二甲双胍对胃癌抗肿瘤作用的研究进展
二甲双胍的抗肿瘤作用

险¨ 。临床上治疗 多囊 卵巢综合征患者仍然面 临很 多 挑战 。治疗 主要 针 对调 整月 经周期 、降低血 雄 激素 水平 、改 善胰 岛 素抵抗 及诱 发 排卵 。二 甲双胍 可 抑制 肝脏 合成 葡萄 糖 ,增 加 外 周组 织 对 胰 岛素 的敏 感 性 。 可通过降低胰岛素及雄激素水平 ,同时升高性激素结 合球蛋白的水平 , 从而提高了多囊卵巢综合征妇女的 内分 泌参数 如 葡萄糖 耐量 和排 卵率 ¨ ¨。
二 甲双胍作为双胍类 口服降血糖药的一种 ,通过 提高 胰 岛素 的敏感 性降 低血糖 而 广泛应 用 于 2型糖 尿 病患 者 。近些 年流 行病 学调查 研究 发现 二 甲双胍 有抗 肿瘤 的作 用 ¨ ,在大量 的文献 报 道 中 可 以看 到二 甲 双胍对乳腺癌 、卵巢癌 、子宫 内膜癌 、 肺癌等均能有 效降低疾病患病风险 。本文将就二甲双胍的抗肿 瘤 作用 及其 临床 应用 前景 做一综 述 。
中国 妇 幼 保健 2 0 1 5年 第 3 0卷
・
综述 ・
二 甲双胍 的抗肿 瘤 作用 ①
王静 璐 史 惠蓉 ② 郑州大学第一附属医院妇产科 ( 河南 郑州 ) 4 5 0 0 5 2
中国 图书 分 类 号 R 9 6 9 - 3 文 献标 识 码 A 文章 编 号 1 0 0 1 - 4 4 1 1 ( 2 o l s ) 2 4 - 4 2 4 4 - 0 4 ; d o i : 1 0 . 7 6 2 0 / z g f y b j . J . i s s n . 1 0 0 1 - 4 4 1 1 . 2 0 1 5 . 2 4 . 5 7
二甲双胍用于抗癌治疗的可能性 降糖药二甲双胍愈加表现出抗癌效应

发现 胰 腺癌 的5 年存活 率也 只有
‘
800 81O 1 3 87
. . .
BEI NG Jl SHENG YONG PHA RMAC EUTI LCO . TD CA , L
WW W 。 I UnI I . m . da co cn
3 糖 病 地2 l 2 尿天 o 2 l 0
助 手 在 6 .0 余 名糖 尿 病患 者 中开 289 展 了一 项 回顾 性 队 列 研 究 ,结果 发
展 ,这一发现 将有助于开发更有效
的乳腺癌疗法。
二甲双胍可减少胰腺癌
美 国一 项 新研 究 显 示 ,二 甲
=甲双胍可显著 降低 2 型糖尿
病患者罹患肝细胞癌的风险 肝硬化为糖尿病 常见的晚期并
肺部 由亚硝胺诱发 的肿瘤要 比对照 组少3 % ,而注射二 甲双胍 的实验 4
鼠肺部肿瘤 比对照组少7%。 3 美国 肠 胃病学
— —
《 尿病学》 (i e l i) 糖 Da t o a bo g 今年刊载 的一项研究得 出了二 甲双 胍具 有保护作 用的证据 .英 国卡迪 夫大学 的Ca J C re ri u i g r 博士及其
君力达@
超前 控 血糖 减 少合 并症
— — — — —
■
—
—
—
—
—
—
. .
甲双胍用于出抗癌 效应
胍 可 能 有助 于 预 防 因 吸烟 引发 的肺
今 年 的 欧洲 糖尿 病 研 究学 会 ( S )年会上 ,专家报告称二 甲 E D A 双胍愈加表现 出抗癌效应的结论 .
二甲双胍可抑制乳腺癌扩散
美 国 哈佛 大 学 医学 院 的研 究 人员发现 ,在 化疗 的同时让实验鼠
二甲双胍治疗胃癌 gastric cancer and metformin

Am J Cancer Res 2015;5(4):1423-1434 /ISSN:2156-6976/ajcr0005504Original ArticleMetformin inhibits gastric cancer via theinhibition of HIF1α/PKM2 signalingGuangxia Chen1,2, Wan Feng3, Shu Zhang3, Kangqi Bian1, Yan Yang4, Cheng Fang1, Min Chen3, Jun Yang5, Xiaoping Zou1,31Department of Gastroenterology, Affiliated Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, China; 2Department of Gastroenterology, First People’s Hospital of Xuzhou, Xuzhou, China; Department s of 3Gastroenterology, 5Pathology, Drum Tower Hospital, Affiliated to Medical School of Nanjing University, Nanjing, China; 4Department of Gastroenterology,Xuzhou Central Hospital, Clinical College of Xuzhou Medical College, Xuzhou, ChinaReceived January 4, 2015; Accepted February 1, 2015; Epub March 15, 2015; Published April 1, 2015 Abstract: Recent evidence suggests that anti-diabetic drug metformin prevents cancer progression, but the mecha-nism by which metformin inhibits tumor growth remains elusive. In this study, we investigated the anticancer role of metformin in gastric cancer and explored the underlying mechanism. The expression of hypoxia inducible factor 1α (HIF1α) and pyruvate kinase M2 (PKM2) in different stages of gastric cancer tissues was detected by immuno-histochemistry. Gastric cancer cell viability was evaluated by CCK-8 assay; apoptosis and cell cycle were analyzed by flow cytometry. The expression of PI3K, Akt, HIF1α, PARP, PKM2 and COX in gastric cancer cells was detected by immunofluorescence and Western blot analysis. We found that HIF1α and PKM2 protein expression levels were higher in advanced gastric cancer tissues than in gastritis tissues. Metformin reduced gastric cancer cell viability, in-vasion and migration. Metformin induced apoptosis and cell cycle arrest in part through inhibiting PARP expression. Metformin downregulated PI3K, Akt, HIF1α, PARP, PKM2 and COX expression. Moreover, overexpression of HIF1α increased gastric cancer cell viability, invasion and migration. In summary, metformin has profound antitumor effect for gastric cancer by inducing intrinsic apoptosis via the inhibition of HIF1α/PKM2 signaling pathway. Keywords: Metformin, gastric cancer, h ypoxia inducible factor 1α, p yruvate kinase M2IntroductionGastric cancer (GC) is the second most com-mon cause of cancer-related death worldwide [1, 2]. Tumor metabolism has been shown to play important role in tumorigenesis and tumor development [3]. Effect of tumor microenviron-ment on tumor metabolism has received more attention recently [4-7]. Hypoxia inducible fac-tor 1α (HIF1α) and glucose metabolism cause the change of tumor microenvironment [8, 9]. Targeting HIF-1 and tumor glucose metabolism at several levels reduce the antioxidant capac-ity of tumors, affect the tumor microenviron-ment, and sensitize various solid tumors to irra-diation [10].HIF1α plays a critical role in the regulation of tumor angiogenesis in response to hypoxia [11, 12]. Upon hypoxia, PI3k/Akt/HIF1α signaling pathway is activated to regulate tumor glucose metabolism [13].Metformin, a well-known anti-diabetic drug, has been shown to reduce the incidence of malignancies in patient with diabe-tes [14]. The use of metformin in patients with type 2 diabetes may reduce the risk of thyroid cancer [15]. A systematic review showed that metformin significantly reduced the occurrence of GC, liver cancer, lung cancer, colon cancer, esophageal cancer and reduced cancer-related mortality [16].However, the mechanism by which metformin inhibits tumor growth remains elusive.The aim of this study was to investigate the anti-cancer role of metformin in gastric cancer and explore the underlying mechanism. We detect-ed the expression of HIF1α and pyruvate kinase M2 (PKM2) in different stages of GC and exam-ined the efficacy and possible mechanism of metformin against human GC cells.Metformin inhibits gastric cancerMaterials and methods ReagentsMetformin and 4’,6-diamidino-2-phenylindole (DAPI) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Cell counting kit-8 (CCK-8) was purchased from Dojindo Laboratories (Ku- mamoto, Japan). Alexa Fluor 488 conjugated goat anti-rabbit secondary antibody and Trizol were purchased from Invitrogen (Carlsbad, CA , USA). Annexin V Apoptosis Detection kit FITC was purchased from eBioscience (San Diego, CA, USA). Antibodies against PARP (9532), Akt (9272), and β-actin (4967) were purchased from Cell Signal Technology (Boston, MA, USA). Antibody against PI3K (Y467) and HIF1α (K377) were purchased from Bioworld Technology (USA). Antibody against HIF1α (ab113642) and COX (ab33985) were purchased from Abcam (USA). Rabbit secondary antibody was from Cell Signal Technology. PrimeScript™ RT Master Mix and SYBR Premix Ex Taq reagents were pur-chased from Takara Biotechnology (Dalian, China).Samples and immunohistochemistryA total of 20 superficial gastritis, 40 early GC and 40 advanced GC tissues were obtained from patients admitted at The Affiliated Drum Tower Hospital of Nanjing University after the approval of the local ethics committee and informed consent were obtained. Immunohi- stochemical staining of deparaffinized tumoral and gastritis tissues were performed according to standard protocols using HIF1α and PKM2 antibody. The staining intensities were graded as 0, 1, 2, and 3 by two pathologists, respecti- vely.Cell cultureHuman GC lines SGC7901 (moderately differ -entiated) and BGC-823 (poorly differentiated) were purchased from Shanghai Institute of Biochemistry, and cultured in RPMI 1640 medi-um containing 10% fetal bovine serum, 100 ng/L penicillin, and 100 ng/L streptomycin at 37°C in 5% CO 2. HIF1α overexpression plasmid or control plasmid was transfected into BGC823 cells using Lipofectamine 2000 according to the manufacturer’s protocol.Cell viability assayCell viability was detected by cell counting kit-8 (CCK-8) assay. Cells were seeded into 96-well plates at 1×104 cells/well and cultured over-night at 37°C. After treatment with metformin at indicated concentrations for 24, 48, 72 h, 10 µL CCK-8 was added to each well and incubat-ed for 1 h at 37°C. The absorbance was mea-sured at 450 nm. The data were presented as mean ± SD of triplicate samples from at least three independent experiments. The cell viabil-ity was calculated using the following formula: cell viability (%)=(As-Ab)/(Ac-Ab)×100%, where As represents the A value of the experimental well, Ac represents the A value in the control well, and Ab represents the A value of the blank well.Annexin V-FIT C apoptosis assayCells were seeded in six-well plates at 4×105 cells/well and then treated with different con-centrations of metformin for 24 h. Apoptotic cells were detected by flow cytometry using Annexin V-FITC kit according to the instructi- ons.Cell cycle analysisCell cycle distribution was analyzed by flow cy- tometry. After indicated treatments, cells were trypsinized, rinsed with PBS, fixed with 70% ethanol at 4°C overnight, and treated with RNaseA (0.02 mg/ml) in the dark at room tem -perature for 30 min. Cells were resuspended in 0.05 mg/ml propidium iodide and analyzed with flow cytometry. For each sample, at least 1×104 cells were recorded.Cell invasion assayInvasion assay was performed using 24-well Transwell units with 8μm pore size polycarbon -ate inserts. The polycarbonate membranes were cultured at 37°C for 1 h. Cells (1×104) sus-pended in 200 μl of RPMI1640 medium con -taining 1% fetal bovine serum were seeded in the upper compartment of the Transwell unit. 800 μl of RPMI1640 medium containing 10% fetal bovine serum was added into the lower compartment as a chemoattractant. After 24 h incubation, cells on the upper side of the mem-brane were removed, and the cells that migrat-ed through the membrane to the underside were fixed and stained with 0.1% crystal violet. Cell numbers were counted in five separate fields using light microscopy at 400× magnifi -cation. The data were expressed as the meanMetformin inhibits gastric cancervalue of cells in five fields based on three inde -pendent experiments.Cell migration assayMigration assay was performed using 24-well Transwell units with 8 μm pore size polycarbon -ate inserts. The polycarbonate membranes were coated with Matrigel (Becton Dickinson) and cultured at 37°C for 1 h. The next steps were the same as cell invasion assay described above.Quantitative Real-time PCRTotal RNA was extracted using the Trizol Rea- gent and subsequently reverse transcribed using the PrimeScript RT Master Mix according to the manufacturer’s instructions. Quantitative Real-time PCR was performed with the 7500 Real-time PCR System (Applied Biosystems) using SYBR Premix Ex Taq reagents. PCR cycling conditions were: 40 cycles of 5 s at 95°C, 32-34 s at 60°C. Fold-induction was calculated using the formula 2-(ΔΔCt). The specific primers were as follows: HIF1α: sense: 5’-GTAGTGCTG- ACCCTGCACTCAA-3’ antisense: 3’-CCATCGGAA- GGACTAGGTGTCT-5’; β-actin: sense: 5’-ACCGA- GCGCGGCTACA-3’, antisense: 3’-CAGCCGTGG- CCATCTCTT-5’. Western blot analysisCells were lysed in RIPA buffer (50 mM Tris-HCl with pH 7.4, 150 mM NaCl, 0.25% deoxycholic acid, 1% NP- 40, 1 mM EDTA). The proteins in cell lysates were resolved by 8-12% sodium dodecyl sulfate-polyacrylamide gel electropho-resis and transferred to polyvinylidene fluoride membranes. The membranes were blocked by 5% non-fat dry milk in Tris buffered saline con -taining 0.1% Tween-20 for 2 h at room tempera-ture. Then the membranes were incubated with primary antibodies (1:1000 dilutions) over-night, followed by incubation with appropriate HRP-conjugated secondary antibodies (1:5000 dilutions). The blots were detected using Mil- lipore Immobilon Western Chemiluminescent HRP Substrate according to the manufacturer’s instructions. ImmunofluorescenceCells were cultured on 24-well plates, fixed with 4% paraformaldehyde, and blocked for 1 h with 5% normal goat serum, followed by incubation with monoclonal antibodies against HIF1α (1:200) and COX (1:100) overnight at 4°C. Cells were then rinsed with PBS and incubated with Alexa Fluor 488-conjugated goat anti-rabbit or goat anti-mouse secondary antibody. Cells were counter-stained with DAPI (2 μg/ml) and examined by fluorescence microscopy.Statistical analysisAll data were presented as mean ± SD of three independent experiments at least. Statistical analysis was performed using SPSS22.0 and Prism 5 (GraphPad Software Inc., San Diego, USA). Single factor analysis of variance test was used for comparisons among multiple groups, and t test was used for comparisons between two groups. P <0.05 was considered statistically significant.ResultsHigh expression levels of HIF1α and PKM2 in GC tissueWe detected the expression of HIF1α and PKM2 in superficial gastritis, early GC and advanced GC tissues by immunohistochemis-try. The expression level of HIF1α appeared to increase in early GC, but there was no signifi -cant difference compared with superficial gas -tritis. However, the expression level increased significantly in advanced GC comparedwithFigure 2. Metformin inhibits the viability of gastric cancer cells. SGC7901 cells (A) and BGC823cells (B) were treated with metformin (0-50 mM) for 24, 48, 72 h. Cell viability was evaluated by CCK-8 assy.Metformin inhibits gastric cancersuperficial gastritis and early GC tissues (Figure 1A). The expression level of PKM2 increased significantly in early and advanced GC com-pared with superficial gastritis tissue (Figure 1B).Metformin decreases GC cell viabilityWe evaluated the effect of metformin on the viability of two GC cell lines: SGC7901 and BGC823. CCK-8 assay showed significant dose- and time-dependent decrease in the via-bility of SGC7901 and BGC823 cells after met-formin treatment (Figure 2).Metformin induces apoptosis and cell cycle arrest in GC cellsTo elucidate the mechanism by which metfor-min decreases the viability of GC cells, we won-dered whether metformin could induce apopto-sis and cell cycle arrest in GC cells. By Annexin V-FITC and PI staining, we observed that met-formin increased the proportion of apoptotic cells in SGC7901 and BGC823 cells in a dose dependent manner (Figure 3A, 3B). In addi-tion, by flow cytometry analysis, we found that metformin induced cell cycle arrest in SGC7901 Figure 4.Metformin reduces HIF1α, PARP and COX protein expression in gastric cancer cells. (A,B) SGC7901 cells were treated with metformin(0, 40 mM) for 24 h and then analyzed for the expression of HIF1α (A) and COX (B) by immuno-fluorescence. Original magnification 400×. (C) SGC7901 and BGC823 cells were treated with metformin (0, 40, 50 mM) for 24 h and then pro-tein expression of PI3K, Akt, HIF1α, PARP, COX, PKM2 was detected by Western blot analysis.β-actin was loading control.and BGC823 cells in a dose dependent manner (Figure 3C , 3D ).Metformin reduces HIF1α, PARP, COX and PKM2 expression in GC cellsNext we evaluated the effects of metformin on PI3k, Akt, HIF1α, PARP, COX, and PKM2 protein expression in GC cells. Immunofluorescence staining of HIF1α and COX in SGC7901 cells showed significant decrease in HIF1α and COX expression after metformin treatment (Figure 4A , 4B ). Western blot analysis showed that metformin inhibited the expression level of PI3K, Akt, HIF1α, PARP, COX and PKM2 in SGC7901 and BGC823 cells (Figure 4C ).Figure 5. Metformin inhibits the invasion and migration of gastric cancer cells. SGC7901 and BGC823 cells were seeded on transwell for invasion and migration analysis. The numbers of invaded and migrated cells were counted in five separate fields using light microscopy. Original magnification 400×. The data were expressed as the mean value of cells in five fields based on three independent experiments. ***P<0.001.Figure 6. HIF1α over-expression increases the viability, invasion and migration of BGC823 cells. A, C. Lipofectamine, control vector or HIF1α overexpression plasmid were transfected into BGC823 cells, and HIF1α mRNA and protein expression were detected by RT-PCR and Western blot analysis. β-actin was loading control. B. Cell viability was de -tected by CCK-8 assay. D. The numbers of invaded and migrated cells were counted in five separate fields using light microscopy. Original magnification 400×. The data were expressed as the mean value of cells in five fields based on three independent experiments. *P <0.05, ***P <0.001.Metformin inhibits the invasion and migration of GC cellsTo investigate the activity of metformin against tumor metastasis, we examined the effects of metformin on the invasion and migration of GC cells. Transwell assay showed that metformin inhibited the invasion and migration of SGC- 7901 and BGC823 cells in a dose dependent manner (Figure 5).HIF1α over-expression increases the viability, invasion and migration of GC cellsSince metformin inhibited protein expression of HIF1α in GC cells, we wondered whether HIF1α might be the key factor to mediate the effects of metformin on GC cells. We transfected HIF-1α over-expression plasmid into BGC823 cells, and confirmed the expression of HIF1α by RT-PCR and Western blot analysis (Figure 6A, 6C). We found that HIF1 overexpression incr-eased the viability, invasion and migration of BGC823 cells (Figure 6B, 6D).DiscussionIn this study, we revealed the high expression of HIF1α and PKM2 in GC tissues, and found that metformin significantly induced apoptosis, inhibited cell invasion and migration of GC cells. The mechanism by which metformin exhibits anti-tumor activities is through the induction of apoptosis and the inhibition of HIF1α. Recent studies showed that overexpression of HIF1α are implicated in tumorigenesis, tumor chemotherapy resistance, tumor angiogenesis, and tumor glycolysis [17-20]. Increased HIF-1α level is associated with increased risk of mor-tality in many human cancers, including gastric cancer [11]. HIF1α inhibitor inhibited tumor growth and angiogenesis [12].In this study we found that metformin inhibited the expression of HIF1α in GC cells, suggesting that metformin may inhibit tumor cell growth and metastasis via HIF1α inhibition. However, further studies are needed to confirm our conclusion. Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer [21]. According to the “Warburg effect”, tumor cells exhibit an increased dependence on glycolytic pathway for ATP generation both in normoxia or hypoxia conditions [22].PKM2 is an important executor downstream of HIF1α signaling and acts as the key enzyme of glycolysis [23]. In this study we found high expression of PKM2 in GC tissues by immunohistochemistry, indicating the important role of glycolysis in the develop-ment of GC. Our study showed that metformin inhibited the expression of PKM2 protein, espe-cially in poorly differentiated BGC823 cells. These data suggest that metformin reduces the energy supply of GC by inhibiting HIF1α/ PKM2 pathway.The most important function of mitochondrial respiratory chain is to generate ATP by oxida-tion phosphorylation (OXPHOS). After sequen-tial electron transfer, two respiratory chains generate ATP through being catalyzed by the respiratory chain enzyme complexes IV- cyto-chrome C oxidase (COX). In energy-rich condi-tions, the mitochondria of tumor cells maintain “well-being” state and effectively shut off apop-totic machinery, resulting in the protection against cell death, even when challenged with toxic drugs. Conversely, when the mitochondria of tumor cells are in the condition of “stress”, they induce the apoptosis of tumor cells [24]. One study showed recently that metformin inhibited mitochondrial complex I of cancer cells to reduce tumorigenesis [25].In this study we found that metformin inhibited the expres-sion level of COX in SGC7901 and BGC823 cells.Poly(ADP)-ribose polymerase (PARP) plays a crucial role in DNA repair and the maintenance of genome stability. The proteolytic degrada-tion of PARP is caused by a variety of stimuli [26]. In the present study, the expression of PARP was decreased significantly in GC cells treated with metformin. At the same time, cell apoptosis ratio increased remarkably.In order to confirm that HIF1α mediates the effects of metformin on GC cell proliferation, apoptosis, invasion, and migration, we trans-fected HIF1α overexpression plasmid into BGC823 cells; and found that cell viability, inva-sion and migration were obviously enhanced in the cells transfected with HIF1α plasmid. These data indicate that metformin inhibits GC cell proliferation, invasion and metastasis by inhib-iting the expression of HIF1α.To the best of our knowledge, this is the first report demonstrating HIF1α/PKM2 signal path-way as a target of metformin in GC cells. Met- formin exhibit potent effects to inhibit malig-nant behaviors of GC cells through decreasingthe expression of HIF1α and PKM2. However, how metformin inhibits HIF1α/PKM2 signal pathway is not clear and needs further explo- ration.In conclusion, our study provides evidence that metformin inhibits GC growth and metastasis. The main mechanism responsible for the anti-tumor effects of metformin might be inducing intrinsic apoptosis and tumor glucose metabo-lism via the inhibition of HIF1α. These findings suggest that metformin is a promising thera-peutic agent for GC.AcknowledgementsThis study was supported by The National Natural Science Foundation of China (No. 81101814, 81272742, 81472756), Jiangsu Provincial Commission of Health and Family Planning (No. Q201413),Medical Youth Talent Reserve of Xuzhou, Xuzhou Science and Technology Plan (No. KC14SH007). Disclosure of conflict of interestNone.Address correspondence to: Xiaoping Zou, Depar- tment of Gastroenterology, Affiliated Drum Tower Clinical Medical School, Nanjing Medical University, Nanjing, China. Tel: 86-25-83304616; E-mail: yji-ang8888@References[1] Jemal A, Bray F, Center MM, Ferlay J, Ward E,Forman D. Global cancer statistics. CA CancerJ Clin 2011; 61: 69-90.[2] Parkin DM, Bray F, Ferlay J, Pisani P. Globalcancer statistics, 2002. CA Cancer J Clin 2005;55: 74-108.[3] Macintyre AN, Rathmell JC. Activated lympho-cytes as a metabolic model for carcinogenesis.Cancer Metab 2013; 23: 1-5.[4] Kumar A, Kant S, Singh SM. Antitumor andchemosensitizing action of dichloroacetate im-plicates modulation of tumor microenviron-ment: a role of reorganized glucose metabo-lism, cell survival regulation and macrophagedifferentiation. Toxicol Appl Pharmacol 2013;273: 196-208.[5] Tavares-Valente D, Baltazar F, Moreira R, Qu-eirós O. Cancer cell bioenergetics and pH regu-lation influence breast cancer cell resistanceto paclitaxel and doxorubicin. J Bioenerg Bio-membr 2013; 45: 467-475.[6] Brauer HA, Makowski L, Hoadley KA, Casbas-Hernandez P, Lang LJ, Romàn-Pèrez E, D’ArcyM, Freemerman AJ, Perou CM, Troester MA.Impact of tumor microenvironment and epithe-lial phenotypes on metabolism in breast can-cer. Clin Cancer Res 2013; 19: 571-585. [7] Carito V, Bonuccelli G, Martinez-OutschoornUE, Whitaker-Menezes D, Caroleo MC, Cione E,Howell A, Pestell RG, Lisanti MP, Sotgia F.Metabolic remodeling of the tumor microenvi-ronment: migration stimulating factor (MSF)reprograms myofibroblasts toward lactate pro-duction, fueling anabolic tumor growth. CellCycle 2012; 11: 3403-3414.[8] Kumar V, Gabrilovich DI. Hypoxia inducible fac-tors in regulation of immune responses in tu-mor microenvironment. Immunology 2014;143: 512-519.[9] Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K,Ito Y, Inoue N. Dichloroacetate improves immu-ne dysfunction caused by tumor-secreted lac-tic acid and increases antitumor immunoreac-tivity. Int J Cancer 2013; 133: 1107-1118. [10] Meijer TW, Kaanders JH, Span PN, Bussink J.Targeting hypoxia, HIF-1, and tumor glucosemetabolism to improve radiotherapy efficacy.Clin Cancer Res 2012; 18: 5585-5594. [11] Semenza GL. HIF1 mediates metabolic resp-onses to intratumoral hypoxia and oncogenicmutations. J Clin Invest 2013; 123: 3664-3671.[12] Yu GT, Bu LL, Zhao YY, Liu B, Zhang WF, ZhaoYF, Zhang L, Sun ZJ. Inhibition of mTOR reduceStat3 and PAI related angiogenesis in salivarygland adenoid cystic carcinoma. Am J CancerRes 2014; 4: 764-775.[13] Liu Z, Jia X, Duan Y, Xiao H, Sundqvist KG,Permert J, Wang F. Excess glucose induces hy-poxia-inducible factor-1α in pancreatic cancercells and stimulates glucose metabolism andcell migration. Cancer Biol Ther 2013; 14:428-435.[14] McFarland MS, Cripps R. Diabetes mellitusand increased risk of cancer: focus on metfor-min and the insulin analogs. Pharmacotherapy2010; 30: 1159-1178.[15] Tseng CH. Metformin reduces thyroid cancerrisk in taiwanese patients with type 2 diabetes.PLoS One 2014; 9: e109852.[16] Franciosi M, Lucisano G, Lapice E, Strippoli GF,Pellegrini F, Nicolucci A.Metformin therapy andrisk of cancer in patients with type 2 diabetes:systematic review. PLoS One 2013; 2: e71583.[17] Goscinski MA, Nesland JM, Giercksky KE,Dhakal HP. Primary tumor vascularity in eso-phagus cancer - CD34 and HIF1-α expressioncorrelate with tumor progression. Histol His-topathol 2013; 28: 1361-1368.[18] Tong Y, Li QG, Xing TY, Zhang M, Zhang JJ, XiaQ. HIF1 regulates WSB-1 expression to pro-mote hypoxia-induced chemoresistance in he-patocellular carcinoma cells. FEBS Lett 2013;587: 2530-2535.[19] Liu R, Li Z, Bai S, Zhang H, Tang M, Lei Y, ChenL, Liang S, Zhao YL, Wei Y, Huang C. Mechanismof cancer cell adaptation to metabolic stress:proteomics identification of a novel thyroidhormone-mediated gastric carcinogenic sig-naling pathway. Mol Cell Proteomics 2009; 8:70-85.[20] Semenza GL. HIF1: upstream and downstreamof cancer metabolism. Curr Opin Genet Dev2010; 20: 51-56.[21] Kumar A, Kant S, Singh SM. Antitumor andchemosensitizing action of dichloroacetate im-plicates modulation of tumor microenviron-ment: a role of reorganized glucose metabo-lism, cell survival regulation and macrophagedifferentiation. Toxicol Appl Pharmacol 2013;273: 196-208.[22] Warburg O. On the origin of cancer cells.Science 1956; 123: 309-314.[23] Chaneton B, Gottlieb E. Rocki ng cell metabo-lism: revised functions of the key glycolyticregulator PKM2 in cancer. Trends Biochem Sci2012; 37: 309-316.[24] Martinez-Outschoorn UE, Pestell RG, Howell A,Tykocinski ML, Nagajyothi F, Machado FS,Tanowitz HB, Sotgia F, Lisanti MP. Energy trans-fer in “parasitic” cancer metabolism: Mito-chondria are the powerhouse and Achilles’heel of tumor cells. Cell Cycle 2011; 10: 4208-4216.[25] Wheaton WW, Weinberg SE, Hamanaka RB,Soberanes S, Sullivan LB, Anso E, Glasauer A,Dufour E, Mutlu GM, Budigner GS, Chandel NS.Metformin inhibits mitochondrial complex I ofcancer cells to reduce tumorigenesis. Elife2014; 3: e02242.[26] Ibrahim MY, Hashim NM, Mohan S, AbdullaMA, Kamalidehghan B, Ghaderian M, DehghanF, Ali LZ, Arbab IA, Yahayu M, Lian GE, Ahm-adipour F, Ali HM. α-Mangostin from Cratoxylumarborescens demonstrates apoptogenesis inMCF-7 with regulation of NF-κB and Hsp70protein modulation in vitro, and tumor reduc-tion in vivo. Drug Des Devel Ther 2014; 8:1629-1647.。
二甲双胍对人胃癌细胞株MKN45增殖和迁徙的影响

Ba k r u d Mef r n h s r c nl e n s o o h v oe t la t u ref c, b t h t de n dg sie cg o n : t mi a e e t b e h wn t a e p tn i n i mo f t o y a t e u e s is o ie t t u v s se t mo s e p c al h a t c c n e r ae Ai s y t m u r s e il t e g sr a c rae r r . y i m : T n e t ae t e ef c fme o mi n p o i r t n a d o i v si t h f to f r n o r l eai n g e f o
h m ngs ccll eMK 4 a c bt i 0m ] tr nwt o i o t -u ruaifF )S ri la u a at e n N 5w s nu a dwt 1 moLmeomi i r t u f oorc 一U. uvv t i r li i e h / f h wh 5 s cc n e ell e MKN4 , n o a p a s h o s l o e t lme h n s M e h d : C l r d g t fh ma a t a c rc l i r o i r n 5 a d t p r iet e p s i e p t ni c a im. b a to s ut e u
促 进 细 胞 凋亡
二甲双胍联合化疗药物对人胃癌 AG S细胞的作用

二甲双胍联合化疗药物对人胃癌 AG S细胞的作用吴诗文;张自森;刘谦;王世超;司远方;赵胜男;夏兴洲【摘要】目的:探讨二甲双胍(Met)联合化疗药物对人胃癌AGS细胞的影响。
方法:应用Met及其分别联合顺铂( DDP)、阿霉素( ADM)、紫杉醇( PTX)处理人胃癌AGS细胞,应用CCK-8、Transwell模型、流式细胞术检测细胞增殖、迁移能力、侵袭能力及细胞凋亡。
结果:Met可呈时间-剂量依赖性抑制AGS细胞增殖(P均<0.001),IC50为10 mmol/L。
10 mmol/L Met、2 mg/L 的DDP、0.02 mg/L的ADM、0.02 mg/L的PTX单用均可降低AGS细胞的迁移、侵袭能力,促其凋亡(P均<0.05),Met可协同3种化疗药物促进AGS细胞凋亡(P<0.05)。
结论:Met有望用于胃癌的辅助化疗。
%Aim:To investigate the effect of metformin ( Met) combined with chemotherapeutic agents on human gas-tric cancer cell lineAGS .Methods:AGS cells were treated with Met alone or in combination of cisplatin ( DDP) , doxoru-bicin(ADM) or paclitaxel(PTX).CCK-8, Transwell, and flow cytometry were used to detect cell proliferation , migration, invasion and apoptosis.Results:Met could inhibit cell proliferation in adose-and time-dependent manner(P<0.001), and IC50 was 10 mmol/L.10 mmol/L Met,2 mg/L DDP,0.02 mg/L ADM,0.02 mg/L PTX separate application could de-crease the migration, invasion capabilities and prompt apoptosis of AGS cells (P<0.05), and Met had synergistic effected when being used with DDP, ADM or PTX in cellapoptosis(P<0.05).Conclusion: Met might be used for adjuvant chemotherapy for gastric cancer .【期刊名称】《郑州大学学报(医学版)》【年(卷),期】2017(052)001【总页数】5页(P37-41)【关键词】二甲双胍;胃癌;顺铂;阿霉素;紫杉醇【作者】吴诗文;张自森;刘谦;王世超;司远方;赵胜男;夏兴洲【作者单位】郑州大学第五附属医院消化内科郑州450052;郑州大学第五附属医院肿瘤科郑州450052;郑州大学第五附属医院消化内科郑州450052;郑州大学第五附属医院消化内科郑州450052;郑州大学第五附属医院消化内科郑州450052;郑州大学第五附属医院消化内科郑州450052;郑州大学第五附属医院消化内科郑州450052【正文语种】中文【中图分类】R735.2#通信作者,男,1964年9月生,硕士,主任医师,研究方向:胃癌的临床基础研究,E-mail:****************近年来研究[1-4]发现二甲双胍(metformin,Met)能够抑制多种肿瘤细胞的生长,其抗肿瘤作用得到了广泛关注。
神药”二甲双胍,又有新作用!

神药”二甲双胍,又有新作用!1 二甲双胍可护胃,降低胃癌风险近日,世界顶级科学期刊《CELL》的子刊《Cell Stem Cell》官网更新了有关二甲双胍的最新研究:二甲双胍可以调节胃内干细胞的代谢,促使它们分化为产胃酸的胃壁细胞。
研究显示,AMPK代谢通路促进干细胞生成分泌酸的壁细胞,二甲双胍通过激活AMPK和KLF4减慢祖细胞增殖的同时,也可以通过激活AMPK 和PGC1a诱导壁细胞成熟,这为二甲双胍为何会增加酸分泌并降低人患胃癌的风险提供了潜在的暗示。
据奇点网解读,简单来说,就是二甲双胍可以支持胃内的干细胞分化出更多保护胃的细胞,这就能有一定的护胃效果——公开资料显示,胃壁细胞的大量受损是胃癌发生的重要一步,而二甲双胍激活AMPK时,干细胞分化成胃壁细胞的速度会接近一倍,胃壁细胞的存活时间也明显延长。
此外,2018年一项研究表明:二甲双胍的使用以持续和剂量反应的方式使幽门螺旋杆菌根除的糖尿病患者,胃癌风险降低了51%。
据国际癌症中心统计,2018年全球新增癌症1807.9万例,死亡955.5万例,且2022年全球老年人口将从2015年的12%增加到22%,预计未来几十年癌症发病率将增加70%,肺癌是我国最常见的癌症,其次是结直肠癌、胃癌、肝癌及乳腺癌,前五大癌症占据我国新增癌症患者近60%,新增胃癌是全球相应类别新增病例的44%。
米内网数据显示,二甲双胍作为全球核心糖尿病药物,2018年度在中国公立医疗机构、实体药店等销售终端合计市场规模超过60亿元,作为非专利药,赛柏蓝在国家药监局官网以“二甲双胍”为关键词搜索,共有306个批文,涉及大批企业。
2治疗潜力,20个新发现随着研究深入,神药二甲双胍的治病潜力不断被拓展,但此次研究“护胃”和“降低胃癌风险”的结论还属首次,意味着二甲双胍继抗老、减肥、心血管保护、或可治疗三阴乳腺癌外,又下一城,拓宽在胃病用药领域的新发现。
多个研究显示,二甲双胍可为使用者带来“意外之喜”。
二甲双胍对胃癌抗肿瘤作用的研究进展

Advances in Clinical Medicine 临床医学进展, 2019, 9(7), 831-836Published Online July 2019 in Hans. /journal/acmhttps:///10.12677/acm.2019.97128Research Progress on Anti-Tumor Effect ofMetformin in Gastric CancerLiqin He, Shuangshuang Zhang, Yichao FengYan’an University Affiliated Hospital, Yan’an ShaanxiReceived: Jun. 23rd, 2019; accepted: Jul. 8th, 2019; published: Jul. 15th, 2019AbstractAt present, more and more evidence that metformin has the effect of lowering blood sugar; it also can reduce the cancer risk of diabetes. Previous research has shown that metformin may work alone or in combination with some anticancer drugs synergy, through single adenosine phosphate activated protein kinase (Adenosine 5'-monophosphate (AMP)-activated protein kinase, AMPK) signaling pathway having antitumor effects on various types of cancer. However, metformin re-search on antitumor effect of gastric cancer is less in this paper. Combined with domestic and for-eign literature, this paper introduces the metformin in different mechanisms of antitumor, gastric cancer from genes, signaling pathways to the function of gastric cancer cell lines and gastric can-cer stem cells and the interaction between tumor cells and tumor microenvironment. And they summarized as follows.KeywordsMetformin, Gastric Cancer, Anti-Tumor Effect二甲双胍对胃癌抗肿瘤作用的研究进展贺礼琴,张双双,冯义朝延安大学附属医院,陕西延安收稿日期:2019年6月23日;录用日期:2019年7月8日;发布日期:2019年7月15日摘要目前越来越多的证据表明,二甲双胍除了具有降低血糖的作用外,还可降低糖尿病患者的癌症发生风险,贺礼琴等先前的研究表明二甲双胍可以单独作用或与某些抗癌药物协同作用,通过腺苷单磷酸活化蛋白激酶(Adenosine 5'-monophosphate (AMP)-activated protein kinase,AMPK)信号通路对各种类型的肿瘤产生抗肿瘤作用。
二甲双胍抗肺癌作用及其机制研究概述_辛文秀

二甲双胍对肺癌具有治疗作用。Ashinuma 等[14]研究证 实,体外实 验 中,二 甲 双 胍 可 诱 导 肺 癌 细 胞 RERF-LC-AI、 A549、IA-5 和 WA-HT 等周期阻滞,抑制其生长。Wu 等[15] 研究发现,低剂量二甲双胍 ( 5 mmol·L - 1 ) 可诱导人肺癌细
糖尿病是一类以慢性血糖水平增高为特征的代谢性疾 病,此病的发生与胰岛素分泌及其作用缺陷密切相关。糖尿 病患者中约有 95% 的患者为 2 型糖尿病( T2DM) 。研究显 示,T2DM 除了可引起心血管疾病、神经系统疾病、肾病及视 网膜病变外,还与肺癌、肝癌、肠癌、肾癌及乳腺癌等多种恶性 肿瘤的发生及发展密切相关[1 ~4]。临床试验及流行病学调查 显示,T2DM 与肿瘤相互作用的机制可能与高胰岛素血症及 胰岛素抵抗相关。血清胰岛素水平升高,胰岛素可作用于上 皮细胞,或通过影响其他调节分子如激活胰岛素样生长因子、 性激素和脂肪因子等,直接或间接的促进肿瘤有丝分裂及血 管生成[5 ~7]。越来越多的研究表明,传统降糖药物如胰岛素、 胰岛素增敏药、胰岛素分泌促进药等均可能影响肿瘤的发病 率及死 亡 率。二 甲 双 胍 是 双 胍 类 口 服 降 糖 药,用 于 治 疗 T2DM。据统计,世 界 范 围 内 二 甲 双 胍 的 使 用 人 数 超 过1. 2 亿[8]。近年来,大量临床前、流行病学及临床研究结果显示, 二甲双胍可以抑制肿瘤细胞增长与繁殖。与其他降血糖药物 相比,二甲双胍可预防肿瘤发生,甚至具有改善肿瘤预后的作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Advances in Clinical Medicine 临床医学进展, 2019, 9(7), 831-836Published Online July 2019 in Hans. /journal/acmhttps:///10.12677/acm.2019.97128Research Progress on Anti-Tumor Effect ofMetformin in Gastric CancerLiqin He, Shuangshuang Zhang, Yichao FengYan’an University Affiliated Hospital, Yan’an ShaanxiReceived: Jun. 23rd, 2019; accepted: Jul. 8th, 2019; published: Jul. 15th, 2019AbstractAt present, more and more evidence that metformin has the effect of lowering blood sugar; it also can reduce the cancer risk of diabetes. Previous research has shown that metformin may work alone or in combination with some anticancer drugs synergy, through single adenosine phosphate activated protein kinase (Adenosine 5'-monophosphate (AMP)-activated protein kinase, AMPK) signaling pathway having antitumor effects on various types of cancer. However, metformin re-search on antitumor effect of gastric cancer is less in this paper. Combined with domestic and for-eign literature, this paper introduces the metformin in different mechanisms of antitumor, gastric cancer from genes, signaling pathways to the function of gastric cancer cell lines and gastric can-cer stem cells and the interaction between tumor cells and tumor microenvironment. And they summarized as follows.KeywordsMetformin, Gastric Cancer, Anti-Tumor Effect二甲双胍对胃癌抗肿瘤作用的研究进展贺礼琴,张双双,冯义朝延安大学附属医院,陕西延安收稿日期:2019年6月23日;录用日期:2019年7月8日;发布日期:2019年7月15日摘要目前越来越多的证据表明,二甲双胍除了具有降低血糖的作用外,还可降低糖尿病患者的癌症发生风险,贺礼琴等先前的研究表明二甲双胍可以单独作用或与某些抗癌药物协同作用,通过腺苷单磷酸活化蛋白激酶(Adenosine 5'-monophosphate (AMP)-activated protein kinase,AMPK)信号通路对各种类型的肿瘤产生抗肿瘤作用。
然而,二甲双胍对胃癌的抗肿瘤作用研究较少。
本文结合国内外文献,介绍了二甲双胍在胃癌抗肿瘤作用中的不同机制,从基因、信号通路到对胃癌细胞系和胃癌干细胞的功能影响以及肿瘤细胞与肿瘤微环境之间的相互作用,并综述如下。
关键词二甲双胍,胃癌,抗肿瘤作用Copyright © 2019 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/1. 介绍胃癌(Gastric cancer, GC)是全球发病率第四位的恶性肿瘤,在肿瘤中致死率居第二位[1],由于其恶性程度高,是最常见的癌症类型之一。
胃癌的传统治疗方法有胃切除术和放化疗,即使在根治切除和辅助放化疗后,其复发率和死亡率也很高,5年总生存率(Overall survival,OS) < 25% [2],而且70%以上的胃癌发生在发展中国家,东亚的发病率占世界总量的一半,且主要发生在中国[3]。
因此,在这种背景下开发新的有效的治疗方法是改善GC预后的必要条件。
二甲双胍是一种公认的降糖药物,也被认为是治疗2型糖尿病的一线药物[4][5]。
它通过抑制糖异生而降低肝脏葡萄糖的产生,改善骨骼肌对葡萄糖的摄取,降低胰岛素抵抗[6],与其他降糖药物相比,二甲双胍不会导致体重增加和低血糖风险增加。
除了降血糖特性,流行病学研究表明,接受二甲双胍治疗的糖尿病患者比未接受二甲双胍治疗的患者患癌症的风险明显降低[7]。
Evans等[8]首先假设二甲双胍可以降低罹患癌症的风险,他们对糖尿病患者进行了试点病例对照研究,发现二甲双胍治疗的糖尿病患者的癌症发生率为36.4%,而其他降糖药物治疗糖尿病患者的癌症发生率为39.7%。
Wu等人[9]在2015年的一项荟萃分析中评估了二甲双胍在2型糖尿病患者中的使用情况,结果显示,与未接受二甲双胍治疗的糖尿病患者相比,接受二甲双胍治疗的糖尿病患者的发病率降低了14%,死亡率降低了30%。
此外,其他荟萃分析[10][11][12][13]也得到了类似的结果,表明二甲双胍总体上降低了患癌症的风险。
虽然一些实验室和流行病学研究表明二甲双胍可能在糖尿病患者中发挥普遍的抗肿瘤作用,但二甲双胍是否能降低胃癌等特定类型癌症的风险仍不清楚。
因此,本文综述旨在阐明二甲双胍在胃癌中抗肿瘤作用的研究进展。
2. 二甲双胍对胃癌细胞株具有抗增殖作用Kato等[14]在体内外研究了二甲双胍对不同GC细胞株(MKN1、MKN45、MKN74)的影响。
他们发现,随着二甲双胍剂量的增加及时间的延长降低体外细胞增殖的效应越强,在体内他们对裸鼠皮下注射了MKN74细胞,每日腹腔注射二甲双胍1或2 mg,连续4周,在治疗结束时,治疗组小鼠的肿瘤明显小于对照组小鼠。
这是因为二甲双胍在体内和体外均阻断了G(0)-G(1)的细胞周期,这种阻断伴随着G(1)细胞周期蛋白的大量减少,尤其是在cyclin D1、周期蛋白依赖性激酶(Cdk) 4、Cdk6中,以及视网膜母细胞瘤蛋白(Rb)磷酸化水平的降低。
贺礼琴等3. 二甲双胍抑制上皮细胞向间质转化Shiva等[15]发现二甲双胍通过对上皮–间质转化(Epithelial-mesenchymal transition,EMT)的抑制作用,对胃癌细胞的侵袭和迁移具有较强的抑制作用,其作用随着时间延长而增强,且不受培养基葡萄糖浓度的影响。
单争争等[16]发现IL-6作为肿瘤炎症微环境的重要组成部分,能通过诱导胃癌细胞发生EMT 而增强其侵袭转移能力,加重病情,而经二甲双胍处理后,这种效应能得到明显的抑制。
Huang等[17]发现二甲双胍通过抑制Bmi-1来抑制EMT,Bmi-1是一种促进肿瘤细胞自我更新和上皮向间质转化的转录调控因子,其上调与肿瘤的进展有关。
这种抑制作用是依赖于TNF-ɑ(LITAF)转录因子,LITAF被转移到细胞核中,在细胞核中诱导不同mi-RNA的表达:hsa-miR-15a、hsa-miR-194、hsa-miR-128、和hsa-miR-192,这些mi-RNA降低了Bmi-1的表达。
Li等人[18]的研究通过长链非编码RNA (Long nincoding RNAs,lncRNA)分析了二甲双胍处理的AGS细胞系中长链非编码RNA (lncRNA)的表达水平。
已知lncRNAH19在胃癌组织中过表达。
他们发现,lncRNAH19在二甲双胍存在的情况下显著下调,在二甲双胍存在条件下的lncRNAH19下调可能是AMPK活化和MMP9表达降低的原因。
经二甲双胍处理后lncRNAH19在体外对细胞迁移和侵袭的依赖减少,在体内抑制肿瘤的形成,当把lncRNAH19敲除后的效果与二甲双胍治疗的效果相同,因此lncRNAH19可能是二甲双胍抑制胃癌细胞侵袭过程中的关键成分。
4. 二甲双胍抑制超音hedgehog基因在胃癌细胞中的表达已知超音hedgehog基因(Sonic hedgehog,Shh)信号通路异常激活可导致胃癌[19][20][21],且通路的激活对维持胃(Cancer stem cell,CSC)特性(自我更新和耐药)至关重要。
Song等[22]发现二甲双胍可以调节Shh信号通路,在胃癌细胞株中(HGC 27和MKN 45),Shh经二甲双胍作用后降低,使用小干扰RNA (si-RNA)抑制腺苷酸激活蛋白激酶(AMPK)后,这种效应消失[23]。
因此,二甲双胍是通过AMPK来抑制Shh信号通路。
5. 二甲双胍通过抑制HIF1ɑ/PKM2信号来抑制胃癌的发展Chen等人[24]的研究发现缺氧诱导因子1ɑ (HIF1ɑ)和丙酮酸激酶M2 (PKM2)在胃癌组织中高表达,二甲双胍通过抑制HIF1ɑ和PKM2的表达来抑制恶性行为的GC细胞,从而诱导细胞凋亡,抑制细胞入侵和胃癌细胞的迁移。
6. 二甲双胍通过激活AMPK和抑制mTOR/AKT信号通路,在人AGS胃腺癌细胞中触发固有的凋亡反应LU等[25]研究报道发现二甲双胍对人AGS胃腺癌细胞具有较强的抗增殖作用和诱导凋亡特性。
经二甲双胍处理后增加了腺苷酸活化蛋白激酶(AMPK)的磷酸化,降低了AKT、列帕霉素(mTOR)和p70S6k 的磷酸化,用化合物C(AMPK抑制剂)抑制AMPK磷酸化后,显著消除二甲双胍对AGS细胞活力的影响。
二甲双胍改变凋亡相关信号通路,通过下调AGS细胞中BAD磷酸化和Bcl-2、pro-caspase-9、pro-caspase-3、pro-caspase-7表达,上调BAD、细胞色素c和Apaf-1蛋白水平完成的。