图形的旋转第一课时教学设计

合集下载

初中数学_11.2图形的旋转第一课时教学设计学情分析教材分析课后反思

初中数学_11.2图形的旋转第一课时教学设计学情分析教材分析课后反思

《图形的旋转》教学设计一、教材的地位与作用图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。

教材中从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中具有旋转特点的事物,进而探索其性质,是培养学生思维能力、树立运动变化观点的良好素材。

同时“图形的旋转”是一个重要的基础知识,隐含着重要的变换思想,它不仅为本章后续学习对称图形、中心对称图形做好准备,而且也为今后学习“圆”的知识内容做好铺垫。

二.学情分析认知分析:学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。

能力分析:初三学生已经有一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。

情感与学习风格分析:他们喜欢学习生动活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,用自己的双手来操作,用自己的语言来交流、表达,用自己的心灵去感悟。

三、教学目标1、通过列举生活中旋转的实例知道什么是旋转,并能概括出旋转的定义;2、通过小组合作探究,理解旋转的三要素以及旋转的性质;3、在正确理解旋转的性质的前提下,能够熟练应用解决相关题目(找出旋转的三要素以及能根据题意画出相应的旋转图形)学习重点:能正确理解旋转定义并能自行推导旋转的三要素以及性质学习难点:应用旋转性质解决相关题目(目标3)四、教法与学法按照学生认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。

根据学法指导自主性和差异性原则,让学生在“观察——操作——交流——归纳——应用”的实践探索中,自主参与知识的产生、发展、形成与应用的过程。

通过学生的自主活动、主动探索、合作交流、动手操作等活动来构建与此相关的知识经验,使学生掌握知识,从而达到知识的运用。

教学设计23.1图形的旋转(第一课时)

教学设计23.1图形的旋转(第一课时)

23.1 图形的旋转(第一课时)教学设计教材分析:图形的旋转是在学习了图形的两种变换——轴对称和平移的基础上,进一步学习的一种图形基本变换,是将来进一步研究图形全等及其有关性质的基础。

本课通过多媒体课件展示实际生活中经常看到的一些图形旋转现象,给出图形旋转的大致形象,然后引导学生探索研究平面图形的旋转变换。

通过学生的自主探索、合作研究、交流体会,培养学生的观察能力、图形辨析能力和探索学习的能力。

教学目标:1、通过多媒体课件展示实际生活中经常看到的一些图形旋转现象和学生自己动手操作观察认识旋转,探索它的基本性质。

2、在发现、探究的过程中,完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力。

3、学生在经历了实验探究、知识应用以及知识内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性。

教学重点:归纳图形旋转的特征,并能根据这些特征绘制旋转后的几何图形。

教学难点:对图形进行旋转变换。

教学方式:按照学生认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。

教学资源准备:教师准备多媒体课件(开拓学生视野,激发学生学习兴趣)、课堂练习题、课堂达标测试题。

学生准备硬纸板、剪刀(训练学生的动手能力)。

教学过程:一、创设情境,导入新课问题:1.观察实例(课件展示)。

①钟表的指针在不停地旋转,从3点到5点,时针转动了多少度?②风车风轮的每个叶片在风的吹动下转动到新的位置。

这些现象有哪些共同特点?教师应关注:(1)学生观察实例的角度;(2)在学生发现实例现象的共同特点后,要求学生试着描述出旋转的定义。

归纳定义:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角。

(设计意图:旋转是属于动态的问题,对于运动的图形学生在学习掌握上会存在一定的困难。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。

本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。

通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。

二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。

但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。

同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。

三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。

2.能够运用图形旋转的性质解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.图形旋转的性质的理解和运用。

2.旋转的表示方法的掌握。

五. 教学方法采用问题驱动法和案例教学法进行教学。

通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。

六. 教学准备1.多媒体教学设备。

2.图形旋转的实例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。

2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。

3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。

4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。

5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。

《图形的旋转》教学设计

《图形的旋转》教学设计

《图形的旋转》教学设计(精品)《图形的旋转》教学设计作为一位兢兢业业的人民教师,很有必要精心设计一份教学设计,教学设计是一个系统化规划教学系统的过程。

那么优秀的教学设计是什么样的呢?下面是本店铺整理的《图形的旋转》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《图形的旋转》教学设计1教学目标:1、通过生活事例,使学生初步了解图形的旋转变换。

结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。

2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。

3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。

4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

教学重点:1、理解图形旋转变换的含义。

2、探索图形旋转的特征和性质。

教学难点:能在方格纸上将一个简单图形旋转90°。

教学过程:一、创设情境,揭示课题1、欣赏旋转的美生:真美呀!师:你知道这些美丽的图形都是做了什么运动得到的吗?(旋转)2、揭示课题师:今天这节课我们就一起来研究《图形的旋转》2、仔细观察,认识旋转的要素1、出示生活中物体师:你知道下面哪些物体是在做旋转吗?生:电风扇、风车、旋转木马、地球2、在生活中你还见过哪些旋转现象?(秋千、汽车的车轮、过山车-----)师:同学们的思维很开阔,生活中像这样的旋转现象很多,那到底什么是旋转呢?3、师:仔细观察它们都绕一个什么在旋转呢?你能用自己的话说一说什么是旋转吗?(-物体绕某一个点或轴运动的过程叫做旋转。

)师:现在我们知道了什么是旋转,那物体是怎样旋转的?旋转有什么特征呢?3、师:今天我们就从日常生活中关系密切的钟表和风车开始研究旋转现象你能看出它们的旋转有什么相同点和不同点吗?相同点:图形的旋转都围绕一个固定的.点旋转。

我们把这个相对固定的点叫做中心点。

不同点:图形旋转的方向不同4、用你的手比划一下,时钟的指针是怎样运动的?师:我们把时钟旋转的方向叫做顺时针,风车的旋转方向与时钟相反,叫什么旋转?(逆时针旋转)5、出示:电风扇、地球、齿轮师:旋转你会判断顺时针旋转和逆时针旋转吗?6、再次用手势确认顺时针和逆时针的方向师:通过刚才的学习我们知道了要研究图形的旋转必要考虑(中心点、方向)除了以上所述的,还有什么值得我们继续研究的吗?请同学们继续往下看7、师:你要仔细观察哦!8、指针从12绕点O 顺时针旋转30°到1指针从1绕点O 顺时针旋转60°到()指针从3绕点O顺时针旋转()度到6指针从6绕点O顺时针旋转()度到12。

《图形的旋转 第1课时》 示范公开课教学设计【部编北师大版八年级数学下册】

《图形的旋转 第1课时》 示范公开课教学设计【部编北师大版八年级数学下册】

第三章图形的平移与旋转3.2《图形的旋转》教学设计第1课时一、教学目标1.理解并掌握图形旋转中的对应点、对应角、对应线段、旋转中心和旋转角度等基本概念;2.理解图形的旋转变换是由旋转中心和旋转角度所决定的.3.通过具体实例认识平面图形的旋转,探索它的基本性质。

二、教学重点及难点重点:探索图形旋转的主要特征和基本性质.难点:从旋转中概括出旋转的基本性质.三、教学用具多媒体课件四、相关资源生活中的一些图片,微课,动画五、教学过程【情境导入】师(结合动画欣赏)在日常生活中,除了物体的平行移动外,我们还可以看到许多如图所示的物体的旋转的现象:时钟上的秒针在不停的转动;大风车的转动给人们带来快乐;飞速转动的电风扇叶片给人们带来一丝丝的凉意.在下图中图形都可以看成是由一个或几个基本平面图形转动而产生的奇妙画面.师:这些图形有什么特征?生:这些图形都可以看成是一个图形绕着某一点旋转而形成的新图形.师:这就是我们将要学习的图形的旋转.(投影显示课题及下面文字)如图,单摆上小球的转动,由位置P转到位置P´,像这样的运动就叫做旋转,悬挂点就叫做小球旋转的旋转中心.(用教材本套光盘自带动画显示)P'P设计意图:通过分析各种旋转旋转现象的共性,直观的认识旋转.【探究新知】如图3-10所示,△ABC绕点O按顺时针方向旋转一个角度,得到△DEF,点A,B,C分别旋转到了点D,E,F.点A与D是一组对应点,线段AB与线段DE是一组对应线段,∠BAC与∠EDF是一组对应角.在这一旋转过程中,点O是旋转中心,∠AOD,∠BOE,∠COF都是旋转角.师:如下图,△AOB绕着点O旋转45°到了△A´OB´的位置,那么图中旋转中心是点,旋转的角度是,对应点是,对应线段是,∠A与∠A´称为对应角,图中对应角还有.生:旋转中心是点O,旋转的角度是45°.对应点是:点A与点A´,点B与点B´;对应线段是:线段AB与线段A´B´,线段OA与线段OA´,线段OB与线段OB´.对应角还有:∠B与∠B´,∠AOB与∠A´OB´.师:从三个图形中我们可以发现:旋转中心在旋转过程中,图形的旋转是由和决定的.生:旋转中心在旋转过程中保持不动,图形的旋转是由旋转中心和旋转的角度决定的.(学生回答后投影粗体显示)观察了上面图形的运动,引导学生归纳图形旋转的概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.突出旋转的三个要素:旋转中心,旋转方向,旋转角度.做一做如图3-11,两张透明纸上的四边形ABCD和四边形EFGH完全重合,在纸上选取旋转中心O,并将其固定,把其中一张纸片绕O旋转一定角度(如图3-12).师:(1)观察图3-12的两个四边形,你能发现哪些相等的线段和相等的角? (2)连接AO ,BO ,CO ,DO , EO ,FO ,GO ,HO ,你又能发现哪些相等的线段和相等的角?(3)在图3-12中再取一些对应点,画出它们与旋转中心所连成的线段,你又能发现什么?生:(1)AB =EF ,BC =FG ,CD =GH ,AD =EH ,∠A =∠E ,∠B =∠F ,∠C =∠G ,∠D =∠H ;(2)AO =EO ,BO =FO ,CO =GO , DO =HO ,∠AOE =∠DOH =∠COG =∠BOF ;HFED CBA O(3)对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角.K'KJ'JAB CDEFGHO通过以上问题的探讨研究,引导学生总结旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.想一想师:在图3-13(1)~(4)的四个三角形中,哪个不能由△ABC经过平移或旋转得到?生:第(2)个三角形不能由△ABC经过平移或旋转得到.【课堂练习】1.如图,四边形ABCD经过旋转后与四边形ADEF重合.(1)指出这一旋转的旋转中心和旋转角;(2)写出图中相等的线段和相等的角.FDCBA2.如图,你能绕点O旋转,使得线段AB与线段CD重合吗?为什么?答案:1.解:(1)点A是旋转中心,∠BAD,∠CAE,∠DAF都是旋转角;(2)AB=AD=AF,AC=AE,BC=DE,CD=EF,∠BAD=∠CAE=∠DAF,∠BAC=∠DAE,∠CAD=∠EAF,∠BCA=∠DEA,∠ACD=∠AEF,∠ABC=∠ADE,∠BCD=∠DEF,∠ADC=∠AFE.2.解:不能,虽然两线段长度相等,但旋转前后,对应点到旋转中心的距离不相等,OA≠OC,OB≠OD,所以不能绕点O旋转,使得线段AB与线段CD重合.【课堂小结】1.旋转的定义:“四要素”一个图形、一个定点、一个方向、一个角度.2.旋转的性质:“三特点”对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等;旋转不改变图形的形状和大小.【板书设计】旋转的定义:“四要素”个图形、一个定点、一个方向、一个角度.旋转的性质:对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等;旋转不改变图形的形状和大小.。

《图形的旋转一》教学设计

《图形的旋转一》教学设计

《图形的旋转一》教学设计《图形的旋转一》教学设计(精选5篇)作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么问题来了,教学设计应该怎么写?以下是店铺整理的《图形的旋转一》教学设计(精选5篇),希望对大家有所帮助。

《图形的旋转一》教学设计1教学目标:1、通过动手操作、实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2、通过操作、观察,进一步培养学生的空间思维观念。

教学重点:了解一个简单的图形经过旋转制作复杂图形的过程教学难点:让学生清楚的表述图形的旋转过程。

教学准备:学生准备基本图形卡片、带有小方格的纸教师准备多媒体演示文稿、纸做小风车。

教学时间:20分钟教学过程:一、在游戏中导入新知1、教师手拿风车走向讲台。

问:同学们,认识它吗?玩过吗?在今天这个舞台上你敢玩吗?找一名学生上台展示玩法。

问:在你玩的过程中,这个风车的风叶是怎样运动的?它又是怎样旋转的呢?2、看了刚才这位同学的精彩表演,大家是不是也想玩一玩呀?那么就请同学们想办法让手中的东西、桌子上的东西、包中的东西旋转起来,我们来比一比,看谁最会玩?学生活动,教师巡视。

1、刚才,老师看了一下这位同学的玩法,这位同学的玩法很独特,我们就请到前面来展示一下他的玩法。

你能用语言具体描述一下它的旋转过程吗?(说清绕哪一点、按什么方向旋转,旋转的角度)1、刚才大家都让自己手中的东西旋转了起来,玩的开心吗?下面我们换一个玩法。

大家猜想一下,如果我们让一个基本图形旋转起来,会形成什么样的图案呢?2、大屏幕呈现一些美丽的图案。

这些图案美不美?这里的每一个图案都是经过一个图形的旋转而得到的,今天我们就走进图形旋转的天地。

板书课题:图形的旋转二、在实践中探索图形的旋转过程1、请大家继续欣赏这些美丽的图案,他们分别是由哪些基本图形经过旋转得到的呢?下面我们就这两幅图为例来探讨一下。

北师大新版六年级数学下册《图形的旋转一》第一课时优秀获奖公开课教学设计

北师大新版六年级数学下册《图形的旋转一》第一课时优秀获奖公开课教学设计
《图形的旋转一》教学设计
学科
数学
年级
六年级
教师姓名
学校
教材版本
北师大版本小学数学六年级下册
课题
图形的旋转(一)第(1)课时
教材分析
图形的旋转(一)的主要内容是帮助学生理解并掌握顺(逆)时针方向,并从中心点、方向、角度三个方面研究图形的旋转。教材从观察钟面入手,引导学生观察时针、分针和秒针的旋转情况,引导学生感知顺(逆)时针方向旋转的界定方法,掌握旋转的中心点、方向、角度三要素。
2、它们都是旋转的。
3、好。
4、读课题。
电子白板
多媒体课件PPT
1、通过情境创设,激发学生的求知欲。
2、引入课题。
二、探索新知
(一)、认识顺时针和逆时针旋转
1、出示钟面模型,请同学们认真观察钟面,说说时针、分针、秒针是怎样旋转的。
2、指名学生汇报。
3、小结——我们把时针、分针、秒针旋转的方向规定为顺时针方向。相反的旋转方向规定为逆时针方向。
教学目标
1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言“绕哪个点”、“向什么方向”、“旋转多少度”三个要素来清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的线段。
2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。
3、欣赏图形旋转变换所创造的美,学会用数学的眼光观察、思考生活,体会数学的价值。
、同学们,请读一读题目要求,再动手画一画。
、巡视。
、指名展示。
、进行认真观察,明确要求,解决问题。
、右图时针旋转的角度大。
、认真计算。
、汇报计算结果(90度、120度)。
、独立完成。
、进行汇报,参与订正。

图形的旋转第一课时教案

图形的旋转第一课时教案

图15.2.1 【教师提问】
学生在独立思考、相互探讨、交流的过程中形成共识后,教师再归纳关板书旋转的定义:
将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形运动叫做图形的旋转。

这个定点叫旋转中心。

转动的角称为旋转角。

旋转不变图形的形状和大小。

旋转过程中,旋转中心始终保持不动。

旋转过程中,旋转的方向是相同的。

旋转过程静止时,图形上的每一点的旋转角是
一样的。

由此得出:图形的旋转是由旋转中心、旋转角度和旋转方向决定。

展示多媒体,加深对旋转的理解。

(二)合作交流,探索规律
图15.2.4
中,可以看到点A旋转到点
图15.2.5
,△ABC是等边三角形,D 经过逆时针旋转后到达△ACE的位置.旋转中心是哪一点?
(2) 旋转了多少度?
(3) 如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
图15.2.6
解(1) 旋转中心是点A.
(2) 旋转了60°.
(3) 点M转到了AC的中点位置上.
例2如图15.2.7(1),点M是线段AB上一点,将线段AB绕着点M顺时针方向旋转90°,旋转后的线段与原线段的位置有何关系?如果逆时针方向旋转90°呢?
图15.2.7
解顺时针方向旋转90°,如图15.2.7(2)所示,A′B′与AB互相垂直.逆时针方向旋转90°,如图1527(3)所示,A″B″与AB互相垂直.
(第2题) (第3题)
如图,△ABC与△ADE都是等腰直角三角形,∠C
在AB上,如果△ABC经逆时针旋转后能与△
旋转了多少度?
五、课堂小结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1 图形的旋转(1)
第一课时
教学内容
1.什么叫旋转?旋转中心?旋转角?
2.什么叫旋转的对应点?
教学目标
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
重难点、关键
1.重点:旋转及对应点的有关概念及其应用.
2.难点与关键:从活生生的数学中抽出概念.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1、2两题有什么共同特点呢?
共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺
时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A、B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心和旋转角.
(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
(老师点评)
(1)可以看做是由正方形ABCD的基本图案通过旋转而得到
的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.
三、巩固练习
教材P65 练习1、2、3.
四、应用拓展
例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心
重合,不难知道重合部分的面积为1
4
,现把其中一个正方形固定不动,•另一个正方形绕其
中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.
解:面积不变.
理由:设任转一角度,如图所示.
在Rt△ODD′和Rt△OEE′中
∠ODD′=∠OEE′=90°
∠DOD′=∠EOE′=90°-∠BOE
OD=OD
∴△ODD′≌△OEE′
∴S△ODD`=S△OEE`
∴S四边形OE`BD`=S正方形OEBD=1 4
五、归纳小结(学生总结,老师点评)
本节课要掌握:
1.旋转及其旋转中心、旋转角的概念.
2.旋转的对应点及其它们的应用.
六、布置作业
1.教材P66 复习巩固1、2、3.
2.《同步练习》
一、选择题
1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().
A.6个 B.7个 C.8个 D.9个
2.从5点15分到5点20分,分针旋转的度数为().
A.20° B.26° C.30° D.36°
3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().
A.70° B.80° C.60° D.50°
(1) (2) (3)
二、填空题.
1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.
2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.
3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.
三、综合提高题.
1.阅读下面材料:
如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.
如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.
(4) (5) (6) (7)
如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.
回答下列问题
如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1
2 AB.
(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到
△ADF的位置?
(2)指出如图7所示中的线段BE与DF之间的关系.
2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?
答案:
一、1.B 2.C 3.B
二、1.旋转旋转中心旋转角 2.A 45° 3.点A 60°等边
三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.
(2)BE=•DF,BE⊥DF
2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.。

相关文档
最新文档