二极管的反向恢复过程
二极管的开关特性

第一节二极管的开关特性一般而言,开关器件具有两种工作状态:第一种状态被称为接通,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。
在数字系统中,晶体管基本上工作于开关状态。
对开关特性的研究,就是具体分析晶体管在导通和截止之间的转换问题。
晶体管的开关速度可以很快,可达每秒百万次数量级,即开关转换在微秒甚至纳秒级的时间内完成。
二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。
二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短,一般可以忽略不计,因此下面着重讨论二极管从正向导通到反向截止的转换过程。
一、二极管从正向导通到截止有一个反向恢复过程在上图所示的硅二极管电路中加入一个如下图所示的输入电压。
在0―t1时间内,输入为+V F,二极管导通,电路中有电流流通。
设V D为二极管正向压降(硅管为0.7V左右),当V F远大于V D时,V D可略去不计,则在t1时,V1突然从+V F变为-V R。
在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。
但实际情况是,二极管并不立刻截止,而是先由正向的I F变到一个很大的反向电流I R=V R/R L,这个电流维持一段时间t S后才开始逐渐下降,再经过t t后,下降到一个很小的数值0.1I R,这时二极管才进人反向截止状态,如下图所示。
通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。
其中t S 称为存储时间,t t称为渡越时间,t re=t s+t t称为反向恢复时间。
由于反向恢复时间的存在,使二极管的开关速度受到限制。
二、产生反向恢复过程的原因——电荷存储效应产生上述现象的原因是由于二极管外加正向电压V F时,载流子不断扩散而存储的结果。
当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。
二极管的开关作用和反向恢复时间

PN结二极管经常用来制作电开关。在正 偏状态,即开态,很小的外加电压就能产生 较大的电流,;在反偏状态,即关态,只有 很小的电流存在于PN结内。我们最感兴趣的 开关电路参数就是电路的开关速度。本节会 定性地讨论二极管的开关瞬态以及电荷的存 储效应。在不经任何数学推导的情况下,简 单给出描述开关时间的表达式。
假设外加脉冲的波形如图(a)所示,则流过二极管的电 流就如图(b)所示。
外电路加以正脉冲时
导通过程中,二极管P区向N区输运大量空穴,N区向P区输运 大量电子。 随着时间的延长,N区内空穴和P区内电子不断增加,直到稳 态时停止。在稳态时,流入N区的空穴正好与N区内复合掉的空穴 数目相等,流入P区的电子也正好与P区内复合掉的电子数目相等, 达到动态平衡,流过P-N结的电流为一常数I1。 随着势垒区边界上的空穴和电子密度的增加,P-N结上的电压 逐步上升,在稳态即为VJ。此时,二极管就工作在导通状态。
注意
反向恢复时间限制了二极管的开关速度。 (1)如果脉冲持续时间比二极管反向恢复时 间长得多,这时负脉冲能使二极管彻底关断,起 到良好的开关作用; (2) 如果脉冲持续时间和二极管的反向恢复 时间差不多甚至更短的话,这时由于反向恢复过 程的影响,负脉冲不能使二极管关断。 所以要保持良好的开关作用,脉冲持续时间 不能太短,也就意味着脉冲的重复频率不能太高, 这就限制了开关的速度。
V1为外加电源电压, VJ为二极管的正向压 降,对硅管VJ约为 0.7V,锗管VJ约为 0.25V,RL为负载电阻。
在开态时,流过负载的稳态电流为I1 通常VJ远小于V1,所以左式 可近似写为
I1
V1 V J RL
→
I1
Hale Waihona Puke V1 RL在关态时,流过负载的电流就是二 极管的反向电流IR。
二极管导通电流与反向恢复电流关系式

二极管导通电流与反向恢复电流关系式二极管是一种最简单的半导体器件,具有单向导电特性,即只能在特定的电压和电流条件下进行导电。
其导通电流和反向恢复电流之间存在一定的关系。
一、二极管的导通电流:当二极管正向偏置时,即正向施加电压使得P区为正电势,N区为负电势,二极管呈现导通状态。
此时流过二极管的电流即为导通电流。
二极管的导通电流可以通过伏安特性曲线来表示。
伏安特性曲线描述了二极管正向电压和正向电流之间的关系。
在正向电压小于开启电压(正向压降)时,导通电流非常小,接近于零。
当正向电压超过开启电压时,导通电流迅速上升,促使二极管进入导通状态。
在进一步增加正向电压时,导通电流将急剧增加,但增长幅度较小。
最后,当达到一定正向电压值时,导通电流将趋于饱和,而继续提高正向电压将无法进一步增加导通电流。
二、二极管的反向恢复电流:当二极管反向偏置时,即反向施加电压使得P区为负电势,N区为正电势,二极管呈现截止状态。
在截止状态下,二极管中几乎没有反向电流通过。
这是因为二极管的P区和N区之间的p-n结存在势垒。
该势垒可阻碍自由载流子通过,从而防止反向电流的流动。
然而,在实际应用中,二极管中总会存在一定的反向电流,这被称为反向恢复电流。
反向恢复电流的产生是由于p-n结中的载流子在应用的反向电压下发生漂移运动而引起的。
其中,主要包括两种类型的反向恢复电流:扫描电流和滞后电流。
扫描电流是由于p-n结中的电荷在反向偏置电压下从扩散层穿过势垒而产生的。
当反向电压超过一定阈值时,扫描电流会迅速增加。
滞后电流是由于p-n结中的电荷在正向偏置电压下嵌入到扩散区域并分离时产生的。
当反向电压降低到一定程度时,滞后电流会迅速减小。
需要注意的是,反向恢复电流的大小与二极管的结构、材料和工作条件等因素有关。
一般来说,势垒的高度和扩散层的宽度越大,反向恢复电流就越小。
同时,反向电压的大小也会影响反向恢复电流的大小。
总结起来,二极管的导通电流和反向恢复电流之间存在一定的关系。
FR307二极管反向恢复时间测试分析

FR307二极管反向恢复时间测试分析 二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流i0。
当电压由正向变为反向时, 电流并不立刻成为(- i0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。
经过ts 后, 反向电流才逐渐变小, 再经过tf 时间, 二极管的电流才成为(- i0) , ts 称为储存时间, tf 称为下降时间。
tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。
这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。
该过程使二极管不能在快速连续脉冲下当做开关使用。
如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。
首先进行测试的是FR307GW 二极管,其外形实物图如下图所示,使用DI-100进行测试,它可以测试快恢复二极管、场效应管(Mosfet )内建二极管、IGBT 基内建二极管。
它可以测试二极管反向电流峰值100A ,二极管正向电流30A ,测量精度10nS ,测试的过程中不必担心二极管接反的问题。
图1 二极管实物及恢复特性图2 二极管正向导通电流 图3 二极管反向恢复电流图4二极管反向恢复电流斜率图5 二极管反向恢复时间以上波形是DI-100把偏置电压设置到150V测试的结果,综上可以看出,二极管正向导通电流:3.52A,二极管反向恢复电流:6.64A,二极管反向恢复电流斜率:7.76A/uS,二极管反向恢复时间:550nS。
这个器件的参数,基本上是满足说明书要求的,应用时应该没有什么太大的问题。
接着使用DI-100测试FR307ZG二极管,二极管外形实物图如下图所示:图1 二极管实物图2 二极管正向导通电流图3 二极管反向恢复电流图4二极管反向恢复电流斜率图5 二极管反向恢复时间以上波形仍然是DI-100把偏置电压设置到150V测试的结果,综上可以看出,二极管正向导通电流:2.96A,二极管反向恢复电流:3.6A,二极管反向恢复电流斜率:10.24A/uS,二极管反向恢复时间:540nS。
反激电路副边二极管反向恢复_解释说明以及概述

反激电路副边二极管反向恢复解释说明以及概述1. 引言1.1 概述反激电路是一种常见的电源电路拓扑结构,其中副边二极管的反向恢复现象对其性能具有重要影响。
本文旨在深入研究反激电路副边二极管反向恢复现象,并探讨其相关因素及调控策略。
1.2 文章结构本文将分为五个部分进行介绍和论述。
首先,在引言部分进行文章背景的阐述,并提出研究目的。
接着,在第二部分将详细解释反激电路副边二极管的基本原理以及作用机制。
然后,在第三部分将探讨反激电路副边二极管反向恢复现象的影响因素与调控策略。
紧接着,在第四部分将进行实验验证与案例分析,通过具体案例来验证之前所得到的研究成果。
最后,在结论和展望中总结本文主要观点和结果,并展望未来在该领域可能进行的进一步研究方向。
1.3 目的本文旨在全面解释和说明反激电路副边二极管反向恢复现象,探讨其影响因素,并提出相应的调控策略。
通过深入研究反激电路副边二极管的反向恢复现象,我们可以更好地理解该现象对电路性能的影响,为设计和优化反激电路提供实用的指导。
2. 反激电路副边二极管反向恢复解释说明:2.1 反激电路基本原理介绍:反激电路是一种常用的开关电源拓扑结构,其基本原理是通过周期性开关操作使能量从输入端传递到输出端。
在正常工作情况下,当开关导通时,输入能量会储存于磁场中,在开关断开时,磁场能量会转移到输出负载上。
2.2 副边二极管的作用与原理解释:在反激电路中,副边二极管扮演着重要角色。
它被连接在变压器的次级线圈与输出负载之间,并与主开关配合工作。
其主要功能是提供一条回路路径供磁能释放,同时也可以防止负载返回冲击电压过高。
副边二极管的工作原理如下:当主开关导通时,变压器会储存磁能,并将其传递到副边二极管上。
此时,副边二极管处于正向偏置状态,即导通状态。
当主开关关闭时,在变压器一侧产生反向瞬态电压,这将使得副边二极管迅速反向恢复,即将其导通端变为截止状态。
通过这样的反向恢复操作,副边二极管在短时间内存储并释放能量,使得电路能够平稳工作。
MOSFET体二极管反向恢复过程分析

MOSFET体二极管反向恢复过程分析MOSFET体二极管是指在MOSFET器件的PN结结构中,真空中的栅极(Gate)和漏极(Source)之间也存在类似二极管的结构。
当MOSFET体二极管处于正向偏置时,其工作与普通二极管相似,导通状态时电流正常流过;但当MOSFET体二极管处于反向偏置时,其恢复过程较为复杂。
当MOSFET体二极管处于反向偏置时,即栅极电压高于漏极电压,栅极-漏极结反向偏置,发生击穿现象。
这时,体二极管的恢复过程可以分为以下几个阶段:1. 正向偏置区(Forward Bias Region)在这个阶段,MOSFET体二极管处于正常导通状态,工作与普通二极管相似。
当应用正向电压时,电流从P型区流向N型区,形成电子-空穴对,导通。
2. 反向击穿区(Reverse Breakdown Region)当栅极电压高于体与漏极之间所能承受的反向击穿电压时,体二极管进入反向击穿区。
在这个区域,电流远远高于正常导通电流,而且电压随电流的增加而迅速下降。
击穿的原因通常是由于电场效应引起的,当电场强度足够强时,会导致电子激发,并产生二次电子和空穴。
这些激发的电子和空穴会形成电流。
3. 高电压饱和区(High Voltage Saturation Region)一旦击穿发生,体二极管进入高电压饱和区。
在这个阶段,电压几乎不再变化,而电流保持在一个较高的饱和水平。
此时,大量的激发电子和空穴通过击穿区域重新组合,产生复合电流。
4. 恢复区(Recovery Region)当栅极电压向零下进行恢复时,MOSFET体二极管进入恢复区。
在这个区域,反向击穿电流逐渐减小,而电压也逐渐恢复到正常水平。
这个过程会伴随着体二极管上的储存电荷释放以及内部PN结的耗尽层的形成。
5. 正向恢复区(Forward Recovery Region)当栅极电压进一步恢复至正向偏置时,体二极管进入正向恢复区。
在这个区域,电流逐渐消失,电压继续上升,直到最后恢复到正常的正向工作区域。
二极管 反向 恢复因子

二极管反向恢复因子【最新版】目录1.二极管的基本概念2.反向恢复因子的定义及影响因素3.二极管的反向恢复过程4.反向恢复因子在实际应用中的意义5.测试二极管反向恢复因子的设备与方法正文一、二极管的基本概念二极管是一种半导体器件,具有单向导电性。
在正向电压作用下,二极管处于导通状态,允许电流通过;而在反向电压作用下,二极管处于截止状态,电流不会通过。
然而,在实际应用中,二极管的反向恢复特性对电路性能具有重要影响。
二、反向恢复因子的定义及影响因素反向恢复因子(Reverse Recovery Factor,简称 RRF)是指二极管在反向电压作用下,从反向导通状态恢复到截止状态所需的时间。
它反映了二极管在反向恢复过程中的动态特性。
反向恢复因子受多种因素影响,如半导体材料、二极管结构、制造工艺等。
其中,最重要的因素是半导体材料的载流子复合速度。
载流子复合速度越快,反向恢复因子越小,说明二极管的反向恢复能力越强。
三、二极管的反向恢复过程当二极管处于正向导通状态时,正向电压使 p 型半导体和 n 型半导体中的载流子向 pn 结附近集中,形成正向电流。
当外加电压改为反向电压时,正向电流迅速消失,但此时载流子在 pn 结附近仍存在,使得二极管处于反向导通状态。
随着反向电压的持续作用,载流子在 pn 结附近逐渐复合,使反向电流逐渐减小。
当反向电流减小到一定程度时,二极管恢复到截止状态。
这个过程称为二极管的反向恢复过程。
四、反向恢复因子在实际应用中的意义反向恢复因子是衡量二极管动态特性的重要参数。
在高频应用中,二极管的反向恢复能力直接影响到电路的工作效率和性能。
反向恢复因子越小,二极管的反向恢复能力越强,对高频信号的响应速度也越快。
因此,在高频应用中,需要选用具有较小反向恢复因子的二极管。
五、测试二极管反向恢复因子的设备与方法测试二极管反向恢复因子的设备称为二极管反向恢复时间测试仪。
这种设备可以手动调节测试电压、电流等参数,具有较高的测量精度。
整流二极管的反向恢复过程

整流二极管的反向恢复过程二极管从正向导通到截止有一个反向恢复过程在上图所示的硅二极管电路中加入一个如下图所示的输入电压。
在0―t1时间内,输入为+VF,二极管导通,电路中有电流流通。
设VD为二极管正向压降(硅管为0.7V左右),当VF远大于VD时,VD可略去不计,则在t1时,V1突然从+VF变为-VR。
在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。
但实际情况是,二极管并不立刻截止,而是先由正向的IF变到一个很大的反向电流IR=VR/RL,这个电流维持一段时间tS后才开始逐渐下降,再经过tt后,下降到一个很小的数值0.1IR,这时二极管才进人反向截止状态,如下图所示。
通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。
其中tS称为存储时间,tt称为渡越时间,tre=ts+tt称为反向恢复时间。
由于反向恢复时间的存在,使二极管的开关速度受到限制。
02产生反向恢复过程的原因——电荷存储效应产生上述现象的原因是由于二极管外加正向电压VF时,载流子不断扩散而存储的结果。
当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。
空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。
正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。
电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。
我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。
当输入电压突然由+VF变为-VR时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:①在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示;②与多数载流子复合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二极管的反向恢复过程 The Standardization Office was revised on the afternoon of December 13, 2020
二极管的反向恢复过程
一、二极管的反向恢复过程
二、在下图的电路中V上输入如下的电压波形:则二极管上的电流波形如下:
可以看到,当通入正向电压时,二极管导通,二极管上的电流为I1,当通入的电压突然反向时,二极管上的电流也瞬间反向了,随后才变小,进而进入反向截止状态。
这个现象就叫二极管的反向恢复。
反向电流保持不变的这段时间称为储存时间ts,反向电流由I2下降到0.1I2所需的时间称为下降时间tf。
储存时间和下降时间之和(ts+tf)称为反向恢复时间。
二极管反向截止后还存在的电流被称为二极管的反向漏电流IR。
二、二极管反向恢复现象的解释
在二极管的PN节上,当外加正向电压时,P区的空穴向N区扩散,N区的电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流子,如下图所示。
空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建
立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。
正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。
电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。
我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。
当输入电压突然由正向变为反向时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:
①在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示;
②与多数载流子复合。
在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与电路中的负载电阻相比可以忽略,所以此时反向电流IR=(反向电压VR+VD)/负载电阻RL。
VD表
示PN结两端的正向压降,一般 VR>>VD,即 IR=VR/RL。
在这段期间,IR基本上保持不变,主要由VR和RL所决定。
经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tf,二极管转为截止。
由上可知,二极管在开关转换过程中出现的反向恢复过程,实质上由于电荷存储效应引起的,反向恢复时间就是存储电荷消失所需要的时间。