九年级数学上册第三章圆的基本性质微专题圆周角定理的综合运用随堂练习含解析新版浙教版
2019秋人教版九年级数学上册同步练习题:微专题九__圆周角定理的综合运用

微专题九__圆周角定理的综合运用__[学生用书B40]一 巧作辅助线(教材P87思考)圆内接四边形的四个角之间有什么关系?教材母题答图解:如答图,四边形ABCD 为⊙O 的内接四边形.连接OB ,OD . ∵∠A 所对的弧为BCD ︵,∠C 所对的弧为BAD ︵, 又∵BCD ︵和BAD ︵所对的圆心角的和是周角,∴∠A +∠C =360°2=180°.同理∠ABC +∠ADC =180°, ∴圆内接四边形的四个角之间的关系是对角互补.【思想方法】 通过添加辅助线来构造圆心角或圆周角是实现圆内角度转换的有效手段,尤其要注意构造直径所对的圆周角.[2018·青岛]如图1,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,点B是AC ︵的中点,则∠D 的度数是( D ) A .70°B .55°C .35.5°D .35°图1 变形1答图【解析】 如答图,连接OB ,∵∠AOC =140°,点B 是的AC ︵中点,∴∠AOB =12∠AOC =70°.∵∠AOB 是AB ︵所对的圆心角,∠D 是AB ︵所对的圆周角,∴∠D =12∠AOB =35°.故选D.[2018·镇江]如图2,AB 为△ACD 的外接⊙O 的直径,若∠BAD =50°,则∠ACD =__40__°.图2 变形2答图【解析】 如答图,连接BC . ∵AB 是⊙O 的直径,∴∠ACB =90°. ∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.如图3,点D 是等腰三角形ABC 底边的中点,过点A ,B ,D 作⊙O .(1)求证:AB 是⊙O 的直径;(2)延长CB 交⊙O 于点E ,连接DE ,求证:DC =DE .图3 变形3答图 证明:(1)如答图,连接BD , ∵BA =BC ,AD =DC ,∴BD ⊥AC ,∴∠ADB =90°,∴AB 是⊙O 的直径; (2)∵BA =BC ,∴∠A =∠C , 由圆周角定理得∠A =∠E , ∴∠C =∠E ,∴DC =DE .如图4,AB 是⊙O 的直径,C ,P 是⊙O 上两点,AB =13,AC =5.(1)如图①,若P 是AB ︵的中点,求P A 的长; (2)如图②,若P 是BC ︵的中点,求P A 的长.① ②图4解:(1)如答图①,连接PB . ∵AB 是⊙O 的直径,P 是AB ︵中点, ∴∠APB =90°,P A =PB ,又∵AB =13,∴P A =22AB =1322;① ②变形4答图(2)如答图②,连接BC ,OP ,相交于点D ,连接PB .∵P 是BC ︵的中点,∴OP ⊥BC ,BD =CD , 又∵OA =OB ,∴OD 是△ABC 的中位线, ∴OD =12AC =52,∵OP =12AB =132,∴PD =OP -OD =132-52=4, ∵AB 是⊙O 的直径,∴∠ACB =90°,又∵AB =13,AC =5,∴BC =12,∴BD =12BC =6, ∴PB =PD 2+BD 2=213,∵AB 是⊙O 的直径,∴∠APB =90°, ∴P A =AB 2-PB 2=313.已知:阿基米德折弦定理:如图5①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .下面是运用“截长法”证明CD =AB +BD 的部分证明过程.① ② ③图5证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点, ∴MA =MC . …任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边三角形ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是.解:(1)证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC . 在△MBA 和△MGC 中,⎩⎪⎨⎪⎧BA =GC ,∠A =∠C ,MA =MC ,∴△MBA ≌△MGC (SAS),∴MB =MG , 又∵MD ⊥BC ,∴BD =GD , ∴DC =GC +GD =AB +BD ;(2)在Rt △ABE 中,AB =2,∠ABE =45°,则BE =2, ∵△ABC 是等边三角形,∴AB =AC , ∴AB ︵=AC ︵,即点A 为BDC ︵的中点, ∵AE ⊥BD ,根据阿基米德折弦定理, BD +DC =2BE =22, ∴△BDC 的周长为2+2 2.二 圆周角定理与垂径定理的综合应用(教材P89习题24.1第5题)如图6,在⊙O 中,OA ⊥BC ,∠AOB =50°.求∠ADC 的度数.图6 解:∵OA⊥BC,∴AC︵=AB︵,∴∠ADC=12∠AOB=25°.【思想方法】垂径定理与圆周角定理的综合运用题一般是通过圆周角定理进行角度、弧度转换,再利用垂径定理求解.[2018·遂宁]如图7,在⊙O中,AE是直径,半径OC垂直于弦AB于点D,连接BE,若AB=27,CD=1,则BE的长是(B)图7A.5 B.6C.7 D.8【解析】设⊙O的半径为r,则OA=OE=OC=r,∵OC⊥AB,∴AD=12AB=7,∵CD=1,∴OD=r-1,∴OD2+AD2=OA2,∴(r-1)2+(7)2=r2,解得r=4,∴OD=3,∵AE是⊙O的直径,∴AB⊥BE,∴OD∥BE,∴BE=2OD=6.故选B.[2018·凉山州]如图8,AB是⊙O的直径,弦CD⊥AB于点E,若CD=8,∠D=60°,则⊙O的半径为3.图8 变形2答图【解析】 ∵AB 是⊙O 的直径,弦CD ⊥AB 于点E , ∴DE =4,∵∠ADC =60°, ∴AD =8,AE =43,如答图,连接OD ,∵∠A =30°, ∴∠DOE =60°,∴2OE =OD ,∴AE =OA +OE =OD +OE =3OE =43, ∴OE =433,∴OD =833,即⊙O 的半径为833.[2018·安徽]如图9,⊙O 为锐角△ABC 的外接圆,其半径为5.图9(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BC 的交点E (保留作图痕迹,不写作法);(2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长. 解:(1)如答图①所示;变形3答图(2)如答图②,连接OE ,OC ,EC , 由(1)知AE 为∠BAC 的角平分线, ∴∠BAE =∠CAE ,∴BE ︵=EC ︵, 根据垂径定理知OE ⊥BC ,则DE =3. ∵OE =OC =5,∴OD =OE -DE =2.在Rt △ODC 中,DC =OC 2-OD 2=52-22=21, 在Rt △DEC 中,CE =DE 2+DC 2=32+(21)2=30, ∴弦CE 的长为30.如图10,已知在⊙O 中,AB =43,AC 是⊙O 的直径,AC ⊥BD 于点F ,∠A =30°,求BD 及OF 的长.图10解:∵AB =43,AC ⊥BD , ∠A =30°, ∴BF =12AB =23, ∴AF =AB 2-BF 2=(43)2-(23)2=6,∵AC 是⊙O 的直径, ∴BD =2BF =2×23=4 3. 设OF =x ,则OB =AF -OF =6-x . 在Rt △OBF 中,OB 2=BF 2+OF 2,即(6-x )2=(23)2+x 2,解得x =2,即OF =2.如图11,⊙O 的半径OA =5 cm ,AB 是弦,∠OAB =30°,现有一动点C 从A 出发,沿弦AB 运动到B ,再从B 沿劣弧BA 回到点A . (1)若AC =12AB ,求OC 的长;(2)若当BC =CO 时,求∠COA 的度数.① ② 图11 变形5答图 解:(1)如答图①,当点C 在弦AB 上的C 1处时, ∵AC 1=12AB ,即C 1为AB 的中点,∴OC 1⊥AB , 在Rt △OAC 1中,∵∠A =30°, ∴OC 1=12OA =52(cm);当点C 在弧AB 上时,显然存在一点C 2使得AC 2=12AB ,此时OC 2=OA =5 cm. 综上所述,OC 的长为52 cm 或5 cm ; (2)如答图②,连接OB .∵OA =OB ,∴∠OBA =∠A =30°,∴∠AOB=120°.当点C在弦AB上的C′处时,BC′=C′O,则∠OBC′=∠BOC′=30°,∴∠C′OA=120°-30°=90°;当点C在弧AB上的C″处时,C″B=OC″,∵OB=OC″,∴△OBC″为等边三角形,∴∠BOC″=60°,∴∠C″OA=60°.综上所述,∠COA的度数为90°或60°.。
2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷(解析版)

2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷一.选择题(共10小题)1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为()A.0.9 米B.1.0 米C.1.1米D.1.2米4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°6.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,)D.(﹣,﹣)或(,)10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30°B.45°C.60°D.90°二.填空题(共8小题)11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=度.12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是cm.14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为.15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为(用含α的式子表示).17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O 分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为.三.解答题(共8小题)19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是(直接写出结论,不必证明)25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定【分析】根据图形,得两个小半圆的直径之和等于大半圆的直径,则根据圆周长公式,得二人所走的路程相等.【解答】解:设小明走的半圆的半径是R.则小明所走的路程是:πR.设小红所走的两个半圆的半径分别是:r1与r2,则r1+r2=R.小红所走的路程是:πr1+πr2=π(r1+r2)=πR.因而a=b.故选:A.【点评】本题考查了圆的认识,注意计算两个小半圆周长的时候,可以提取,则两个小半圆的直径之和是大半圆的直径.2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【解答】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:C.【点评】本题考查的是垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为()A.0.9 米B.1.0 米C.1.1米D.1.2米【分析】作OC⊥AB交圆于C,交AB于D,连接OA,根据勾股定理求出AD,根据垂径定理解答.【解答】解:作OC⊥AB交圆于C,交AB于D,连接OA,则OA=1.3,OD=1.2,由勾股定理得,AD==0.5,则AB=2AD=1.0(米),故选:B.【点评】本题考查的是垂径定理的应用,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y【分析】连接BC,根据圆周角定理求出∠B,根据平行线的性质,圆内接四边形的性质,三角形内角和定理计算即可.【解答】解:连接BC,由圆周角定理得,∠BAC=∠BOC=x°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣x°,∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠B=90°+x°,∵OA=OC,∴∠OCA=∠OAC=x°,∵AD∥OC,∴∠DAC=∠OCA=x°,∴∠ACD=180°﹣∠DAC﹣∠D,即y=180°﹣x°﹣(90°+x°)=90°﹣x°,∴x+y=90,故选:A.【点评】本题考查的是圆周角定理,圆心角、弧、弦的关系定理,掌握圆内接四边形的性质,圆周角定理是解题的关键.5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°【分析】根据等腰三角形的性质、三角形的外角的性质计算,得到答案.【解答】解:∵OE=OD,DC=OE,∴DC=DO,∴∠C=∠DOC,∴∠ODE=2∠C,∵OD=OE,∴∠ODE=∠OED,∴∠OED=2∠C,∵∠BOE=∠C+∠OED,∴∠C+2∠C=72°,解得,∠C=24°,故选:A.【点评】本题考查的是圆周角定理、三角形的外角的性质,掌握等腰三角形的性质、三角形的外角的性质是解题的关键.6.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片【分析】根据旋转的定义来判断即可.【解答】解:骑自行车的人在前进的过程中没有发生旋转.故选:C.【点评】本题主要考查了生活中的旋转现象,解题的关键是要正确理解旋转的特征:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【分析】首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据对应点与旋转中心所连线段的夹角等于旋转角,可得旋转角的度数等于∠BAB1的度数,据此解答即可.【解答】解:∵∠B=35°,∠C=90°,∴∠BAC=180°﹣35°﹣90°=55°,∵点C,A,B1在同一条直线上,∴∠BAB1=180°﹣∠BAC=180°﹣55°=125°,即旋转角等于125°.故选:C.【点评】此题主要考查了旋转的性质和应用,要熟练掌握,解答此题的关键是要明确:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.【分析】观察图形,从图形的性质可以确定旋转角,然后进行判断即可得到答案.【解答】解:A图形顺时针旋转120°后,能与原图形完全重合,A不正确;B图形顺时针旋转90°后,能与原图形完全重合,B不正确;C图形顺时针旋转180°后,能与原图形完全重合,C不正确;D图形顺时针旋转72°后,能与原图形完全重合,D正确,故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,)D.(﹣,﹣)或(,)【分析】根据题意只研究点B的旋转即可,OB与x轴夹角为45°,分别按顺时针和逆时针旋转75°后,与y轴负向、x轴正向分别夹角为30°,由此计算坐标即可.【解答】解:由点B坐标为(2,﹣2)则OB=2,且OB与x轴、y轴夹角为45°当点B绕原点逆时针转动75°时,OB1与x轴正向夹角为30°则B1到x轴、y轴距离分别为,,则点B1坐标为(,);同理,当点B绕原点顺时针转动75°时,OB1与y轴负半轴夹角为30°,则B1到x轴、y轴距离分别为,,则点B1坐标为(﹣,﹣);故选:C.【点评】本题为坐标旋转变换问题,考查了图形旋转的性质、特殊角锐角三角函数值,解答时注意分类讨论和确定象限符号.10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30°B.45°C.60°D.90°【分析】根据旋转的性质,观察图形,中心角是由四个角度相同的角组成,结合周角是360°求解.【解答】解:∵中心角是由四个角度相同的角组成,∴旋转的角度是360°÷4=90°.故选:D.【点评】本题把旋转的性质和一个周角是360°结合求解.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.二.填空题(共8小题)11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=25度.【分析】解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.【解答】解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.【点评】此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为或.【分析】分AB、CD在圆心O的两侧、AB、CD在圆心O的同侧两种情况,根据垂径定理、勾股定理计算即可.【解答】解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.【点评】本题考查了勾股定理和垂径定理以及分类讨论,掌握垂径定理和勾股定理,灵活运用分类讨论思想是解题的关键.13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是37.5cm.【分析】根据切线的性质和已知条件证出O、D、C共线,根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【解答】解:如图,设点O为圆环的圆心,连接OA和OD,∵AB是内圆O的切线,∴AB⊥OD,∴∠ADO=90°,∵CD⊥AB,∴∠ADC=90°,∴∠ODC=180°,∴O、D、C共线,∴OC⊥AB,∴AD=AB=30cm,∴设OA为rcm,则OD=(r﹣15)cm,根据题意得:r2=(r﹣15)2+302,解得:r=37.5.∴这个摆件的外圆半径长为37.5cm;故答案为:37.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为或2.【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OC,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OC,∵CE===2,∴边CD===2,故答案为或2.【点评】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为105°.【分析】连结AC并且延长至E,根据旋转的性质和平角的定义,由角的和差关系即可求解.【解答】解:如图:连结AC并且延长至E,∠DCE=180°﹣∠DCB﹣∠ACB=105°.故灰斗柄AB绕点C转动的角度为105°.故答案为:105°.【点评】考查了生活中的旋转现象,本题关键是由角的和差关系得到∠DCE的度数.16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为2α(用含α的式子表示).【分析】由直角三角形的性质得出∠B=90°﹣α,由旋转的性质得出CD=CB,由等腰三角形的性质得出∠CDB=∠B=90°﹣α,由三角形内角和定理即可得出答案.【解答】解:∵∠ACB=90°,∠A=α,∴∠B=90°﹣α,由旋转的性质得:CD=CB,∴∠CDB=∠B=90°﹣α,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣2(90°﹣α)=2α;故答案为:2α.【点评】本题考查了旋转的性质、等腰三角形的性质、直角三角形的性质等知识;熟练掌握旋转的性质和等腰三角形的性质是解题的关键.17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转36度构成的.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.利用基本图形和旋转次数,即可得到旋转的角度.【解答】解:根据图形可得:这是一个由字母“Y”绕着中心连续旋转9次,每次旋转36度角形成的图案.故答案为:36.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O 分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为(10090,4).【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求得B2018的坐标.【解答】解:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,且B2C2=4,∴B4的横坐标为:2×10=20,∴点B2018的横坐标为:1009×10=10090.∴点B2018的纵坐标为:4.故点B2018的坐标为(10090,4).故答案为:(10090,4).【点评】此题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.三.解答题(共8小题)19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.【分析】先作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆即可.【解答】解:这样的圆能画2个.如图:作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆,则⊙O1和⊙O2为所求圆.【点评】本题考查了圆的认识,解题的关键是找出圆心O1和O2.20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.【分析】(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;(2)令⊙O的半径为r,由垂径定理得出BE=CE=BC=4,由勾股定理得出方程,解方程求出半径,即可得出⊙O的直径.【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD∥AC;(2)解:令⊙O的半径为r,根据垂径定理可得:BE=CE=BC=4,由勾股定理得:r2=42+(r﹣3)2,解得:r=,所以⊙O的直径为.【点评】本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.【分析】(1)作半径OD⊥AB于C,连接OB,根据勾股定理计算;(2)分水位上升到圆心以下、水位上升到圆心以上两种情况,根据垂径定理、勾股定理计算即可.【解答】解:(1)作半径OD⊥AB于C,连接OB,由垂径定理得:BC=AB=0.3,在Rt△OBC中,OC==0.4CD=0.5﹣0.4=0.1,此时的水深为0.1米;(2)当水位上升到圆心以下时水面宽0.8 米则OC==0.3,水面上升的高度为:0.3﹣0.2=0.1米;当水位上升到圆心以上时,水面上升的高度为:0.4+0.3=0.7米,综上可得,水面上升的高度为0.1米或0.7米.【点评】本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.【分析】连接DF,根据圆内接四边形的性质得到∠CAE=∠DFE、∠B=∠CDE,根据圆心角、弧、弦的关系定理得到BC=DE,根据全等三角形的判定定理证明即可.【解答】证明:∵四边形ABCD内接于⊙O,∴∠ABC=∠CDE,∵=,∴∠BAC=∠DCE,在△CDE和△ABC中,,∴△CDE≌△ABC(AAS).【点评】本题考查的是圆心角、弧、弦的关系、全等三角形的判定、等腰三角形的性质,掌握圆心角、弧、弦的关系定理是解题的关键.23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?【分析】利用分针与时针的速度关系,列出方程求出时针走的圆心角的度数,再由时针走1°相当于2分钟,即可求出准确时间.【解答】解:分针的速度是时针速度的12倍,设时针走了x°,则分针走了12x°,∵小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),且时针与分针刚好重合在一起.∴12x°﹣x°=120°,解得x°=°,∵时针走1°相当于2分钟,∴时针走过的分钟为°×2=21分.∴这时准确的时间为4时21分.【点评】本题主要考查了生活中的旋转现象,解题的关键是求出时针走了多少度.24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是OC=OM﹣ON(直接写出结论,不必证明)【分析】(1)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论;(2)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论.【解答】(1)证明:作∠OCG=60°,交OA于G,如图1所示:∵∠AOB=120°,OC平分∠AOB,∴∠CON=∠COG=60°,∴∠OCG=∠COG,∴OC=CG,∴△OCG是等边三角形,∴OC=OG,∠CGM=60°=∠CON,∵∠MCN=∠OCG=60°,∴∠OCN=∠GCM,在△OCN和△GCM中,,∴△OCN≌△GCM(ASA),∴ON=GM,∵OG=OM+GM,∴OC=OM+ON;(2)解:OC=OM﹣ON,理由如下:作∠OCG=60°,交OA于G,如图2所示:∵∠AOB=120°,OC平分∠AOB,∴∠CON=∠COG=60°,∴∠CON=120°,∠OCG=∠COG,∴OC=CG,∴△OCG是等边三角形,∴OC=OG,∠CGO=60°,∴∠CGM=120°=∠CON,∵∠MCN=∠OCG=60°,∴∠OCN=∠GCM,在△OCN和△GCM中,,∴△OCN≌△GCM(ASA),∴ON=GM,∵OG=OM﹣GM,∴OC=OM﹣ON;故答案为:OC=OM﹣ON【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、旋转的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.【分析】(1)依据△ABC经过平移后得到的△A1B1C1,点C1的坐标为(4,0),即可得到顶点A1,B1的坐标;(2)依据△ABC和△A2B2C2关于原点O成中心对称图形,即可得出△A2B2C2的各顶点的坐标;(3)依据△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,即可得到△A3B3C3的各顶点的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求,顶点A1,B1的坐标分别为(2,2)和(3,﹣2);(2)如图所示,A2的坐标为(3,﹣5);B2的坐标为(2,﹣1);C2的坐标为(1,﹣3);(3)如图所示,△A3B3C3即为所求;A3的坐标为(5,3),B3的坐标为(1,2),C3的坐标为(3,1).【点评】本题主要考查平移变换和旋转变换,熟练掌握平移变换和旋转变换的定义是解题的关键.26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.【分析】根据关于原点成中心对称的图形横纵坐标都互为相反数即可得结论.【解答】解:如图所示:△A1B1C1即为所求作的图形.A1(3,﹣5),B1(2,﹣1),C1(1,﹣3).【点评】本题考查了旋转变换、中心对称图形,解决本题的关键是掌握中心对称图形的坐标特征.。
九年级数学上册 第三章 圆的基本性质 微专题 圆周角定理的综合运用随堂练习(含解析)(新版)浙教版

微专题__圆周角定理的综合运用_一巧作辅助线教材P91作业题第5题)如图1,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°.求∠CAD的度数.图1 教材母题答图解:如答图,连结DC.∵AD是⊙O的直径,∴∠ACD=90°.∵∠ABC=50°,∴∠ADC=50°,∴∠CAD=90°-∠ADC=40°.【思想方法】利用圆周角定理,常见的辅助线作法有:①作半径,构造圆心角;②作弦,构造圆周角.[2016·泰安]如图2,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于( B )A.12.5°B.15°C.20°D.22.5°图2 变形1答图【解析】如答图,连结OB.∵四边形ABCO是平行四边形,∴OC=AB,OC∥AB,又∵OA=OB=OC,∴OA=OB=AB,∴△AOB是等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF =12∠BOF =15°.故选B.如图3,已知四边形ABCD 是⊙O 的内接正方形,P 是劣弧CD 上不同于点C 的任意一点,则∠BPC 的度数是( A ) A .45°B .60°C .75°D .90°图3 变形2答图【解析】 如答图,连结OB ,OC ,则∠BOC =90°, 根据圆周角定理,得∠BPC =12∠BOC =45°.如图4,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( B ) A .68°B .88°C .90°D .112°图4 变形3答图【解析】 如答图,以A 为圆心,AB 为半径画圆,则点C ,D 都在圆上, ∵∠CBD =2∠BDC ,∴CD ︵=2BC ︵,∵∠BAC =44°,∴∠CAD =2∠BAC =88°.故选B.如图5,⊙O 是△ABC 的外接圆,且AB =AC =13,BC =24,求⊙O 的半径.图5 变形4答图解:如答图,连结AO ,BO ,AO 交BC 于点D . 则根据垂径定理的逆定理,得OA ⊥BC ,BD =CD =12BC =12.在Rt △ABD 中,由勾股定理得AD =AB 2-BD 2=5. 设⊙O 的半径为r ,则OD =OA -AD =r -5. 在Rt △OBD 中,由勾股定理得BD 2+OD 2=OB 2, 即122+(r -5)2=r 2,解得r =16.9, 即⊙O 的半径为16.9.如图6,AB 是⊙O 的直径,AC 是弦,OD ⊥AB 交AC 于点D .若∠A =30°,OD =20,求CD 的长.图6 变形5答图解:如答图,连结BC .∵OD ⊥AB ,∠A =30°,OD =20,∴AD =2OD =40,∴OA =AD 2-OD 2=20 3. ∵AB 是⊙O 的直径,∴AB =2OA =403,且∠ACB =90°, ∴BC =12AB =203,∴AC =AB 2-BC 2=60,∴CD =AC -AD =60-40=20.二 圆周角定理与直角三角形、全等三角形等知识的综合运用教材P93作业题第5题)一个圆形人工湖如图7所示,弦AB 是湖上的一座桥.已知AB 长为100 m ,圆周角∠C =45°.求这个人工湖的直径.图7 教材母题答图解:如答图,设圆心为O,连结OA,OB.∵∠C=45°,∴∠AOB=2∠C=90°,∴OA=AB2=502(m),∴这个人工湖的直径为2OA=1002(m).【思想方法】直角三角形与圆周角定理的综合运用一般是通过圆周角定理进行角度转换,利用直角三角形的相关知识求解.[2016·嘉善模拟]如图8,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE=2,则BD的长为.图8 变形1答图【解析】如答图,延长BA,CE交于点M.∵BC是⊙O的直径,∴∠BAD=∠CAM=90°,∠BEC=∠BEM=90°,∵AB=AC,∠ABD=∠ACM,∴△ABD≌△ACM,∴BD=CM,∵BE平分∠ABC,∴∠EBM=∠EBC,∵BE=BE,∠BEC=∠BEM,∴△BEC≌△BEM,∴EC=EM,∴BD=CM=2CE=2 2.如图9,在△ABC中,以AB为直径的⊙O交BC于点D,连结AD,请添加一个条件__AB=AC或BD=CD或∠B=∠C或∠BAD=∠CAD__,使△ABD≌△ACD.图9如图10,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,求⊙O的半径.图10 变形3答图解:如答图,连结AO 并延长交⊙O 于点D ,连结BD . ∵∠D ,∠C 所对的圆弧都为AB ︵, ∴∠D =∠C =30°.∵AD 是⊙O 的直径,∴∠ABD =90°, ∴AD =2AB =4(cm),∴AO =12AD =2(cm),即⊙O 的半径为2 cm.在⊙O 中,直径AB =4,CD =2,直线AD ,BC 相交于点E .(1)如图11①,∠E 的度数为__60°__;(2)如图②,AB 与CD 交于点F ,请补全图形并求∠E 的度数; (3)如图③,弦AB 与弦CD 不相交,求∠AEC 的度数.图11解:(1)如答图①,连结OD ,OC ,BD . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DBC =30°, ∵AB 为直径,∴∠ADB =90°,∴∠E =90°-30°=60°,∴∠E 的度数为60°;(2)补全图形如答图②,直线AD ,CB 交于点E ,连结OD ,OC ,AC . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DAC =30°, ∵∠DAC +∠DBC =12×360°=180°,∴∠DBC=150°,∴∠EBD=180°-∠DBC=30°,∵AB为直径,∴∠ADB=90°,∴∠BDE=90°,∴∠E=90°-30°=60°;(3)如答图③,连结OD,OC,BD.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∵AB为直径,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.①②③变形4答图三圆周角定理的创新应用教材P92例3)如图12,有一个弓形的暗礁区,弓形所在圆的圆周角∠C=50°.问:船在航行时怎样才能保证不进入暗礁区?图12解:当张角∠ASB<∠ACB时,船在弓形暗礁区外;当张角∠ASB=∠ACB时,船在弓形暗礁区边上;当张角∠ASB>∠ACB时,船在弓形暗礁区内,∴要使船保证不进入暗礁区,必须使∠ASB<∠ACB,即∠ASB<50°.【思想方法】由圆周角定理知,同弧上的圆周角相等,应用在航海上,常常用来考查动点问题.如图13,AB是⊙O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连结EF,当△BEF是直角三角形时,t的值为( D )图13A.74 B .1 C.74或1 D.74或1或94【解析】 ∵AB 是⊙O 的直径,∴∠ACB =90°. ∵在Rt △ABC 中,BC =2 cm ,∠ABC =60°, ∴∠A =30°,∴AB =2BC =4(cm). ①当∠BFE =90°时,∵在Rt △BEF 中,∠ABC =60°,则∠BEF =30°, ∴BE =2BF =2(cm),∴AE =AB -BE =2(cm),∴E 点运动的距离为2 cm 或6 cm ,故t =1 s 或3 s , 由于0≤t <3,故t =3 s 不合题意,舍去, ∴当∠BFE =90°时,t =1 s ;②当∠BEF =90°时,同①可求得BE =12 cm ,此时AE =AB -BE =72(cm),∴E 点运动的距离为72 cm 或92 cm ,∴t =74 s 或94s.综上所述,当t 的值为1或74或94时,△BEF 是直角三角形.故选D.[2016·山西]请阅读下列材料,并完成相应的任务.阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯学者Al -Biruni(973~1050年)的译文中保存了阿基米德折弦定理的内容,苏联一家出版社在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图14①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .① ② ③图14下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC . …任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边三角形ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是.解:(1)证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC .在△MBA 和△MGC 中,⎩⎪⎨⎪⎧BA =GC ,∠A =∠C ,MA =MC ,∴△MBA ≌△MGC (SAS ),∴MB =MG , 又∵MD ⊥BC ,∴BD =GD , ∴DC =GC +GD =AB +BD ;变形2答图(2)如答图,截取BF =CD ,连结AF ,AD ,CD , 由题意,得AB =AC ,∠ABF =∠ACD ,在△ABF 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠ABF =∠ACD ,BF =CD ,∴△ABF ≌ACD (SAS ),∴AF =AD , ∵AE ⊥BD ,∴FE =DE ,则CD +DE =BE , ∵∠ABD =45°,∴BE =AB2=2,则△BDC 的周长是2+2 2.本文档仅供文库使用。
浙教版九年级上册数学第3章《圆的基本性质》同步练习【含答案】

浙教版九年级上数学第 3 章《圆的基天性质》同步练习考试时间: 120 分钟满分: 120 分一、选择题(本大题有12 小题,每题 3 分,共 36 分)下边每题给出的四个选项中,只有一个是正确的.1.若⊙ O 的半径为 6,点 P 在⊙ O 内,则 OP 的长可能是()A. 5B. 6C. 7D. 82.如图,将△ OAB 绕点 O 逆时针旋转80°,获得△ OCD.若∠ A= 2∠D= 100 °,则∠ α的度数是()A.50 °B. 60C.40 °D.30 °(第 2题)(第3题)(第4题)3.一条排水管的截面如下图,已知排水管的截面圆的半径16dm ,则截面水深CD 是A. 3dmB. 4dmC. 5dm (第 5题),水面宽AB 是D. 6dm4.如图,线段A. 160 °5.如图,⊙ O 是△是的直径,弦,B. 150 °C. 140 °ABC的外接圆,∠B=60°,⊙ O 的半径为4,则,则AC 的长等于(等于(D. 120 °))A. 4B. 6C. 2D. 86.如图,A. 40AD°是⊙O 的直径,B. 50,若∠ AOB= 40°,则圆周角∠C.60°BPC的度数是(D. 70)°(第 6题)7.如图,四边形ABCD是(第 7题)的内接四边形,若(第8 题),则(第的度数是11 题)A. B. C. D.8.如图,△ABC内接于⊙O,∠ A= 68°,则∠ OBC等于()A.22 °B. 26C. 32°D. 34°9.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A. 2B. 1C.D.10.在半径为 2 的圆中,弦AB 的长为2,则的长等于()A. B. C. D.11.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的 6 个月牙形的面积之和(暗影部分面积)是()A. B. C. D.12.如图,圆半径为,弓形高为,则弓形的弦的长为()A. B. C. D.(第 12 题)(第 13 题)(第 14题)二、填空题(本大题有 6 小题,每题 3 分,共 18 分)要注意仔细看清题目的条件和要填写的内容,尽量完好地填写答案.13.如图,△ABC内接于☉ O,∠ CAB=30°,∠ CBA=45°, CD⊥ AB 于点 D,若☉ O 的半径为 2 ,则 CD的长为 ________14.如图,已知四边形 ABCD内接于半径为 4 的⊙ O 中,且∠ C= 2∠ A,则 BD= ________.15.如图,在⊙ O 中, AB 为直径,∠ ACB的均分线交⊙ O 于 D, AB=6,则 BD=________.(第 15 题)(第 16 题)(第 17 题)(第 18 题)16.如图,在⊙ O 中,直径 EF⊥ CD,垂足为 M,若 CD= 2,EM=5,则⊙ O 的半径为 ________.17.如图,四边形 ABCD中,,若,则________度18.如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为 ________.三、解答题(本大题有7 小题,共66 分)解答应写出文字说明,证明过程或推演步骤.19.( 8 分)如图,∠C=90°,以 AC 为半径的圆C与 AB 订交于点D.若 AC=3, CB=4,求 BD长.20.( 8 分)如下图, BC为⊙ O 的直径,弦 AD⊥BC 于 E,∠ C=60°.求证:△ ABD 为等边三角形.21.( 8 分)如图, AB 是的直径,点C、D 是两点,且AC=CD.求证: OC//BD.22(.10 分)已知在△ ABC 中, AB=AC,以AB 为直径的⊙ O 分别交AC 于 D, BC 于 E,连接 ED.(1)求证: ED=EC;( 2)若CD=3,EC=2,求AB 的长 .23.( 10 分)如图, AB 是⊙ O 的直径, E 为⊙ O 上一点, EF⊥ AB 于 E,连结 OE, AC∥OE,OD⊥AC 于 D,若 BF=2, EF=4,求线段AC长.24.( 10 分)如图, AB 是⊙ O 的直径,弦 CD⊥ AB 于点 E,点 M 在⊙ O 上, MD 恰巧经过圆心O,连结 MB.(1)若 CD=16,BE=4,求⊙ O 的直径;(2)若∠ M= ∠ D,求∠ D 的度数.25.( 12 分)已知:如图,⊙O 是△ ABC的外接圆,=,点D在边BC上,AE∥ BC,AE=BD.(1)求证: AD=CE;( 2)假如点G 在线段 DC上(不与点 D 重合),且AG=AD,求证:四边形AGCE是平行四边形.一、选择题(本大题有12 小题,每题 3 分,共36 分)下边每题给出的四个选项中,只有一个是正确的.1. A 7. D2. A8. A3. B9. B4. C10. C5. A11. A6. B12. C二、填空题(本大题有 6 小题,每题 3 分,共 18 分)要注意仔细看清题目的条件和要填写的内容,尽量完好地填写答案.13.14. 415.16.17.18.三、解答题(本大题有7 小题,共66 分)解答应写出文字说明,证明过程或推演步骤.19.解:( 1)∵在三角形ABC 中,∠ ACB=90°,AC=3, BC=4,∴ AB===5,点 C 作 CE⊥ AB 于点 E,则 AD=2AE,∵∠ CAE=∠ CAB,∠ AEC=∠ ACB=90°,∴△ ACE∽△ ABC,∴=,∴AC2=AE?AB,即 32=AE× 5∴AE=1.8,∴AD=2AE=2×1.8=3.6∴BD=AB﹣ AD=5﹣ 3.6=1.4 .20.证明:∵ BC 为⊙ O 的直径, AD⊥BC,∴ AE=DE,∴BD=BA,∵∠ D=∠ C=60°,∴△ ABD 为等边三角形.21.证明:∵ AC=CD,∴,∴∠ ABC=∠ DBC,∵OC=OB,∴∠ OCB=∠ OBC,∴∠ OCB=∠ DBC,∴OC∥ BD.22.( 1)证明:连结 AE,∵ AB 是直径,∴∠ AEB=90°,∵ AB=AC,∴BE=CE,∠ BAE=∠ CAE,∴弧 BE=弧 DE,∴BE=ED,∴ED=EC(2)解:法一:∵四边形 ABED是圆内接四边形∴∠ B+∠ ADE=180°,又∵∠ ADE+∠ EDC=180°,∴∠ EDC=∠B,∴△ CDE∽△ CBA,∴,∴∴AC=AB=8法二:连结 BD,BE=ED=EC,可得 BC,从而推出 BD,设 AB=AC=x,则 AD=x-3,由BD2+AD2=AB2推得 AB 长。
九年级数学上册第三章圆的基本性质3.5圆周角第1课时圆周角定理随堂练习(含解析)浙教版(2021年

九年级数学上册第三章圆的基本性质3.5 圆周角第1课时圆周角定理随堂练习(含解析)(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第三章圆的基本性质3.5 圆周角第1课时圆周角定理随堂练习(含解析)(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第三章圆的基本性质3.5 圆周角第1课时圆周角定理随堂练习(含解析)(新版)浙教版的全部内容。
3。
5__圆周角第1课时圆周角定理1.[2017·徐州]如图3-5-1,点A,B,C在⊙O上,∠AOB=72°,则∠ACB =( D )A.28°B.54° C.18°D.36°【解析】根据同弧所对的圆周角等于圆心角的一半,得∠ACB=错误!∠AOB =错误!×72°=36°。
图3-5-1 图3-5-22.如图3-5-2,BC是⊙O的直径,A是⊙O上异于B,C的一点,则∠A的度数为( D )A.60°B.70° C.80°D.90°3.如图3-5-3,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是( A )A.25°B.40° C.30°D.50°【解析】∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=12∠AOD=25°。
故选A.图3-5-3 图3-5-44.[2017·广州]如图3-5-4,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连结CO,AD,∠BAD=20°,则下列说法中正确的是( D ) A.AD=2OB B.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD【解析】∵AB⊥CD,∴错误!=错误!,∴∠BOC=2∠BAD=40°,∴∠OCE=90°-40°=50°.故选D。
人教版九年级数学上册24.1 圆的基本性质同步练习(含答案)【优选】

24.1 圆(第四课时 )--------圆周角知识点1、圆周角定义:顶点在 ,并且两边都和圆 的角叫圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角 ,都等于这条弧所对的圆心角的 。
推论1、在同圆或等圆中,如果两个圆周角 ,那么它们所对的弧 。
推论2、半圆(或直径)所对的圆周角是 ; 900的圆周角所对的弦是 。
3、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做 ,这个圆叫做 。
性质:圆内接四边形的对角一、选择题1.如图,在⊙O 中,若C 是»BD 的中点,则图中与∠BAC 相等的角有( )A.1个B.2 个C.3个D.4个2.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( )A . 20°B . 40°C . 60° D.80°3.如图,AB 是⊙O 的直径,点C 在⊙O 上,若∠A=40 º,则∠B 的度数为()A .80 ºB .60 ºC .50 ºD .40 º4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径为()A.6 B.5 C.3 D.327、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=23,则⊙O的半径为()A.43B.63C.8 D.128、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()»»B.A F=BF C.O F=CF D.∠DBC=90°A.AD BD二、填空题1.如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.2.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=.4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=..5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=cm.7、如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.8、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=.9、如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=.A B C DO 10、如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒,点E 在量角器上对应的读数是 度.三、解答题 1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.2. 如图,AB 是⊙O 的直径,C 是»BD的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .3、如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .CBDE FO4、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.答案1.圆上相交2.相等一半相等一定相等直角直径3.圆内接多边形这个多边形的外接圆互补一、选择题1.C2.D3.C4.C5. C6.C7、A8、C二、填空题1.150°2.25°3.60°4. 40°.5、20°6、57、50°8.9、30°10、144°三、解答题1、ArrayA B»»2222222BC AB AC 1068cm CD ACBACD BCD 45ADBD AD BDBD AB 100100AD BD 52cm 2∴∠∠︒∴=-=-=∠∴∠=∠=︒∴=∴=+==∴===Q e V Q V 解:AB 是O 的直径ACB=ADB=90在Rt ABC 中,AB=10cm,AC=6cm,平分在Rt ADC 中,AB=10cmAD 2.解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,∴ CF ﹦BF ﹒(2) ⊙O 的半径为5 , CE 的长是524﹒3、解:(1)在△ABC 中,∵∠BAC=∠APC=60°,又∵∠APC=∠ABC , CB D E FO 1 2∴∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,∴△ABC是等边三角形;(2)∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OD=8×12=4.4、证明:(1)∵OD⊥AC OD为半径,∴»»CD AD=,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=12 AB,∵OD=»»CD AD=AB,∴BC=OD.5、(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。
最新人教版初中数学九年级上册 第2课时 圆内角四边形的性质及圆周角定理的综合运用过关习题及解析答案

24.1.4 圆周角第2课时圆内角四边形的性质及圆周角定理的综合运用一.选择题。
1. 如图,圆心角∠AOB=120°,C、D、E是的四等分点,则弦OE和半径OA的关系是()A. OA<DEB. DE<OAC. DE=OAD. 以上均不对2. 在下列语句中,叙述正确的个数为()①相等的圆周角所对弧相等②同圆等圆中,同弦或等弦所对圆周角相等③一边上的中线等于这条边的一半的三角形是直角三角形④等弧所对圆周角相等A. 1个B. 2个C. 3个 D. 4个3. 在半径等于7cm的圆内有长为的弦,则此弦所对圆周角为()A. 60°或120°B. 30°或150° C. 60° D. 120°4. 下列命题中不正确的是()A. 圆内接平行四边形是矩形B. 圆内接菱形是正方形C. 圆内接梯形是等腰梯形D. 圆内接矩形是正方形5. 如图,∠E=30°,AB=BC=CD,则∠ACD的度数为()A. 12.5°B. 15°C. 20°D. 22.5°6. 四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A. 1∶3∶2∶4 B. 7∶5∶10∶8C. 13∶1∶5∶17D. 1∶2∶3∶47. 圆内接四边形ABCD的一组对边AD、BC的延长线交于P,对角线AC、BD交于点Q,则图中共有相似三角形()A. 4对B. 2对C. 1对 D. 3对二. 填空题。
8. 一弦分圆周为5∶7,这弦所对的两圆周角分别为__________。
9. 如图,OA、OB、OC都是⊙O的半径,,∠AOB=80°,则∠B OC=__________,∠ABC=__________,∠ACB=_____∠CAB。
10. 如图,△ABC内接于⊙O,若∠ABC=50°,∠ACB=70°,则∠A=______ ____,=__________,∠BOC=___________,=___________=___ ________。
「精品」九年级数学上册第3章圆的基本性质3.5圆周角第2课时圆周角定理的推论2同步练习新版浙教版

第3章 圆的基本性质3.5 圆周角第2课时 圆周角定理的推论2知识点 圆周角定理的推论2 1.下列命题是假命题的是( ) A .同弧或等弧所对的圆周角相等 B .相等的圆心角所对的弧相等 C .圆的两条平行弦所夹的弧相等D .在同圆或等圆中,相等的圆周角所对的弧也相等2.如图3-5-17,已知AB ,CD 是⊙O 的两条直径,∠ABC =30°,则∠ADC 的度数为( ) A .45° B .60° C .90° D .30°3-5-173-5-183.如图3-5-18,已知AB 是⊙O 的直径,∠D =40°,则∠CAB 的度数为( ) A .20° B .40° C .50° D .70°4.如图3-5-19,在⊙O 中,AB ︵=BC ︵,点D 在⊙O 上,∠CDB =25°,则∠AOB 的度数是( )A .45°B .50°C .55°D .60°3-5-193-5-205.2017·台州月考如图3-5-20,在⊙O 中,弦AB ,CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于( )A .30°B .35°C .40°D .50°6.如图3-5-21,弦AB ,CD 相交于点O ,连结AD ,BC ,在不添加任何辅助线的情况下,请在图中找出一对相等的角:______________.3-5-213-5-227.如图3-5-22,在⊙O 中,直径AB 交CD 于点E ,CE =DE ,∠C =68°,则∠D =________°. 8.如图3-5-23,在△ABE 中,AB =AE ,以AB 为直径的半圆O 分别交AE ,BE 于点C ,D .求证:CD ︵=BD ︵.图3-5-239.2017·济南如图3-5-24,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.图3-5-2410.2017·嘉兴十校联合模拟如图3-5-25,AB是⊙O的直径,CD是⊙O的弦,若∠BAD =48°,则∠DCA的大小为( )A .48°B .42°C .45°D .24°3-5-25图3-5-2611.如图3-5-26,点A ,B ,C ,D 都在⊙O 上,CD ︵的度数为84°,则∠ABD +∠CAO =________°.12.如图3-5-27,四边形ABCD 的四个顶点均在⊙O 上,点E 在对角线AC 上,EC =BC =DC .(1)若∠CBD =39°,求∠BAD 的度数; (2)求证:∠1=∠2.图3-5-2713.课本例3变式如图3-5-28,在“世界杯”足球比赛中,甲带球向对方球门PQ 进攻.当他带球冲到A 点时,同伴乙已经助攻冲到B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,选择哪种射门方式较好?为什么?图3-5-2814.如图3-5-29,已知BC 是⊙O 的一条弦,A 是⊙O 的优弧BAC 上的一个动点(点A 与点B ,C 不重合),∠BAC 的平分线AP 交⊙O 于点P ,∠ABC 的平分线BE 交AP 于点E ,连结BP .(1)求证:P 为BC ︵的中点;(2)PE 的长度是否会随点A 的运动而变化?请说明理由.图3-5-2915.创新学习如图3-5-30,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC =∠CPB =60°.(1)判断△ABC 的形状:____________;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?并求出最大面积.图3-5-30详解详析1.B2.D [解析] ∵∠D 与∠B 所对的弧相同, ∴∠D =∠B =30°.3.C [解析] ∵∠D =40°,∴∠B =∠D =40°.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°-40°=50°.4.B [解析] 在同一个圆中,等弧所对的圆心角是圆周角的2倍,故选B. 5.C [解析] ∵∠APD 是△APC 的外角, ∴∠APD =∠C +∠A . ∵∠A =30°,∠APD =70°, ∴∠C =∠APD -∠A =40°, ∴∠B =∠C =40°. 故选C.6.答案不唯一,如∠A =∠C 7.228.证明:∵AB 是⊙O 的直径,∴∠ADB =90°, 即AD ⊥BE .又∵AB =AE ,∴∠BAD =∠CAD , ∴CD ︵=BD ︵.9.解:∵AB 为⊙O 的直径, ∴∠ADB =90°.∵∠ACD =25°,∴∠B =25°, ∴∠BAD =90°-∠B =65°.10.B [解析] 连结BD,如图所示.∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=42°,∴∠DCA=∠ABD=42°.故选B.11.48 [解析] 在等腰三角形OAC和等腰三角形OCD中,根据等腰三角形的两个底角相等的性质求得∠OCA=∠OAC,∠OCD=∠ODC,所以由三角形的内角和定理求得∠OCD=48°;由圆周角定理的推论得∠ABD=∠ACD,进而求得∠ABD+∠CAO=∠ACD+∠OCA=∠OCD=48°.12.(1)∵BC=DC,∴∠CBD=∠CDB=39°.∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°.(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD.∵∠BAE=∠CBD,∴∠1=∠2.13.解:选择第二种射门方式较好.理由:设AP与圆的交点是C,连结CQ,则∠PCQ >∠A .由圆周角定理知∠PCQ =∠B , 所以∠B >∠A ,所以选择第二种射门方式较好.14:(1)证明:∵AP 平分∠BAC , ∴∠BAP =∠CAP ,∴BP ︵=CP ︵,即P 为BC ︵的中点.(2)PE 的长度不会随点A 的运动而变化. 理由:∵∠BAP =∠CAP ,∠CAP =∠CBP , ∴∠BAP =∠CBP . ∵BE 平分∠ABC , ∴∠ABE =∠CBE ,∴∠ABE +∠BAE =∠CBE +∠CBP , ∴∠BEP =∠EBP , ∴PE =PB .∵P 为BC ︵的中点,即PB 为定长,∴PE 的长度为定值,即PE 的长度不会随点A 的运动而变化. 15.解:(1)等边三角形 (2)PA +PB =PC .证明:如图①,在PC 上截取PD =PA ,连结AD .∵∠APC =60°, ∴△PAD 是等边三角形, ∴PA =AD, ∠PAD =60°.又∵∠BAC =60°,∴∠PAB =∠DAC . 又∵AB =AC ,∴△PAB ≌△DAC ,∴PB =DC . ∵PD +DC =PC ,∴PA +PB =PC .(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大.如图②,过点P 作PE ⊥AB ,垂足为E ,过点C 作CF ⊥AB ,垂足为F . ∵S △PAB =12AB ·PE, S △ABC =12AB ·CF ,∴S 四边形APBC =S △PAB +S △ABC =12AB (PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大.学习资料 值得拥有11 ∵⊙O 的半径为1,∴其内接正三角形的边长AB =3,∴S 四边形APBC =12×2×3= 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题__圆周角定理的综合运用_一巧作辅助线教材P91作业题第5题)如图1,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°.求∠CAD的度数.图1 教材母题答图解:如答图,连结DC.∵AD是⊙O的直径,∴∠ACD=90°.∵∠ABC=50°,∴∠ADC=50°,∴∠CAD=90°-∠ADC=40°.【思想方法】利用圆周角定理,常见的辅助线作法有:①作半径,构造圆心角;②作弦,构造圆周角.[xx·泰安]如图2,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF ⊥OC交⊙O于点F,则∠BAF等于( B )A.12.5°B.15°C.20°D.22.5°图2 变形1答图【解析】如答图,连结OB.∵四边形ABCO是平行四边形,∴OC=AB,OC∥AB,又∵OA=OB=OC,∴OA=OB=AB,∴△AOB是等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF =12∠BOF =15°.故选B.如图3,已知四边形ABCD 是⊙O 的内接正方形,P 是劣弧CD 上不同于点C 的任意一点,则∠BPC 的度数是( A ) A .45°B .60°C .75°D .90°图3 变形2答图【解析】 如答图,连结OB ,OC ,则∠BOC =90°, 根据圆周角定理,得∠BPC =12∠BOC =45°.如图4,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( B ) A .68°B .88°C .90°D .112°图4 变形3答图【解析】 如答图,以A 为圆心,AB 为半径画圆,则点C ,D 都在圆上, ∵∠CBD =2∠BDC ,∴CD ︵=2BC ︵,∵∠BAC =44°,∴∠CAD =2∠BAC =88°.故选B.如图5,⊙O 是△ABC 的外接圆,且AB =AC =13,BC =24,求⊙O 的半径.图5 变形4答图解:如答图,连结AO ,BO ,AO 交BC 于点D . 则根据垂径定理的逆定理,得OA ⊥BC ,BD =CD =12BC =12.在Rt △ABD 中,由勾股定理得AD =AB 2-BD 2=5. 设⊙O 的半径为r ,则OD =OA -AD =r -5. 在Rt △OBD 中,由勾股定理得BD 2+OD 2=OB 2, 即122+(r -5)2=r 2,解得r =16.9, 即⊙O 的半径为16.9.如图6,AB 是⊙O 的直径,AC 是弦,OD ⊥AB 交AC 于点D .若∠A =30°,OD =20,求CD 的长.图6 变形5答图解:如答图,连结BC .∵OD ⊥AB ,∠A =30°,OD =20,∴AD =2OD =40,∴OA =AD 2-OD 2=20 3. ∵AB 是⊙O 的直径,∴AB =2OA =403,且∠ACB =90°, ∴BC =12AB =203,∴AC =AB 2-BC 2=60,∴CD =AC -AD =60-40=20.二 圆周角定理与直角三角形、全等三角形等知识的综合运用教材P93作业题第5题)一个圆形人工湖如图7所示,弦AB 是湖上的一座桥.已知AB 长为100 m ,圆周角∠C =45°.求这个人工湖的直径.图7 教材母题答图解:如答图,设圆心为O,连结OA,OB.∵∠C=45°,∴∠AOB=2∠C=90°,∴OA=AB2=502(m),∴这个人工湖的直径为2OA=1002(m).【思想方法】直角三角形与圆周角定理的综合运用一般是通过圆周角定理进行角度转换,利用直角三角形的相关知识求解.[xx·嘉善模拟]如图8,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE=2,则BD的长为.图8 变形1答图【解析】如答图,延长BA,CE交于点M.∵BC是⊙O的直径,∴∠BAD=∠CAM=90°,∠BEC=∠BEM=90°,∵AB=AC,∠ABD=∠ACM,∴△ABD≌△ACM,∴BD=CM,∵BE平分∠ABC,∴∠EBM=∠EBC,∵BE=BE,∠BEC=∠BEM,∴△BEC≌△BEM,∴EC=EM,∴BD=CM=2CE=2 2.如图9,在△ABC中,以AB为直径的⊙O交BC于点D,连结AD,请添加一个条件__AB=AC或BD=CD或∠B=∠C或∠BAD=∠CAD__,使△ABD≌△ACD.图9如图10,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,求⊙O的半径.图10 变形3答图解:如答图,连结AO 并延长交⊙O 于点D ,连结BD . ∵∠D ,∠C 所对的圆弧都为AB ︵, ∴∠D =∠C =30°.∵AD 是⊙O 的直径,∴∠ABD =90°, ∴AD =2AB =4(cm),∴AO =12AD =2(cm),即⊙O 的半径为2 cm.在⊙O 中,直径AB =4,CD =2,直线AD ,BC 相交于点E . (1)如图11①,∠E 的度数为__60°__;(2)如图②,AB 与CD 交于点F ,请补全图形并求∠E 的度数; (3)如图③,弦AB 与弦CD 不相交,求∠AEC 的度数.图11解:(1)如答图①,连结OD ,OC ,BD . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DBC =30°, ∵AB 为直径,∴∠ADB =90°,∴∠E =90°-30°=60°,∴∠E 的度数为60°;(2)补全图形如答图②,直线AD ,CB 交于点E ,连结OD ,OC ,AC . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DAC =30°, ∵∠DAC +∠DBC =12×360°=180°,∴∠DBC=150°,∴∠EBD=180°-∠DBC=30°,∵AB为直径,∴∠ADB=90°,∴∠BDE=90°,∴∠E=90°-30°=60°;(3)如答图③,连结OD,OC,BD.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∵AB为直径,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.①②③变形4答图三圆周角定理的创新应用(教材P92例3)如图12,有一个弓形的暗礁区,弓形所在圆的圆周角∠C=50°.问:船在航行时怎样才能保证不进入暗礁区?图12解:当张角∠ASB<∠ACB时,船在弓形暗礁区外;当张角∠ASB=∠ACB时,船在弓形暗礁区边上;当张角∠ASB>∠ACB时,船在弓形暗礁区内,∴要使船保证不进入暗礁区,必须使∠ASB<∠ACB,即∠ASB<50°.【思想方法】由圆周角定理知,同弧上的圆周角相等,应用在航海上,常常用来考查动点问题.如图13,AB是⊙O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连结EF,当△BEF是直角三角形时,t的值为( D )图13A.74 B .1 C.74或1 D.74或1或94【解析】 ∵AB 是⊙O 的直径,∴∠ACB =90°. ∵在Rt △ABC 中,BC =2 cm ,∠ABC =60°, ∴∠A =30°,∴AB =2BC =4(cm). ①当∠BFE =90°时,∵在Rt △BEF 中,∠ABC =60°,则∠BEF =30°, ∴BE =2BF =2(cm),∴AE =AB -BE =2(cm),∴E 点运动的距离为2 cm 或6 cm ,故t =1 s 或3 s , 由于0≤t <3,故t =3 s 不合题意,舍去, ∴当∠BFE =90°时,t =1 s ;②当∠BEF =90°时,同①可求得BE =12 cm ,此时AE =AB -BE =72(cm),∴E 点运动的距离为72 cm 或92 cm ,∴t =74 s 或94s.综上所述,当t 的值为1或74或94时,△BEF 是直角三角形.故选D.[xx·山西]请阅读下列材料,并完成相应的任务.阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯学者Al -Biruni(973~1050年)的译文中保存了阿基米德折弦定理的内容,苏联一家出版社在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图14①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .① ② ③图14下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC . …任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边三角形ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是.解:(1)证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC .在△MBA 和△MGC 中,⎩⎪⎨⎪⎧BA =GC ,∠A =∠C ,MA =MC ,∴△MBA ≌△MGC (SAS ),∴MB =MG , 又∵MD ⊥BC ,∴BD =GD , ∴DC =GC +GD =AB +BD ;变形2答图(2)如答图,截取BF =CD ,连结AF ,AD ,CD , 由题意,得AB =AC ,∠ABF =∠ACD ,在△ABF 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠ABF =∠ACD ,BF =CD ,∴△ABF ≌ACD (SAS ),∴AF =AD , ∵AE ⊥BD ,∴FE =DE ,则CD +DE =BE , ∵∠ABD =45°,∴BE =AB2=2,则△BDC 的周长是2+2 2.。