陶瓷基复合材料简介PPT课件

合集下载

《陶瓷基复合材料》课件

《陶瓷基复合材料》课件

参考文献与资料
综述性论文
这类论文对陶瓷基复合材料的制备技术、性能及应用进行了全面的概述,有助于读者对该领域有一个整体的了解。
研究性论文
这类论文主要报道了最新的研究成果,包括新的制备技术、性能优化以及新型陶瓷基复合材料的开发等。
对比性论文
这类论文对不同制备方法、不同材料体系、不同工艺参数的陶瓷基复合材料进行了对比分析,有助于读者了解各种因素对材料性能的影响。
混料
将称量好的材料放入混料机中进行混合,确保均匀分布。
压制成型
将混合好的材料放入压片机中压制成型,获得所需形状和尺寸的样品。
烧结
将成型后的样品放入高温炉中进行烧结,获得陶瓷基复合材料。
性能测试
对制备好的陶瓷基复合材料进行性能测试,如硬度、强度、韧性等。
结果分析
根据实验数据和结果,分析陶瓷基复合材料的结构与性能关系,总结实验结论。
环境稳定性
航空航天领域:陶瓷基复合材料因其轻质、高强度和耐高温性能,广泛应用于航空航天领域的发动机部件、热结构部件和机舱内部件。例如,用于制造飞机涡轮叶片的碳化硅基复合材料。
陶瓷基复合材料的研究前沿与展望
纳米陶瓷材料
利用纳米技术制备的陶瓷材料具有优异的力学性能和高温稳定性,是当前研究的热点。
陶瓷基复合材料的增韧技术
这类著作对陶瓷基复合材料的各个方面进行了全面而深入的介绍,内容涵盖了制备、性能、应用等多个方面。
综合类著作
这类著作主要针对陶瓷基复合材料的某一特定方面进行深入探讨,如制备技术、增强相选择等。
专题类著作
这类著作主要作为高校教材使用,内容系统、详细,适合学生阅读和学习。
教材类著作
01
02
03
感谢观看

复合材料课件第六章 陶瓷基复合材料-1

复合材料课件第六章 陶瓷基复合材料-1
抑制晶粒组织长大,获得超细晶粒结构材料, 显著改善材料的显微组织。
但在微波烧结陶瓷中存在一些值得关注的特殊 现象。
1)过热点。由于微波场的不均匀分布或 材料组分不均匀导致某些部分局部明显高于 其它部分,出现过热点。
2)热应力开裂。一些热膨胀系数大而热 导率又较小的陶瓷材料在微波降温段,由于 试样中存在的温度梯度而引起的热应力开裂。
1930年,美国科学家提出利用等离子体脉冲烧结原理 1965年,脉冲电流烧结技术在美国和日本等国得到应用 1988年,日本研制出第一台工业型等离子体烧结装置 1996年,日本组织了等离子体烧结研讨会,每年召开一次 1998年,瑞典购进等离子体烧结系统,对碳化物、氧化物及 生物陶瓷等进行较多研究工作 2006年6月武汉理工大学购置了国内首台等离子体烧结装置, 此后国内多所高校及研究所相继引进该装置,成为材料制备 的全新技术
微波烧结:微波烧结是一种新型的粉末 冶金烧结致密化工艺,微波烧结是利用 微波加热来对材料进行烧结。
微波加热中出现区别与常规加热的现象有促
进物质的扩散、加快致密化进程、降低反应
温度、加快反应进程。作为一种新型加热技 术具有以下优点:1)可经济地获得2000℃高 温;2)加热速度快,升温速率可达50℃/min; 3)具有即时性特点,只要有微波辐射,物料 即刻得到加热,微波停止加热也立刻停止;4) 微波能量转换率高,可达80~90;5)与常规 烧结相比烧结温度降低,同时快速升温可以
化学制粉 优点:高纯、超细、均匀 缺点:需复杂的设备,工艺严格,成本高
液相共沉淀法 溶胶-凝胶法 冰冻干燥法 喷雾干燥法
②成型
成型后,胚体的密度越高,烧结样品的收缩率越小, 尺寸约容易控制,缺陷约少。
模压成型 热压成型 轧膜成型 注射成型

第八章陶瓷基复合材料ppt课件

第八章陶瓷基复合材料ppt课件

的性能与SiCw含量之间的关系。
完整版PPT课件
50
断 裂 韧 性
弯 曲 强 度
f(MPa)
KIC(MPa.m1/2)
ZrO2(Y2O3)
复 合
SiCw含量(vol%)
SiCw含量(vol%)材Fra bibliotek料 的
维 氏 硬


弹 性 模 量
E(GPa) HV(GPa)



完整版PPT课件
51
SiCw含量(vol%)
完整版PPT课件
11
但是,必须对碳纤维进行有效 的保护以防止它在空气中或氧化性 气氛中被腐蚀,只有这样,才能充 分发挥它的优良性能。
完整版PPT课件
12
陶瓷基复合材料中的增强体中, 另一种常用纤维是玻璃纤维。
制造玻璃纤维的基本流程如下 图所示:
完整版PPT课件
13
将玻璃小球 熔化,然后通过 1mm左右直径的 小孔把它们拉出 来。
9
目前,碳纤维常规生产的品种主要有两种, 即高模量型和低模量型。
其中,高模量型的拉伸模量约为400 GPa, 拉伸强度约为1.7 GPa;
低模量型的拉伸模量约为240 GPa,拉伸
强度约为2.5 GPa。
完整版PPT课件
10
碳纤维主要用在把强度、刚度、 重量和抗化学性作为设计参数的构 件,在1500℃的温度下,碳纤维仍 能保持其性能不变。
可达0.1E(E为杨氏模量),这已非常接
近于理想拉伸强度0.2E。
相比之下,多晶的金属纤维和块
状金属的拉伸强度只有0.02E和0.001E。
完整版PPT课件
23
由于晶须具有最佳的热性能、低密度和 高杨氏模量,从而引起了人们对其特别的关 注。

第十四章--陶瓷基复合材料PPT课件

第十四章--陶瓷基复合材料PPT课件
制备方法:反应烧结、常压烧结、热压烧结等。
.
47
性能特点: 优异的高温强度,可保持到1600℃; 热传导能力高,仅次于氧化铍陶瓷; 抗磨损性高、摩擦系数低,良好的耐腐蚀
性,低热膨胀系数,适宜的力学性能。 缺点:断裂韧性较低且在任何温度下都很
脆。
.
53
14.3 增强体
1.纤维 2.晶须 3.颗粒
.
18
.
19
.
20
.
21
.
22
主要性能: 硬度很高,2000MPa,仅次于金刚石、氮化 硼、碳化硅 耐磨性好 耐腐蚀性强:由于铝氧之间键合力很大,氧化 铝又具有酸碱两重性。 电绝缘性好 抗热震性能差,不能承受环境温度的突然变化
.
23
2、氧化锆陶瓷
以氧化锆(ZrO2)为主要成分的陶瓷称为氧 化锆陶瓷。
.
54
碳纤维
1、碳纤维是指纤维中含碳量95%左右的碳纤维和含 碳量99%左右的石墨纤维。制造陶瓷基复合材料最 常用的纤维之一。
2、原料:
人造丝(粘胶纤维) 聚丙烯腈PAN(主要原料) 沥青
.
55
3、制造
热牵伸法
预氧化
碳化
.
石墨化
58
碳化
石墨化
.
59
.
60
4、性能特点
• 强度和模量高、密度小,和碳素材料一样具有很 好的耐酸性。
➢ 耐磨性,轴承、密封件和替代人骨(如髋关节)等 ➢ 低热传导性,汽车发动机中作活塞顶、缸盖底板
和汽缸内衬。 ➢ 氧化锆增韧氧化物陶瓷基体,制成韧性较基体材
料高的复合材料。 ➢ 氧化锆的韧性在所有陶瓷中是最高的。
.
30
二、氮化物陶瓷

《陶瓷基复合材料》课件

《陶瓷基复合材料》课件
陶瓷基复合材料
陶瓷基复合材料结合了陶瓷和其他材料的优点,具有出色的力学、热学和电 学性能,是一种重要的先进材料。
什么是陶瓷基复合材料?
定义
陶瓷基复合材料是将陶瓷作为基质,与其他材料(如金属、聚合物等)混合制成的材料。
ห้องสมุดไป่ตู้特点
具有高硬度、高强度、耐高温、抗腐蚀等优良性能,可满足各种工业领域的需求。
陶瓷基复合材料的制备方法
结论
陶瓷基复合材料的优点
高强度、高硬度、耐高温、 抗腐蚀等特点使其成为各行 业重要的材料选择。
为何有利于工业发展
在提升产品性能和降低成本 方面具有巨大潜力,能推动 产业升级。
未来应如何发展?
加强技术研究、推动产学研 合作,不断创新和提升陶瓷 基复合材料的性能和应用范 围。
电子行业
用于集成电路、芯片封装等电子器件,提供优异的 绝缘和散热性能。
其他领域
如能源、化工、医疗等领域都有广泛的应用。
陶瓷基复合材料的发展前景
1
技术难点及解决方法
面临制备工艺、材料选择等方面的挑战,需要深入研究和创新技术。
2
未来发展趋势
预计在新能源、高端装备制造等领域有更广泛的应用,为工业发展带来新机遇。
热性能
耐高温性能出众,可 在高温环境下保持稳 定。
电性能
具备优异的绝缘性和 导电性能,适用于各 种电子器件。
其他性能
如耐腐蚀性、低摩擦 系数等特殊性能,广 泛应用于特定领域。
陶瓷基复合材料的应用
航空航天领域
用于制造发动机叶片、航天器外壳等关键部件,提 供高温和高强度的支撑。
汽车工业
应用于制动系统、排气系统等部件,提高汽车的性 能和耐久性。
1 热压法

复合材料概论精_第六章_陶瓷基复合材料ppt课件

复合材料概论精_第六章_陶瓷基复合材料ppt课件

• 延性(金属)颗粒:延性颗粒强化CMC的韧性 显著提高,但强度变化不明显,且高温性能下降。
• 高性能连续纤维:加入数量较多的高性能连续纤 维(如CF、SiC纤维)除韧性显著提高外,强 度和模量均有不同程度的提高。
表6-2 C纤维增韧Si3N4复合材料的性能
完整编辑ppt
7
表6-1 SiCw增韧氧化铝陶瓷性能
➢CMC的制备过程通常分为两个步骤: • 首先将增强材料掺入未固结的(或粉末
状的)基体材料中; • 使基体固结。
完整编辑ppt
13
6.3.1 连续纤维增强CMC成型工 艺
连续纤维增强CMC制备方法有料浆浸渍及 热压烧结法、化学气相沉积(CVD)法、直 接氧化沉积法、先驱体热解法等
1)料浆浸渍及热压烧结法:
晶须含量 弯曲强度
/vol% /MPa
0
250
10
500
20
550
30
600
维氏硬度HV /GPa 14.5 16.5 17.5 18.2
断裂韧性1K/2 IC /MPa·m 4.5 6 6.5 7
完整编辑ppt
8
表6-2 C纤维增韧Si3N4复合材料
的性能 材料
性能
Si3N4
C/Si3N4
密度
3.44
第六章 陶瓷基复合材料
• 现代陶瓷:具有耐高温、硬度高、耐磨 损、耐腐蚀及其相对密度低等优异的性 能。但它有致命的缺点即脆性。
• 陶瓷强韧化途径:颗粒弥散、纤维(晶 须)补强增韧、层状复合增韧、与金属 复合增韧及相变增韧。
• 陶瓷中加入适量的纤维(晶须)可明显 改善韧性,与高温合金相比密度低。
完整编辑ppt
• 优点:比常压烧结的烧结温度低,时间短, 致密度高;

陶瓷基复合材料 ppt课件

陶瓷基复合材料  ppt课件
陶瓷基复合材料
PPT课件
1
回顾一下:
陶瓷致命缺点:
脆性
改善韧性的有效手段:
向陶瓷材料中加入起增韧作用的第二相
增韧机制:
靠纤维(晶须)的拔出、裂纹的桥连与转向机 制对强度和韧性的提高产生作用。
PPT课件
2
10.3 陶瓷基复合材料的种类及基本性能
10.3.1 纤维增强陶瓷基复合材料
纤维增强陶瓷材料是常见的重要手段!! 按纤维排布方式的不同,可将其分为
裂纹垂直于纤维方向扩展示意图 PPT课件
5
当外加应力进一步提高时,由于基体与纤维间
的界面离解,同时又由于纤维的强度高于基体的强
度,从而使纤维从基体中拔出。 当拔出的长度达到某一临界值时,会使纤维发 生断裂。
裂纹垂直于纤维方向扩展示意图 PPT课件
6
因此,裂纹的扩展必须克服纤维的拔出功和
纤维断裂功,结果就是使得材料的断裂变得更为
困难,从而起到了增韧的作用。
单向排布纤维增韧陶瓷只是在纤维排列方向 上的轴向性能较为优越,而其横向性能显著低于 纵向性能,所以只适用于单轴应力的场合。
PPT课件
7
二、多向排布纤维增韧复合材料
而许多陶瓷构件则要求在二维及三维方向上 均具有优良的性能,这就要进一步的制备多向排 布纤维增韧陶瓷基复合材料。
莫来石+ Si3;SiCw
452
551~580
4.4
5.4~6.7
很明显,由ZrO2+SiCw与莫来石制得的复合材料要比 单独用SiCw与莫来石制得的复合材料的性能好得多。
PPT课件 32
10.4 陶瓷基复合材料的制备
陶瓷基复合材料的制造分为两个步骤:
第一步是将增强材料掺入未固结(或粉末状)的基

《陶瓷基复合材 》课件

《陶瓷基复合材 》课件

后处理
对烧成后的陶瓷复合材料进行 表面处理、切割、研磨等加工 ,以满足不同需求。
制备工艺的影响因素
原料的纯度和粒度
烧成温度和时间
气氛环境
添加剂的作用
原料的纯度和粒度对陶瓷基复 合材料的性能有着重要影响。 高纯度和细粒度的原料可以获 得更好的材料性能。
烧成温度和时间是制备工艺中 的关键因素,它们决定了陶瓷 基复合材料的结构和性能。
陶瓷基复合材料具有低膨胀系数和优良的 电绝缘性能,可用于电子元件的封装和连 接等领域。
02
陶瓷基复合材料的制备工艺
制备工艺的种类
热压烧结法
将陶瓷粉末在高温和压力下烧结成致密块体 的方法。
无压烧结法
在无外加压力的条件下,利用烧结助剂促进 陶瓷粉末烧结的方法。
熔融浸渗法
将熔融的金属或玻璃浸渗到多孔陶瓷基体中 ,形成复合材料的方法。
陶瓷基复合材料的应用领域
航空航天领域
汽车工业
陶瓷基复合材料具有轻质、高强、耐高温 等优点,广泛应用于航空航天器的热防护 系统、发动机部件等领域。
陶瓷基复合材料具有优异的耐高温性能和 化学稳定性,可用于汽车发动机部件、排 气管等领域。
能源领域
电子工业
陶瓷基复合材料具有良好的隔热性能和耐 腐蚀性能,可用于高温燃气轮机、核反应 堆等能源设备的制造。
化学气相沉积法
利用化学反应,将气体中的元素在陶瓷表面 沉积成固体,形成复合材料的方法。
制备工艺的流程
混合
将称量好的原料和添加剂进行 混合,使其成为致密的陶 瓷复合材料。
配料
根据配方要求,将各种原料和 添加剂进行精确称量。
成型
将混合好的原料放入模具中, 进行压制成型。
低热膨胀系数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提高陶瓷韧性的途径主要有以下几个方面:
(1)提高陶瓷致密度,减少表面裂纹;
(2)细化晶粒;
(3)加入具有增韧效果的成分,制成陶瓷基复合材料。
.
7
2、陶瓷基复合材料的基体
(1)氧化物陶瓷基体 (2)氮化物陶瓷基体 (3)碳化物陶瓷基体 (4)玻璃和玻璃陶瓷基体 (5)其他陶瓷基体
(1)氧化物陶瓷基体: 主要有Al2O3陶瓷、ZrO2陶瓷等。 例如ZrO2陶瓷具有高强度、高硬度和高耐化学腐蚀
其直径约为0.2~1μm,长度约为几十微米,由于其具有细小 组织结构、缺陷少,而具有很高的强度和模量。
常用的有SiC、Al2O3、Si3N4等陶瓷晶须。
.
12
3、陶瓷基复合材料的增强体
(3)颗粒: 从几何尺寸上看,颗粒在各个方向上的长度是大致
相同的,一般为几个微米。颗粒的增韧效果不如纤维和 晶须,但如果颗粒种类、粒径、含量及基体材料选择适 当,仍会有一定的韧化效果,同时还会带来高温性能的 改善。
有Si3N4陶瓷、AlN陶瓷、BN陶瓷等。
(3)碳化物陶瓷基体: 是硅、钛及其他过渡族金属碳化物的总称。 如SiC陶瓷、ZrC陶瓷、WC陶瓷、TiC陶瓷等。
.
9
2、陶瓷基复合材料的基体
(4)玻璃和玻璃陶瓷基体: 玻璃基体:
高硅氧玻璃、硼硅玻璃、铝硅玻璃等。
玻璃陶瓷基体: 在一定条件下,玻璃可以出现结晶,并且在熔点时
常用的颗粒有SiC、Si3N4等。
.
13
4、陶瓷基复合材料的应用
陶瓷刀具:
优点:
❖ 耐磨,高硬度,硬度为9,仅次于金刚石(10),只要不摔至 地面、不砍或剁等,正常使用的情况下永远都不需要磨刀;
❖ 轻薄锐利,无毛细孔,不会藏污纳垢,易清洗;
❖ 非金属铸造不会生锈,切食物无金属味残留等。
缺点:
❖ 韧度低,比较脆,高处摔落易崩口、缺角或断裂,所以陶瓷
有优良的性能,这就要需要多向长纤维增强复合材料。
.
11
3、陶瓷基复合材料的增强体
短纤维: 长纤维增韧陶瓷基复合材料虽然性能优越,但它的制
备工艺复杂,而且纤维在基体中不易分布均匀。 因此,将长纤维剪短(小于3mm),再与集体粉末混
合,经过一定工艺,亦可实现增韧效果。
(2)晶须: 晶须是在人工条件下制造出的细小单晶,一般呈棒状,
由于原子有序排列,其体积会突然变小,形成结晶化的 玻璃,即玻璃陶瓷。
如铝锂硅酸盐玻璃陶瓷、镁铝硅酸盐玻璃陶瓷等。
(5)其他陶瓷基体: 如硼化物陶瓷、硅化物陶瓷等。
.
10
3、陶瓷基复合材料的增强体
由于陶瓷基体中加入的增强体主要增强陶瓷的韧性, 所以陶瓷基复合材料中的增强体通常也称为增韧体。 从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和 颗粒三类。
chinaware
.
China
4
1、陶瓷简介
陶瓷
(按物理 性能分类)
陶器:结构疏松,具有一定吸水率, 不透明
瓷器:结构致密,基本不吸水,有 一定透光性
炻器:介于两者之间
.
5
1、陶瓷简介
陶瓷
(按概念和 用途分类)
传统陶瓷:用粘土、长石、石英等天然原 料制成,主要用作建筑、卫生、以及工业 用陶瓷.
特种陶瓷:又称精细陶瓷、现代陶瓷,以
陶瓷基复合材料简介
.
1
复合材料
(按基体类型分类)
聚合物基复合材料 金属基复合材料 陶瓷基复合材料 水泥基复合材料 碳基复合材料
.
2
1、陶瓷简介 2、陶瓷基复合材料的基体 3、陶瓷基复合材料的增强体 4、陶瓷基复合材料的应用 5、陶瓷基复合材料的前景展望
.
3
1、陶瓷简介
昌南 (景德镇)
china
性等,其韧性是陶瓷中最高的,应用其耐磨损性能,可 以制作拉丝模、轴承、密封件、医用人造骨骼、汽车发 动机的塞顶、缸盖底板和汽缸内衬等
.
8
2、陶瓷基复合材料的基体
(2)氮化物陶瓷基体: 主要是氮与过渡族金属(如钛、钒、铌、锆、钽
和铪)的化合物,还有Si3N4中固溶有铝和氧但仍保持 Si3N4结构的氮化物陶瓷。
.
19
4、陶瓷基复合材料的应用
(2)航空航天与燃气轮机: 可用于涡轮机燃烧室覆壁、涡轮盘、导向叶片和螺栓
等,可以减小质量,提高燃烧效率,减少有害气体排放, 节省冷却系统。
.
20
4、陶瓷基复合材料的应用
在航空航天领域,用陶瓷基复合材料制作的导弹的 头锥、火箭的喷管、航天飞机的结构件、绝热瓦、外部 燃料箱等也具有良好的效果。
各种无机非金属化合物为原料制成,具有
独特的力学、电学、磁学、光学、化学等
性能,主要用于化工、冶金、机械、电子、
能源和一些新技术中。
结构陶瓷
特种陶瓷 功能陶瓷
china
ceremic
.
6
1、陶瓷简介
陶瓷材料具有高强度、高硬度、低密度、耐高 温、耐磨损、耐腐蚀等优良的性能,但其脆性大的 弱点限制了它的广泛应用,陶瓷的韧化问题成为了 人们研究的重点。
.
16
4、陶瓷基复合材料的应用
SiC陶瓷件
陶瓷基复合材料制作的滑动构件
.
17
4、陶瓷基复合材料的应用
SiCw增韧的细颗粒Al2O3陶瓷复合材料已成功用于工业ቤተ መጻሕፍቲ ባይዱ生产制造切削刀具:
SiCw/Al2O3复. 合材料钻头
18
4、陶瓷基复合材料的应用
法国已将长纤维增强碳化硅复合材料应用于制作超高速 列车的制动器件,而且取得了传统的制动器件所无法比拟的 磨擦、磨损特性,实现了较好的应用效果。
.
21
4、陶瓷基复合材料的应用
.
22
4、陶瓷基复合材料的应用
GE公司将陶瓷基复合材料应用于飞机涡轮转子叶片, 使总重降低了约455kg,相当于发动机质量的6%。不但材 料本身比金属合金材料轻,而且还能减少冷却系统的重量, 大大节约了成本。
(1)长纤维: 在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻
璃纤维、硼纤维等;
按纤维排布方式的不同,又可将其分为单向长纤维增
强复合材料和多向长纤维增强复合材料。
单向长纤维增强复合材料的显著特点是它具有各向异
性,即沿纤维长度方向上的纵向性能要大大优于其横向性
能;另外,许多陶瓷构件则要求在二维及三维方向上均具
刀不能砍、剁、砸、撬等。 .
14
4、陶瓷基复合材料的应用
家居送礼必备良品 高 端 大 气 上 档 次
.
低 调 奢 华 有 内 涵
15
4、陶瓷基复合材料的应用
(1)机械与汽车工业: 可用于制作机械加工刀具、滑动构件、模具、耐磨轴
承、喷嘴等; 汽车零部件方面,如火花塞、密封装置、吸气/排气
阀、涡轮转子等。
相关文档
最新文档