网络计划优化案例 工期优化

合集下载

模糊网络计划工期成本优化方法

模糊网络计划工期成本优化方法
的风险 水平 ( 如取 水平 )作 为允许 的最低 条件 。 例 然 后利 用遗 传算 法 在模 糊 解空 间里 寻 找 最优 或近 似
最 优解 p。 J
5 研 究 开发 R sac dD vlp n 4 eerha eeomet n
21 0 1年 第 2 O卷 第 9 期
hp/ ww. s .r. u :w / c — ogc —a n
工 期的具体大小是在 可接受的水平基础上 ,在 乐观边
界和悲观 边界范 围之 内确定下 来的。根据前面所 求得
缩模 式 的成本一般要 多于通常 模式【。当工期位于重 6 】
任务工 期 以及各任务 的逻辑关 系,确定 出总工 期的乐
观边界和 悲观边 界 ,即可 能范 围。根 据乐观边界和 悲 观边界 的范围 内选定 的总工期 ,搜 索到项 目的最 小成
Abta t E t t gtet eo r et i tee gne n r et ng metn ov s o ot fmpeio . src: smai m f o c n ier gpo c ae n v le mesr o rc in i n h i p j sn h i j ma i s i s
① 基金项 目: 哈尔滨市后备带头人基金(0 4 X 0 9 20AF XJ3) 收稿时间:001—3收到修改稿时间:0 0一2 2 1.22; 2 1一4O I
基 于遗 传 算 法【 的工期 一成本 综 合 模糊 优 化模 型 , 】
模 型 中 的任 务 时 间用一 个 模糊 数来 描 述 一个 可接 受
T a ii n ln t o k plnnn eh d a n ts v r blm so n e ti t . s d o uz y s tt o y n n l i f r d to a ew r a ig m t o sc n o ole p o e fu c ran y Ba e n f z e he r ,a a ayss o

简述网络计划工期优化的步骤

简述网络计划工期优化的步骤

简述网络计划工期优化的步骤:工期简述步骤优化计划工期优化步骤顺序简述工期优化的步骤工期优化步骤是什么篇一:简述资源有限、工期最短的网络计划优化方法简述资源有限、工期最短的网络计划优化方法摘要:实践证明:采用网络计划技术,对于缩短工期,提高工效,降低成本,合理使用资源等方面,都能取得良好效果。

网络计划的资源优化有两类,一是“资源有限,工期最短”优化;二是“工期固定,资源均衡”优化,本文主要介绍第一类的优化方法。

1.引言项目在实施阶段有三个目标:一是高质量;二是不能超过投资总额;三是短工期。

项目的三大目标组成了一个完整的目标系统,三者之间的关系是相互制约、相互影响的。

比如,缩短工期往往会引起成本上升和质量下降;一个质量要求很高的项目在成本和工期上则不可能要求达到最优。

为适应大规模生产的发展和关系复杂的现代科学研究的需要,国内外陆续采用的以网络图为基础的计划管理新方法,即网络计划技术。

2.网络计划网络计划技术,也称网络分析法,它是在计划管理中通过网络图的形式,用来安排工程计划,控制施工进度和费用,使其达到预定目标的一种科学管理方法。

网络也是整个施工计划的模型。

其基本原理是:首先应用网络图的形式来表示计划中各项工作的先后顺序和相互关系;其次是通过计算找出计划中的关键工作和线路,在计划执行过程中进行有效的控制和监督,保证合理地使用人力、物力、财力来完成目标任务。

3.网络计划的优化3.1.含义网络计划的优化,就是根据编制计划的要求,在一定约束条件下,通过利用时差,不断改善计划方案,要求周期最短,费用最小,资源利用充分有效及切实可行的最优计划方案。

通过逐次优化,时差逐次减少,以至大部或全部消失。

然后根据优化的结果,最后做出决策。

网络计划优化工作是多方面的,有组织、技术方面,也有经济方面;有定性的,也有定量的。

例如:在资源基本保证的条件下,如何做到既保证工期又尽量节省资源:在资源有限条件下,如何尽量缩短工期:在工期不变的条件下,如何合理利用资源;在缩短工期的同时,如何保证成本最低等等,都属于网络计划优化的具体内容。

网络计划技术-工期优化例题(施工组织设计课件)

网络计划技术-工期优化例题(施工组织设计课件)

图4.67计算工期为159天,与合同工期146天相比尚需压缩 13天,考虑选择因素,选择③-④工作,因为有充足的资 源,且缩短工期对质量无太大的影响。由原62天压缩为52 天,即得网络计划图4.68。
第四章 网络计划技术-工期优化
图4.68计算工期为149天,与合同工期146天相比尚需压缩 3天,考虑选择因素,选择①-③工作,因为关键线路上可 压缩时间工作只剩①-③工作。由原52天压缩为49天,即得 网络计划图4.69。
第四章 网络计划技术
ቤተ መጻሕፍቲ ባይዱ
第四章 网络计划技术-工期优化
【例】 已知某网络计划初始方案如图4.65所示。图中箭 杆上数据为工作正常作业时间,括号内数据为工作最短 作业时间,假定合同工期为146天。
第四章 网络计划技术-工期优化
假设③-④工作有充足的资源,且缩短时间对质量无太 大的影响,④-⑥缩短时间所需费用最省,且资源充足。 ①-③工作缩短时间的有利因素不如③-④与④-⑥。
☆ 第三步,关键工作①-③可缩短12天,③-④可缩短 10天,④-⑥可缩短7天。共计可缩短时间29天。 ☆ 第四步,选择关键工作,考虑选择因素,由于④⑥缩短时间所需费用最省,且资源充足。优先考虑压 缩其工作时间,由原52天压缩为45天,即得网络计划 图4.67。
第四章 网络计划技术-工期优化
第四章 网络计划技术-工期优化
第四章 网络计划技术-工期优化
第一步,根据工作正常时间计算各个节点的最早和最迟时 间,并找出关键工作及关键线路。计算结果如图4.66所示。 图中①→③→④→⑥为关键线路。
第四章 网络计划技术-工期优化
☆ 第二步,计算需缩短的工期。根据图4.67计算工期 为166天,合同工期为146天,需要缩短时间为20天。

网络计划优化案例试题及答案

网络计划优化案例试题及答案

网络计划优化案例试题及答案一、试题。

某工程的网络计划如下图所示,箭线上方括号外为工作名称,括号内为正常持续时间(天),箭线下方括号外为直接费用率(千元/天),括号内为最短持续时间(天)。

工程间接费用率为0.8千元/天,正常工期时的间接费用为16千元。

试进行工期优化,求出最低工程费用及其相应的工期。

[此处应插入网络计划图,图中节点用数字表示,例如1 2之间有工作A,正常持续时间为6天,直接费用率为0.5千元/天,最短持续时间为4天等类似表示]二、答案及解析。

1. 计算各工作的直接费用率和可压缩时间。

对于工作A,正常持续时间D_A=6天,最短持续时间d_A=4天,直接费用率C_A=0.5千元/天,可压缩时间Δ t_A=6 4=2天。

按照同样的方法计算其他工作的相关参数。

2. 找出关键线路并计算总工期和总费用。

通过计算(可采用标号法等计算关键线路的方法),找出关键线路,假设关键线路为1 2 3 4,总工期T = 18天。

总直接费用C_d(假设所有工作按正常持续时间计算直接费用之和),总间接费用C_i=0.8×18 + 16 = 30.4千元,总费用C = C_d+C_i。

3. 进行工期优化。

选择直接费用率最小的关键工作进行压缩。

假设在关键线路上工作A的直接费用率最小。

每次压缩Δ t = min{Δ t_A,Δ t_B,·s}(其中A,B,·s为关键工作),并且要考虑压缩后是否会改变关键线路。

压缩工作A一天,此时总工期变为T'=17天。

重新计算总费用:总直接费用增加0.5×1 = 0.5千元。

总间接费用减少0.8×1 = 0.8千元。

总费用C'=C 0.8+0.5。

继续按照上述方法进行压缩,直到不能再压缩为止(即再压缩会使直接费用增加超过间接费用减少量)。

4. 确定最低工程费用及其相应工期。

通过不断的计算和优化,最终得到最低工程费用及其对应的工期。

工期优化例题

工期优化例题

1
4
50(30)
2
30(20)
作业:某工程双代号网络计划如图,要求工期 为110天,试用非时标网络计划对其进行 工期优化。
优选系数
4 10(8)
3
2
20(15)
3 30(18)
2
1
50(20)
3
8
3
60(30)
4 50(25)
6
正常 连续 时间
最短 连续 时间
1
2
50(30)
5
30(20)
(1)计算并找出初始网络计划旳关键线路、关键工作; (2)求出应压缩旳时间 T Tc Tr 160 110 50天 (3)拟定各关键工作能压缩旳时间;
00 1
4 10(8)
10 10
2
3 20(15)
3 30(18)
2
3
40(20) 40 40
3 60(30)
100
5
100
8
6 150 150
50(25)
1 50(30)
2
4
30(20) 90 100
(4)选择关键工作压缩作业时间,并重新计算工期Tc′ 第二次:选择工作③-⑤,压缩10天,成为50天;
9.下列哪些属于判断关键线路和关键工作旳 措施。 A. 线路长度法 B. 工作总时差法 C.关键节点法 D.破圈法 E.工作计算法 答案 A、B、C、D
第七章自测题(一)
10.关键节点之间旳工作一定为关键工作。
A.√ B.×
答案 B
11.关键工作两端旳节点一定为关键节点。 A.√ B.× 答案 A
4 10(8)
10 20
2
3 20(15)

不确定型网络计划工期费用模拟优化

不确定型网络计划工期费用模拟优化
u c ra n c s ft e fe n e i td cr u tnc s b ln e p i z t n p o l ms Mo t ro d srb t n, n et i o to h e s u d r l e ic msa e a a c d o tmia i r b e . mi o n e Ca l it u i i o
第2 7卷第 6 期 2 1 年 6 月 01
商 丘 师 范 学 院 学 报 J U N LO H N Q U T A H R O L G O R A FS A G I E C E SC L E E
Vo . 7 12 No 6 .
J n , 2 1 ue 0 1
不 确 定 型 网络计 划 工期 费 用模 拟优 化
ta iin lh u it lo t f rr s u c e ei g p o r m n a l r e n t r a o u r n e h h rc mi g f r dto a e rsi ag r hm o e o r e lv ln r g a i a g ewo k c n n tg a a t e te s o o n so c i t t e o t ls l to h p i ou in,g ta b ln e o o to h ewo k pln.And e a l ss o t a hea g rt m rlr e p o ma e a a c fc s ft e n t r a x mp e h w h tt lo h f a g r - i o
关键词 : 不确 定性 ; 网络计划 ; 资源均衡优化 ; 传算法 遗
中图分类号 :P 1. T 32 8 文献标识码 : A 文章编号 :6 2— 60 2 1 )6— 0 9—0 17 3 0 (0 10 0 4 5

工期优化(例题)

工期优化(例题)
4 10(8) 3 30(18) 0 0
1
10 10
2
3 20(15)
2
3
40(20) 40 40
3 30(30)
70 70
5
8 50(25)
6 120 120
1 30(30)
4
70
70
2 30(20)
(4)选择关键工作压缩作业时间,并重新计算工期Tc′ 选择关键工作压缩作业时间,并重新计算工期T 第四次:选择工作① 同时压缩10 10天 第四次:选择工作①-③和②-③,同时压缩10天, 成为30 30天 成为20 20天 ①-③成为30天, ②-③ 成为20天;
4 2(1) 7 6(5)
2 6
2
8 3(2) 2 3(2) 1 4(3)
9 9
4
0 0
1
3
6 4(2) 3 3(2)
13 13
6
6 6
5
10 10
(4)选择关键工作压缩作业时间,并重新计算工期Tc′ 选择关键工作压缩作业时间,并重新计算工期T 第二次:选择工作③ 同时压缩1 第二次:选择工作③-④和③-⑤,同时压缩1天,③ 成为2 成为3 -④成为2天,③-⑤成为3天 ; 工期变为12 12天 关键工作没有变化。 工期变为12天,关键工作没有变化。
6 10
×
1
12
4
4 4
7 9
6 2 6
5
2
× 5
2
3
10
× 5
8
11
6
12
7
× 7
× 2
× 2
例题2 例题
请用关键节点法判断关键线路: 请用关键节点法判断关键线路:

-网络计划的工期优化

-网络计划的工期优化

A(2)
5(3)
(①,3)
2
D(5) 6(4)
(③,10)
G(10)
4
8(6)
1
C(∞) 1 E(4)
4(3)
(④,18)
6
B(8) 6(4)
3
(①,6)
F(5) 2(1)
➢节点标号法快速计算工期、找关键线路
5
(④,10)
H(2) 4(2)
➢此时关键线路发生改变,应恢复
➢即第一次优化:△T=Min(△D1-2 ,TF 1-3 ) =Min( 2, 1) = 1
第20页,共67页。
2
4
12(10)
22(18)
40(30)
1
6
32(18)
3
5
46(40)
40(32)
35(28)
第21页,共67页。
解:1、用标号法确定出关键线路及正常工期。
(1,12) (3,98)
12(10) 2 22(18) 4 40(30)
1
b1=0
32(18)
(4,138 )6
3
5
34
H0
14(10)
30 30
12(10)
15 15 3
E 33
18(15)
15(15)
33
4
G
15(12) 14(12) 48
6
48
C2
10(6)
12(12) 47 47
45 45
D 22
8(5)
42 42
第6页,共67页。
解(5) 压缩A,压缩天数⊿T= Min( 15-10,2,2, 19)=2天
5
4(2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、工期优化示例
已知某工程双代号网络计划如图1所示,图中箭线下方括号外数字为工作的正常持续时间,括号内数字为最短持续时间;箭线上方括号内数字为优选系数,该系数综合考虑质量、安全和费用增加情况而确定。

选择关键工作压缩其持续时间时,应选择优选系数最小的关键工作。

若需要同时压缩多个关键工作的持续时间时,则它们的优选系数之和(组合优选系数)最小者应优先作为压缩对象。

现假设要求工期为15,试对其进行工期优化。

图1 初始网络计划
(1)根据各项工作的正常持续时间,用标号法确定网络计划的计算工期和关键线路,如图2所示。

此时关键线路为①—②—④—⑥。

(①,5)(②,11)
(①,②,6)(④,11)
图2 初始网络计划中的关键线路
(2)由于此时关键工作为工作A、工作D和工作H,而其中工作A酌优选系数最小,故应将工作A作为优先压缩对象。

(3)将关键工作A的持续时间压缩至最短持续时间3,利用标号法确定新的计算工期和关键线路,如图3所示。

此时,关键工作A被压缩成非关键工作,故将其持续时间3延长为4,使之成为关键工作。

工作A恢复为关键工作之后,网络计划中出现两条关键线路,即:①—②—④—⑥和①—③—④—⑥,如图4所示。

(①,3)(③,10)
(①,6)(④,10)
图3 工作A压缩至最短时间时的关键线路
(①,4)(②,③,10)
(①,6)(④,10)
图4 第一次压缩后的网络计划
(4)由于此时计算工期为18,仍大于要求工期,故需继续压缩。

需要缩短的时间:△T=18 -15 = 3。

在图5所示网络计划中,有以下五个压缩方案:
①同时压缩工作A和工作B,组合优选系数为:2+8=10;
②同时压缩工作A和工作E,组合优选系数为:2+4=6;
③同时压缩工作B和工作D,组合优选系数为:8+5=13;
④同时压缩工作D和工作E,组合优选系数为:5+4=9;
⑤压缩工作H,优选系数为10。

在上述压缩方案中,由于工作A和工作E的组合优选系数最小,故应选择同时压缩工作A和工作E的方案。

将这两项工作的持续时间各压缩1(压缩至最短),再用标号法确定计算工期和关键线路,如图5所示。

此时,关键线路仍为两条,即:①—②—④—⑥和①—③—④—⑥。

(①,6)(④,9)
图5 第二次压缩后的网络计划
在图5中,关键工作A和E的持续时间已达最短,不能再压缩,它们的优选系数变为无穷大。

(5)由于此时计算工期为17,仍大于要求工期,故需继续压缩。

需要缩短的时间:△T2=17 -15 =2。

在图5所示网络计划中,由于关键工作A和E已不能再压缩,故此时只有两个压缩方案:
①同时压缩工作B和工作D,组合优选系数为:8+5=13;
②压缩工作H,优选系数为10。

在上述压缩方案中,由于工作H的优选系数最小,故应选择压缩工作H的方案。

将工作H的持续时间缩短2,再用标号法确定计算工期和关键线路,如图6所示。

此时,计算工期为15,已等于要求工期,故图6所示网络计划即为优化方案。

(①,6)(④,9)图6 工期优化后的网络计划。

相关文档
最新文档