1即可求出淘汰赛的场次;3.要求一共要赛多少场时,则直接用第一阶段的场次加上第二阶段的场次即可.15.【答案】 12【解析】【解答】3×4=12(种)故答案为:12.【分析】从北京到南京的每条线路去上海时都有4种不同走法,所以用3乘4即可求出从北京到上海的路线走法.16.【答案】119【解析】【解答】解:32÷4=8(支)8×(8-1)÷2=28(场)28×4=112(场)8-1=7(场)112+7=119(场)故答案为:119.【分析】用32除以4求出每个小组球队的支数,根据排列组合的方法求出单循环赛的场次;每个小组取前2名时,4个小组则取了8个小队,所以用8乘8减1的差除以2即可求出淘汰赛的场次,然后再相加即可.三、解答题17.【答案】解:2×3×2=12(种)答:现在有12种搭配你方法.【解析】【分析】每件上衣都会有3条裤子与之搭配,每条裤子会有2顶帽子与之搭配,运用乘法原理计算搭配的总种类即可.18.【答案】解:(种)答:共可以表示60种不同的信号.【解析】【分析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置,现在是要从五个不同的元素中取三个,排在三个位置的问题.19.【答案】【解析】20.【答案】解:十项比赛,每位同学可以任报两项,那么有45种不同的报名方法.由鸽巢原理知有45+1=46(人)报名时满足题意.【解析】【分析】9+8+7+6+5+4+3+2+1=45(种),10项比赛共有45种不同的组合,假如每个组合都有1人报名,共有45人报名,那么再有1人报名,不管是报哪个组合,都会保证有两名或两名以上的同学报名参加的比赛项目相同.21.【答案】解:按甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置分四种情况讨论:如果甲在队伍最靠右的位置、乙在队伍最靠左的位置,那么丙还有6种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲在队伍最靠右的位置,而乙不在队伍最靠左的位置,那么乙还有4种站法,丙还有5种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲不在队伍最靠右的位置,而乙在队伍最靠左的位置,分析完全类似于上一种,因此同样有2400种站法如果甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置,那么先对甲、乙整体定位,甲、乙的位置选取一共有 (种)方法.丙还有4种站法,剩下的五个人进行全排列,站法总数有: (种)所以总站法种数为 (种)【解析】【分析】甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置有四种情况:第一种:甲在队伍最靠右的位置、乙在队伍最靠左的位置;第二种:甲在队伍最靠右的位置,而乙不在队伍最靠左的位置;第三种:甲不在队伍最靠右的位置,而乙在队伍最靠左的位置;第四种:甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置.最后把每一种站法加起来即可.22.【答案】解:四个非数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑的位置就可以了, 可以任意选择个位置中的一个,其余位置放 ,共有种选择;第二种中,先考虑放 ,有种选择,再考虑的位置,可以有种选择,剩下的位置放 ,共有 (种)选择同样的方法,可以得出第三、四、五种都各有种选择.最后一种,与第一种的情形相似, 的位置有种选择,其余位置放 ,共有种选择.综上所述,由加法原理,一共可以组成 (个)不同的四位数,即确保能打开保险柜至少要试次.【解析】【分析】先把和是9的4个非0的数字组合写出来,然后把每种组合的排列方法加起来即可.23.【答案】解:有六种不同的排法:,,,,,,,, ,,,,【解析】24.【答案】解:四人共赛局,总分为(分),因为总分各不相同,分配得:或.平局最多的应该是、、、的情况.总分是奇数的必有一局平局,当得分是分、分的同学分别与得分是分、分的同学打平后,得分是分、分的同学就还剩下分、分,互相打平就正好.所以平局最多是局.答:最多有3局平局.【解析】【分析】单循环比赛四队比赛总局数:3+2+1=6(局),每局比赛无论胜平负,得分总和都是2分,这样计算出总分是12分.然后把12分进行分配,根据每个人最后得分都不相同推理出最多有几局平局即可.25.【答案】解:如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为0~25张,其余的钱全部购买2元饭票,共有26种买法;如果买l张8元饭票,还剩92元,可购4元饭票0~23张,其余的钱全部购买2元饭票,共有24种不同方法;如果买2张8元饭票,还剩84元,可购4元饭票0~21张,其余的钱全部购买2元饭票,共有22种不同方法;……如果买12张8元饭票,还剩4元饭票,可购4元饭票0~1张,其余的钱全部购买2元饭票,共有2种方法.总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差数列.利用分类计数原理及等差数列求和公式求出所有方法:26+24+22+…+2=(26+2)×13÷2=182(种).答:共有182种不同的买法.【解析】【分析】100元里面最多有12个8元,饭票中8元的面值最大,所以第一次买8元,从买0张8元开始,依次买到12张8元,然后分别计算出购买4元和2元的饭票的张数,最后把每一次中的买法加起来即可.26.【答案】解:共10,如图【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】每种颜色与其他4种颜色组合时,都有4种不同的组合方法,所以用5乘4再去掉重复的组合方法即可.。

人教版数学二年级上册《第八单元检测》含答案

人教版数学二年级上册《第八单元检测》含答案

人教版数学二年级上学期第八单元测试一、单选题1.5、0、3这三个数字组成的不同的三位数共有( )个.A. 4B. 6C. 32.甲、乙、丙、丁四个篮球队打球,每两个队要打一场比赛,一共要进行( )场比赛.A. 4B. 6C. 8D. 103.用4、5、8三个数字中任意两个可以组成( )个不同的两位数.A. 2B. 4C. 64.六(1)班37名同学解答两道题,规定答对一题得3分,不答得1分,答错得0分.至少有( )名同学的得分相同.A. 19B. 13C. 7D. 6二、判断题5.我有2件上衣和3条裤子,配成一套衣服,一共有6种搭配方法.( )6.从四个人选2人参加比赛有6种不同选法.( )7.一个有四位数的密码锁,忘记了首尾两个数字,则需要试验的密码有10种.三、填空题8.老师要从班内4名男生和5名女生中选派二人参加男女生二重唱比赛,有________种不同的组合方案.9.用“2”“5”“8”三个数字组成的三位数一共有________个,其中十位上是5的有________个(同一个数中每个数字只用一次)10.用0、1、3、5、7、9最多可组成________个不同的六位数,最大的是________,最小的是________.11.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.12.现有3名男生和3名女生,欲从中各选派一个人参加羽毛球混合双打比赛,共有________种不同的组队方案.四、解答题13.从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?14.学校教学楼共16级台阶,规定每次只能跨上1级或2级,要登上第16级,共有多少种不同的走法?五、应用题15.在1~20共20个整数中,取两个数相加,使其和为偶数不同取法共有多少种?答案与解析一、单选题1.【答案】A【解析】【解答】组成的不同的三位数有503、530、305、350,共4个.故答案为:A.【分析】百位上的数字不能是0,所以只能是5和3,是5的三位数有2个,是3的三位数有2个,共4个三位数.2.【答案】B【解析】【解答】解:3+2+1=6(场)故答案为:B.【分析】甲先比赛3场,那么乙只需要再与丙、丁比赛2场,丙只需要与剩下的丁比赛1场,由此计算总场次即可.3.【答案】C【解析】【解答】用4、5、8三个数字可组成45,48,54,58,84,85,共6个数.故答案为:C.【分析】此题主要考查了排列和组合的知识,先确定十位上的数,再确定个位上的数,当十位是4,个位可能是5或8,可以组成两个不同的两位数,同样的方法,当十位是5,个位可能是4或8,当十位是8,个位可能是4或5,据此解答.4.【答案】C【解析】【解答】解:答题情况有:一道也没有答对、答对第一道和答错第二道、答对第二道和答错第一道、一道也没答;答对第一道和不答第二道、答对第二道和不答第一道、答错第一道和不答第二道、答错第二道和不答第一道、答对两道,一共有5种不同的得分情况,37÷5=7(组)……2(名),所以至少有7名同学的得分相同.故答案为:C.【分析】计算此类型的题目时,可以先算出一共有多少种情况,然后再用总人数除以情况的种数,所得的商就是至少相同的人数.二、判断题5.【答案】正确【解析】【解答】解:2×3=6,所以2件上衣和3条裤子一共有6种搭配方法.原题说法正确.故答案为:正确.【分析】一件上衣有3条裤子与之搭配,那么2件上衣就是2个3种搭配方法.6.【答案】正确【解析】【解答】解:从四个人选2人参加比赛有6种不同选法.故答案为:正确.【分析】从四个人选2人参加比赛,可以先从这四个人中选1个人参加比赛,一共有4种可能,然后再从剩下的3个人中选出1个人,一共有3种可能,所以一共有4×3÷2=6种不同的选法.7.【答案】错误【解析】【解答】解:10×10=100种,因此需要试验的密码有100种,原题说法错误.故答案为:错误【分析】因为每一位上的数字都有10种可以选择,一共有两位数字不知道,因此根据乘法原理用10×10可以求出需要实验的密码的种类.三、填空题8.【答案】20【解析】【解答】4×5=20(种)故答案为:20.【分析】根据排列组合的规律列出乘法算式进行分析.9.【答案】6;2【解析】【解答】解:组成的三位数有258、285、582、528、825、852,共6个,其中十位上是5的有2个. 故答案为:6;2.【分析】每个数字都可以做百位数字,然后确定十位和个位数字,这样列举出所有的三位数即可填空.10.【答案】600;975310;103579【解析】【解答】解:六位数的个数:5×5×4×3×2=600(个);最大的是975310,最小的是103579.故答案为:600;975310;103579.【分析】这样的六位数中,十万位有5个数可以选择(0除外),万位也有5个数可以选择,千位剩下4个数可以选择,百位剩下3个数可以选择,十位剩下2个数可以选择,个位只有剩下1个数,把这些可以选择的个数相乘即可求出组成六位数的个数.其中最大的六位数的最高位是最大的数字9,其它数字从大到小依次列在后面的数位上;最小的六位数的最高位数字是1.11.【答案】10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.12.【答案】9【解析】【解答】解:3×3=9(种)故答案为:9.【分析】用3名男生的人数乘3名女生的人数即可求出组队方案的方法.四、解答题13.【答案】解:两个数和为11的一共有3种取法;两个数和为12的一共有2种取法;两个数和为13的一共有2种取法;两个数和为14的一共有1种取法;两个数和为15的一共有1种取法;一共有3+2+2+1+1=9种取法.【解析】【分析】1~8中最大的两个数的和是7+8=15,所以从两个数和为11开始,依次到和为15的每一个和的取法,最后把每一个和的取法加起来即可.14.【答案】解:第一台阶有1种走法,第二台阶有2种走法,第三台阶有1+2=3种走法,第四台阶有2+3=5种方法,…即斐波那契数列依次有:1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、1597;共有1597种不再的走法答:共有1597种不同的走法.【解析】【分析】上第1级有1种方法,上第2级有1、1,和2这2种方法,上第3级,可以从第1级上1、1或2,或第2级上1这3种方法,3=1+2,同理,上第4级2+3=5种方法,上第5级3+5=8种方法,上第6级5+8=13种方法,上第7级8+13=21种方法,上第8级13+21=34种方法,上第9级21+34=55种方法上第10级34+55=89种方法.这个走法随着台阶的增多,依次为:1、2、3、5、8、13、21、34、55、89由此得出:从第三项开始,每项=他之前的两项的和.五、应用题15.【答案】90种【解析】【解答】9×10÷2×2=90(种)答:和为偶数不同取法共有90种.【分析】从1~20种共有10个偶数,10个奇数,如果偶数与偶数相加,则有9×10÷2=45种,同样奇数与奇数相加也有45种不同的取法,所以再用45乘2即可求出一共的取法.。

上海洪山中学小学数学二年级上册第八单元阶段测试(答案解析)

上海洪山中学小学数学二年级上册第八单元阶段测试(答案解析)

一、选择题1.有4个同学排成一排照合照,小丽只能站在左边的第一个位置上。

有()种不同的排法。

A. 8B. 7C. 6C解析: C【解析】【解答】解:3×2×1=6,所以有6种不同的排法。

故答案为:C。

【分析】小丽站在左边的第一个位置,所以这个位置已经固定了,剩下的3个位置中第一个位置有3种排法,第二个位置有2种排法,第三个位置有1种排法,一共3×2×1=6种排法。

2.把同样的黑、红、白三种颜色的花片各2个混在一起.闭上眼睛取出2个花片,可能出现的结果有()种.A. 3B. 5C. 6C解析: C【解析】【解答】可能出现的结果有6种。

故答案为:C。

【分析】出现的结果可能是两黑、两红、两百、黑红、黑白、红白,共六种情况。

3.用6、3、2三个数字能组成()个不同的三位数。

A. 6B. 5C. 4A解析: A【解析】【解答】2×3=6故答案为:A。

【分析】用6、3、2三个数字能组成的三位数:632;623;326;362;263;236,共6个。

4.用3,4,5,7可以组成没有重复数字且个位是单数的两位数有()A. 6个B. 9个C. 12个B解析: B【解析】【解答】解:用3,4,5,7可以组成没有重复数字且个位是单数的两位数有9个。

故答案为:B。

【分析】这些数中,是单数的数是3、5、7,这些数字组成没有重复数字且个位是单数的两位数有:43、53、73、35、45、75、37、47、57,一共9个数。

5.学校在为联欢会选送节目,要从3个小品节目中选出一个,从2个舞蹈节目中选出一个,一共有( )种选送方案。

A. 5B. 6C. 7B解析: B【解析】【解答】3×2=6(种).故答案为:B.【分析】根据题意可知,从3个小品节目中选出一个,有3种不同的选法,从2个舞蹈节目中选出一个,有2种不同的选法,要求一共有几种选送方案,用乘法计算,据此列式解答.6.往返于甲、乙两地的某列火车,如果途中要经过4个车站,那么要为这列火车准备()种不同的车票。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档