数学建模(公司人力资源配置方案的最优设计)

合集下载

招聘人力资源规划数学建模

招聘人力资源规划数学建模

招聘人力资源规划数学建模引言在当前竞争激烈的人力资源市场中,企业的人力资源规划变得愈发重要。

招聘是人力资源规划的核心环节之一,而数学建模则在此过程中发挥重要的作用。

本文将介绍如何使用数学建模来辅助招聘人力资源规划的决策过程,并探讨其优势和实际应用。

招聘人力资源规划概述招聘人力资源规划旨在预测和满足企业未来的人力需求。

准确的招聘计划能够帮助企业根据业务需求和发展目标,合理配置人力资源,从而提高人员的配对度、减少人员的流动性、降低招聘成本。

而数学建模则基于大量的历史数据和变量来分析和预测招聘人力资源规划中的多个方面,如招聘周期、用人需求等。

数学建模在招聘人力资源规划中的应用数据收集和分析在数学建模中,数据是非常关键的一部分。

通过收集并分析历史的招聘数据,构建一个完整的数据集。

这些数据可能包括候选人的简历、面试结果、录用率等信息。

通过对这些数据进行统计分析、可视化处理,我们可以更好地了解企业的招聘情况,发现与业务目标不符的地方,并对未来的招聘人力资源规划做出精确的预测。

模型建立和分析在数学建模中,我们可以利用多种建模技术来构建相应的模型。

例如,可以使用人力资源决策树来预测不同招聘渠道和策略对人员流动性的影响;也可以使用线性规划模型来优化招聘成本,最大化人力资源的利用效率。

这些模型可以帮助企业在不同情况下进行决策,从而使招聘人力资源规划更加灵活和高效。

预测和优化数学建模可以帮助企业预测未来的人力资源需求,并根据实际情况提供相应的优化方案。

通过对历史数据的统计和分析,我们可以发现招聘需求的季节性或周期性变化,并基于这些变化来调整招聘计划。

同时,数学建模还可以通过考虑不同的约束条件,如组织结构、薪资预算等,生成最优的人力资源规划方案,从而提高企业的绩效。

数学建模在实际招聘人力资源规划中的案例分析招聘计划优化案例假设一家互联网公司需要招聘50名软件工程师。

通过数学建模,可以分析不同的招聘渠道和策略对于招聘成本和招聘周期的影响。

数学建模-聘用方案问题

数学建模-聘用方案问题

聘用方案问题问题:(1)某服务部门一周中每天需要不同数目的雇员:周一到周四每天至少50人, 周五和周日每天至少80人, 周六至少90人. 现规定应聘者需连续工作5日, 试确定聘用方案, 即周一到周日每天聘多少人, 使在满足需求条件下聘用总人数最少.(2)上面指的是全时雇员 (一天工作8小时),如果可以用两个临时聘用的半时雇员(一天工作4小时, 不需要连续工作)代替一个全时雇员,但规定半时雇员的工作量不得超过总工作量的四分之一. 又设全时雇员和半时雇员每小时的酬金分别为5元和3元,试确定聘用方案, 使在满足需求的条件下所付酬金总额最小。

问题(1)⏹ 问题分析要求应聘者需连续工作五日,那么,为了模型的建立,我们令每个人工作且仅连续工作五日,且认为每个人都长期工作,则每一周都是等同的。

设从星期i 开始工作的人有x i 个,那么他他将工作到星期(i+4),当i+4>7时则工作到下一周的星期(i-3),这同时意味着他在本周的星期1,…,i-3,也工作了。

例如星期一的x 1个人工作的日子为星期1,2,3,4,5,星期五的x 5个人工作的日子为星期1,2,5,6,7。

其他天的情况同理可知。

那么星期一工作的人有x1+x4+x5+x6+x7个,要求星期一工作的人数至少为50,那么就有x1+x4+x5+x6+x7>=50,其他的日子也可以同样地写出来。

于是就有了下面(模型建立中)的限制条件。

我们要求的是总人数最少,即目标函数z=∑x i 7i=1最小。

设定x i >=0,且为整数。

⏹ 模型建立Min x1+x2+x3+x4+x5+x6+x7 s.t.x1+x4+x5+x6+x7>=50 x1+x2+x5+x6+x7>=50 x1+x2+x3+x6+x7>=50 x1+x2+x3+x4+x7>=50 x1+x2+x3+x4+x5>=80 x3+x4+x5+x6+x7>=80 x2+x3+x4+x5+x6>=90 x1>=0 x2>=0 x3>=0 x4>=0x5>=0x6>=0x7>=0⏹编写程序在lindo软件下编写程序Min x1+x2+x3+x4+x5+x6+x7s.t.1) x1+x4+x5+x6+x7>=502) x1+x2+x5+x6+x7>=503) x1+x2+x3+x6+x7>=504) x1+x2+x3+x4+x7>=505) x1+x2+x3+x4+x5>=806) x3+x4+x5+x6+x7>=807) x2+x3+x4+x5+x6>=908) x1>=0x2>=0x3>=0x4>=0x5>=0x6>=0x7>=0endgin 7⏹运行结果Global optimal solution found.Objective value: 90.00000Objective bound: 90.00000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 5Variable Value Reduced Cost X1 0.000000 1.000000 X2 10.00000 1.000000 X3 30.00000 1.000000 X4 10.00000 1.000000 X5 30.00000 1.000000 X6 10.00000 1.000000 X7 0.000000 1.000000Row Slack or Surplus Dual Price1 90.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.000000 10 10.00000 0.000000 11 30.00000 0.000000 12 10.00000 0.000000 13 30.00000 0.000000 14 10.00000 0.000000 15 0.000000 0.000000⏹ 解释结果使得z=∑x i 7i=1最小且满足限制条件的x i 取值为x 1=0,x 2=10,x 3=30,x 4=10,x 5=30,x 6=10,x 7=0,Min z=90.⏹ 具体方案由以上讨论得,使得周一到周四每天至少50人, 周五和周日每天至少80人, 周六至少90人且聘用人数最少的方案是:周一开始的不聘,周二开始工作的聘10人,周三开始工作的聘30人,周四开始工作的聘10人,周五开始工作的聘30人,周六开始工作的聘10人,周日开始工作的不聘。

关于企业利益最大化的数学建模论文

关于企业利益最大化的数学建模论文

《数学建模与数学实验综合实验》课程设计任务书一、设计目的通过《数学建模与数学实验综合实验》课程设计,使学生能够将课堂上学到数学建模的理论知识与实际问题相联系,在提高学生学习兴趣的同时逐渐培养实际操作技能,强化对课程内容的了解。

本课程设计不仅有助于学生提高学生的建模能力,而且也有助于培养学生门的创新意识和动手能力。

二、设计教学内容本题要求运用数学建模知识解决人力资源管理中所遇到的问题。

本论文针对各项工程对技术人员限制的实际需求,充分合理地对专业技术人员进行合理配置,最终给出了该模型下的最优解,使公司收益最大化。

在模型求解过程中运用matlab软件得出模型中技术力量配置的最优解,最终解决了本题中的人力资源安排问题。

三、设计时间2011—2012学年第1学期:第16周共计1周教师签名:2010年12月12日摘要随着现代企业的发展,企业之间的竞争力越来越大,如何尽量满足客户的要求并且符合公司的人力资源,使企业的收益最大,这就涉及人员的分配问题。

合理的人力资源配置应使人力资源的整体功能强化,使人的能力与岗位要求相对应。

企业的岗位有层次与种类之分,它们占据着不同的位置,处于不同的能级水平。

每个人也都具有不同水平的能力,在纵向上处于不同的能级位置。

企业岗位人员的配置,应能做到能级对应,也就是说每一个人所具有的能级水平与所处的层次和岗位的能及要求相对应。

本文针对各项工程对技术人员限制的实际需求,充分合理地对专业技术人员进行合理配置,最终给出了该模型下的最优解,使公司收益最大化。

首先明确目标函数为公司最大收益,根据题目要求综合考虑了各项目客户对公司各专业技术人员人数的限制及总技术人员人数的限制,以及公司各类专业技术人员资源的限制等因素,将这些因素量化,即为本题的约束条件。

再利用Matlab软件得出模型中技术力量配置的最优解,即得以解决了本题中的人力资源安排问题。

关键词:多目标规划,最优化模型,约束量化1 问题的重述"E公司"有专业技术人员共41人,人员结构可以分为高级工程师、工程师、助理工程师以及技术员,人员结构对应的工资水平各有不同。

数模-公司工作人员调整问题

数模-公司工作人员调整问题

公司工作人员调整问题摘要:一个现代企业应该具有完善的用人制度,特别是考核制度。

本文根据数学建模的思想,通过对人员考核结果以及各岗位的素质需求等进行综合分析,为现代企业提供了科学实用的内部人员调整途径。

首先,根据工作人员工作意向、单位评价和各岗位对工作人员的要求,结合单位录用人员的一般经验,建立经验评判模型,得出初步的调整方案。

然后,将决策的目标分解为公司满意度和员工满意度,其中,公司满意度分解为四个工作岗位对员工的满意度,它是综合公司对员工以往工作的考核结果以及各个岗位对每种职工能力的要求程度,它是通过层次分析法将定性的量定量化得到的;员工的满意度分解为四名员工对各个岗位的满意度,它是综合员工的志愿以及每个志愿之间的待遇差别,进行层次分析得到的。

其次,在得到每个员工对每个工作岗位的满意度以及每个工作岗位对每个员工的满意度的基础上,我们再通过0-1规划模型求出最优解;最后,对所求得的最优解的模型进行改进,对两个满意度指标的权重进行灵敏度分析,也证明模型的有效性,使得决策更加合理。

最终确定最优的人员调整方案为:分别将员工1、2、3、4分配到岗位4、3、1、2。

关键词:经验判断模型满意度层次分析法 0-1模型灵敏度分析Ⅰ问题背景及问题重述一、问题背景对员工的调整,虽说是一种现代企业制度的管理机制,但并不是说用人单位可以随意对员工的岗位进行变动,其调整的依据,一方面是用人单位生产经营需求,即各个岗位对于所需员工各方面的能力(工作能力、管理水平、综合处理能力、技术水平)的要求,另一方面就是员工的工作意向。

只有充分考虑两方面的因素,才能使用人单位以及员工都满意,那样生产效率才会更高。

二、问题重述人力资源的合理分配已成为当今社会发展的重要课题,受到社会各界的广泛关注。

某单位为了尽可能发挥工作人员的作用,拟将4名工作人员的工作岗位进行适当调整。

单位根据以往的工作表现对4名工作人员的工作能力,综合处理能力,管理水平,技术水平等四方面进行了评价,已知四名工作人员的工作意向和各岗位的工资待遇,工作环境,工作强度晋升机会和对工作人员希望达到的要求。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

(数学建模)人力资源安排模型

(数学建模)人力资源安排模型

(数学建模)人力资源安排模型文档:人力资源安排模型一、教学内容本节课我们将学习人力资源安排模型,这是数学建模中的一个重要内容。

我们将通过一个具体的例子来引入这个模型,然后讲解其数学原理和应用。

教材的章节为《数学建模》中的第9章,具体内容为“人力资源安排模型”。

二、教学目标1. 理解人力资源安排模型的概念和原理;2. 学会如何应用人力资源安排模型解决实际问题;3. 培养学生的数学建模能力和解决问题的能力。

三、教学难点与重点重点:理解人力资源安排模型的概念和原理,学会如何应用人力资源安排模型解决实际问题。

难点:如何将实际问题转化为数学模型,并求解。

四、教具与学具准备教具:PPT、黑板、粉笔;学具:纸、笔、计算器。

五、教学过程1. 实践情景引入:以一个公司的员工排班为例,讲解人力资源安排模型的实际应用。

2. 讲解人力资源安排模型的概念和原理:介绍人力资源安排模型的定义,讲解其数学原理和应用。

3. 例题讲解:给出一个具体的人力资源安排问题,引导学生如何将其转化为数学模型,并求解。

4. 随堂练习:让学生自己尝试解决一个人力资源安排问题,然后进行讲解和讨论。

5. 板书设计:将人力资源安排模型的数学公式和步骤板书在黑板上,方便学生理解和记忆。

6. 作业设计:给出一个人力资源安排问题,让学生课后解决,并写上下节课的PPT演示稿。

六、作业设计题目:某公司有三个部门,每个部门需要安排一名员工值班。

假设三个部门的员工分别为A、B、C,他们的值班时间分别为2小时、3小时和4小时。

要求每个部门的员工都不能连续值班,问如何安排员工的值班表?答案:可以安排如下:A值班:0002B值班:0205C值班:0509七、课后反思及拓展延伸本节课通过一个具体的例子引入了人力资源安排模型,让学生了解了其概念和原理,并学会了如何应用这个模型解决实际问题。

在教学过程中,我发现有些学生对于如何将实际问题转化为数学模型还有一定的困难,因此在课后我需要加强对这部分学生的辅导,让他们更好地理解和掌握这个模型。

数学建模-人员安排问题及参考答案

数学建模-人员安排问题及参考答案

Reduced Cost 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 18000.00 18000.00 18000.00 18000.00 18000.00 18000.00 18000.00 18000.00 18000.00 21000.00 21000.00 21000.00 21000.00 21000.00 21000.00 21000.00 21000.00 21000.00 19200.00 19200.00 19200.00 19200.00 19200.00 19200.00
目标函数值:203400 元; 费用增加量:203400-198000=5400 元; 当重新安排工程师甲到工期 2 时的损失不超过 5400 元时, 可以将 他的工作重新安排。 5.2 问题三 模型构成: 增加约束条件: (不一起工作可理解为不同时在一个项目中工 作) : 0 x2 jk x3 jk 1 , j 1, 2,3 , k 1, 2,3 ; 求解: 最 优 解 : x123 x131 x132 1 , x213 x222 x231 1 , x313 x331 x332 1 ,
Value 3000.000 3500.000 3200.000 3900.000 3.000000 2.000000 5.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000

数学建模最优化模型

数学建模最优化模型
动态最优化:如果可能的方案与时间有关, 则是动态最优化问题
有约束最优化问题的数学建模
有约束最优化模型一般具有以下形式:
m in f (x)
m ax f (x)
x

x
s .t. ......
s .t. ......
其中f(x)为目标函数,省略号表示约束式子,可以是 等式约束,也可以是不等式约束。
最优化方法主要内容
f1='-2*exp(-x).*sin (x)';
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。
解:令f(x)=y=2x3+3x2-12x+14
f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142, 综上得, 函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
ya11a3ln1a2expxa5a4
其中 a1 a2 a3 a4 和a 5 待定参数,为确定这些参数,
对x.y测得m个实验点: x 1 ,y 1 ,x 2 ,y 2, x m ,y m .
试将确定参数的问题表示成最优化问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公司人力资源配置方案的最优设计摘要人力资源管理是一个公司进行人力资源分配的重要工作,合理地安排人力资源,能够为企业带来最大的经济效益。

公司不只要对现有的人员进行任务分配,还要使公司的人力资源结构保持一个科学的比例。

本模型旨在为A建筑公司提供一个良好的人员分配方案,达到公司获利最大的目的,以及怎样在以后的人员招聘中使人力资源结构保持一个良好的比例。

在公司现有的情况下,通过分析各种影响因素,排除掉一些不必要的干扰因素,运用整数线性规划和分支定界法的知识建立数学模型,并使用LINGO软件进行编程求解,得出公司人员分配的最佳方案。

在对本模型优缺点评价之后,根据公司可能会采取临时招聘技术人员的情况,对模型进行了改进,通过模型计算,为公司提供了一个合理的人员招聘方案。

关键字:线性规划,人员分配,最大收益,LINGO软件目录一、问题重述 (1)二、问题分析 (1)三、问题假设 (2)四、模型建立 (2)五、模型求解 (4)六、结果分析 (5)七、模型评价 (6)八、模型改进 (6)九、附录 (8)参考文献: (11)一、问题重述企业的人力资源管理是一门科学,而人力资源管理最主要的任务是如何把企业现有的人力资源安排到合适的工作岗位,以使企业能够获得更高的经济效益。

尤其是在人力资源稀缺的情况下,合理的安排各人员的任务更是显得至关重要。

接下来我们将要解决的就是一个企业人员分配的问题。

在这个问题中,A建筑工程公司有高级工程师、工程师、助理工程师、技术员等四种不同级别的工作人员,并且公司同时承接了A、B、C、D四个不同的工程项目。

公司不同级别的技术人员的工资是固定不变的,各级别技术人员的数量也是一定的,为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,在各项目的收费标准也是一定的情况下,合理的安排现有的技术人员的任务,将使公司获得一个最大的利润。

那么,为了获得最大收益,A公司到底应该如何把这四种不同级别的技术人员安排到四个不同的项目中去呢?本文中,我们将重点对该问题进行分析。

二、问题分析该问题的任务是,通过合理分配人员,使公司每天的直接收益最大。

公司的主要收入来源是对各项目所收取的费用,支出主要有两项:四种不同级别的技术人员的工资和项目期间的办公费用。

公司的直接收益是总收入减去总支出。

A公司对各个项目的不同技术人员的收费标准都高于对应技术人员的总支出费用。

我们可以得出不同项目对应不同级别技术人员的利润表如下:注:该表中的利润值是已经减去办公费用的值同时,技术人员的分配受到不同项目对技术人员结构要求的约束,由于公司人员有限,各项目的技术人员安排不可能同时达到所需的最大数量,我们要将现有的41名技术人员对最大55个可用岗位进行安排。

从以上分析结果,我们可以确定这是一个线性规划问题,对公司现有的各级别技术人员进行合理的任务安排,可以使公司获得一个最大利润。

接下来,我们就将问题转化到如何将A公司各级别技术人员安排到55个岗位上来,使公司获得最大利润。

三、问题假设1、公司的现有技术人员数量和结构保持不变,即公司不会再临时招聘专业技术人员;2、一旦任务分配好之后,不会再出现人员变动的情况,并且不可能出现同一个技术人员同时担任两个项目的工作;3、对项目的收费标准和专业技术人员的工资水平保持不变;4、排除人员因生病、请假等不能正常工作的情况,排除天气对项目进行的影响;5、假设四个项目工期相同,即四个项目每天都在同时运行。

四、模型建立1、决策变量:对各项目分配的技术人员数目设如下变量:2、目标函数:设公司每天的利润为M元,根据利润表和人员分配表,公司每天的总利润可以表示为:M=750*x11+1250*x12+1000*x13+700*x14+600*x21+600*x22+650*x23+550*x24+430*x31+530*x32+480*x33+480*x34+390*x41+490*x42+240*x43+340*x443、约束条件:(1) 各项目的不同技术人员数量约束如下:1≤x11≤32≤x12≤5x13=21≤x14≤2x21≥2x22≥2x23≥22≤x24≤8x31≥2x32≥2x33≥2x34≥1x41≥1x42≥3x43≥1x44=0(2)各项目安排的总人员约束如下:x11+x21+x31+x41≤10x12+x22+x32+x42≤16x13+x23+x33+x43≤11x14+x24+x34+x44≤18(3)各级别技术人员总数约束如下:x11+x12+x13+x14≤9x21+x22+x23+x24≤17x31+x32+x33+x34≤10x41+x42+x43+x44≤5五、模型求解对于这种整数规划类型的问题,可以用分支定界法来进行求解。

但是由于该模型的变量比较多,用分支定界法进行手工求解是比较麻烦的,而lingo软件求解整数规划问题时,正是基于这种方法,所以我们可以借助lingo软件进行求解。

编写lingo程序如下:model:max=750*x11+1250*x12+1000*x13+700*x14+600*x21+600*x22+650*x23+550*x24+ 430*x31+530*x32+480*x33+480*x34+390*x41+490*x42+240*x43+340*x44;x11+x12+x13+x14<=9;x21+x22+x23+x24<=17;x31+x32+x33+x34<=10;x41+x42+x43+x44<=5;x11+x21+x31+x41<=10;x12+x22+x32+x42<=16;x13+x23+x33+x43<=11;x14+x24+x34+x44<=18;x11>=1;x11<=3;x12>=2;x12<=5;x13=2;x14>=1;x14<=2;x21>=2;x22>=2;x23>=2;x24>=2;x24<=8;x31>=2;x32>=2;x33>=2;x34>=1;x41>=1;x42>=3;x43>=1;x44=0;End运行程序(运行结果见附录一),求得最优解为27150 元,即为公司每天最大直接收益。

各项目的专业技术人员最优分配表如下:六、结果分析从运行结果(详见附录一)可以看出,公司的41名技术人员都能分配到任务,且完全符合各项目对技术人员结构的要求。

而且,从其“影子价格”一栏可得知,在其他条件不变的情况下,每增加一名高级工程师,公司的最大直接收益就增加700元;每增加一名工程师,公司的最大直接收益就增加550元;每增加一名助理工程师,公司的最大直接收益增加480元;每增加一名技术员,公司的最大直接收益增加440元。

因此,在不影响公司正常业务的情况下,应减少助理工程师和技术员的人数,增加高级工程师和工程师的人数,以使公司获得最大的直接收益。

七、模型评价1.模型优点:(1)该模型对问题用线性规划进行分析,而且列出了利润表对问题进行简化,使得问题变得简单,也减少了模型变量的数量,使得分析问题变得简单;(2)模型用lingo软件进行求解,通过影子价格来分析问题,简化了手工计算的工作量;(3)结果分析了各级别技术人员数量增加时对企业利润的影响,给人力资源结构调整作了一个参照,以及今后公司扩展业务时应该招聘的人员比例。

2.模型缺点:(1)本模型忽略了实际作业时的多种因素,例如天气、人员缺勤等不确定因素;(2)本模型未对公司实际作业时的其他支出进行考虑,如购买工具、设备折旧等;(3)当公司招聘临时技术人员时,会对公司利润造成影响,本模型未对其进行考虑。

八、模型改进针对模型的以上缺点,我们对其进行了以下改进:四个项目同时要求的总人数为55人,而公司实际人口为41人,如果公司招聘更多的技术人员会使利润增加,但应该招多少高级工程师、工程师、助理工程师和技术员,才能使公司的直接收益最大呢?下面我们对此问题进行求解。

假设其他条件不变,新招聘的技术人员的工资标准和现有人员的相同。

我们编写如下lingo程序并进行求解:model:max=750*x11+1250*x12+1000*x13+700*x14+600*x21+600*x22+650*x23+550*x24+430*x31+530*x32+480*x33+480*x34+390*x41+490*x42+240*x43+340*x44;x11+x21+x31+x41<=10;x12+x22+x32+x42<=16;x13+x23+x33+x43<=11;x14+x24+x34+x44<=18;x11>=1;x11<=3;x12>=2;x12<=5;x13=2;x14>=1;x14<=2;x21>=2;x22>=2;x23>=2;x24>=2;x24<=8;x31>=2;x32>=2;x33>=2;x34>=1;x41>=1;x42>=3;x43>=1;x44=0;End结果(详见附录二)显示:当招录高级工程师3人,工程师7人,助理工程师4人时,公司的直接收益最大,且最大收益为35020元。

各项目的专业技术人员最优分配表如下:表中的各级别的技术人员比例是最优的人员配置,当A公司保持这种人员比例时,会使公司的利润最大化。

这就给今后公司的进行人员招聘提供了一个比较科学的参照。

九、附录附录一:原模型运行结果Global optimal solution found.Objective value: 27150.00Total solver iterations: 7Variable Value Reduced CostX11 1.000000 0.000000X12 5.000000 0.000000X13 2.000000 0.000000X14 1.000000 0.000000X21 6.000000 0.000000X22 3.000000 0.000000X23 6.000000 0.000000X24 2.000000 0.000000X31 2.000000 0.000000X32 5.000000 0.000000X33 2.000000 0.000000X34 1.000000 0.000000X41 1.000000 0.000000X43 1.000000 0.000000X44 0.000000 0.000000Row Slack or Surplus Dual Price1 27150.00 1.0000002 0.000000 700.00003 0.000000 550.00004 0.000000 480.00005 0.000000 440.00006 0.000000 50.000007 0.000000 50.000008 0.000000 100.00009 14.00000 0.00000010 0.000000 0.00000011 2.000000 0.00000012 3.000000 0.00000013 0.000000 500.000014 0.000000 200.000015 0.000000 0.00000016 1.000000 0.00000017 4.000000 0.00000018 1.000000 0.00000019 4.000000 0.00000020 0.000000 0.00000021 6.000000 0.00000022 0.000000 -100.000023 3.000000 0.00000024 0.000000 -100.000025 0.000000 0.00000027 0.000000 0.00000028 0.000000 -300.000029 0.000000 -100.0000附录二:改进后模型运行结果:Global optimal solution found. Objective value: 35020.00Total solver iterations: 0 Variable Value Reduced CostX11 3.000000 0.000000X12 5.000000 0.000000X13 2.000000 0.000000X14 2.000000 0.000000X21 4.000000 0.000000X22 6.000000 0.000000X23 6.000000 0.000000X24 8.000000 0.000000X31 2.000000 0.000000X32 2.000000 0.000000X33 2.000000 0.000000X34 8.000000 0.000000X41 1.000000 0.000000X42 3.000000 0.000000X43 1.000000 0.000000X44 0.000000 0.000000Row Slack or Surplus Dual Price1 35020.00 1.0000002 0.000000 600.00003 0.000000 600.00005 0.000000 480.00006 2.000000 0.0000007 0.000000 150.00008 3.000000 0.0000009 0.000000 650.000010 0.000000 350.000011 1.000000 0.00000012 0.000000 220.000013 2.000000 0.00000014 4.000000 0.00000015 4.000000 0.00000016 6.000000 0.00000017 0.000000 70.0000018 0.000000 -170.000019 0.000000 -70.0000020 0.000000 -170.000021 7.000000 0.00000022 0.000000 -210.000023 0.000000 -110.000024 0.000000 -410.000025 0.000000 -140.0000参考文献:【1】姜启源等,《数学建模》(第三版),北京,高等教育出版社,2003年;【2】胡运权等,《运筹学基础及应用》(第四版),北京,高等教育出版社,2003年;【3】赵静等,《数学建模与数学实验》,北京,高等教育出版社&施普林格出版社,2000年;【4】马莉,《MATLAB数学实验与建模》,北京,清华大学出版社,2010年。

相关文档
最新文档