(完整word版)2019年浙江省高考数学试卷

合集下载

2019年浙江高考数学真题及答案(Word版,精校版)

2019年浙江高考数学真题及答案(Word版,精校版)

2019年普通高等学校招生全国统一考试(浙江卷)数 学一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是 A .22B .1C .2D .23.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是 A .158B .162C .182D .325.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y =log a (x +),(a >0且a ≠0)的图像可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则A .a <-1,b <0B .a <-1,b >0C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =,a 10>10B .当b =,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

(完整word)2019年高考真题数学(浙江卷)word版含答案,推荐文档

(完整word)2019年高考真题数学(浙江卷)word版含答案,推荐文档

绝密★启用前2019年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共 4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1 •答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷 和答题纸规定的位置上。

2 •答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在 本试题卷上的作答一律无效。

示台体的咼其中R 表示球的半径选择题部分(共40分)、选择题:本大题共 10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

B .0,1 参考公式: 若事件A , B 互斥,则P(A B) P(A) P(B) 若事件A ,柱体的体积公式V Sh其中表示柱体的底面积,表示柱体的高 锥体的体积公式V ^Sh3其中表示锥体的底面积,表示锥体的高 球的表面积公式 2S 4 R球的体积公式1.已知全集U1,0,1,2,3,集1,0,1 ,则 e u AI B =C .1,2,31,0,1,32•渐近线方程为x± y=0的双曲线的离心率是_2~23 •若实数x, y满足约束条件3x y4 0,则z=3x+2y的最大值是D • 12C. 104 •祖暅是我国南北朝时代的伟大科学家•他提出的“幕势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高•若某柱体的三视图如图所示,则该柱体的体积是x 3y 4 0A• 158 B• 162C• 182 D • 325•若a> 0, b>0,则“ a+b w 4”是“ ab w4” 的A •充分不必要条件B •必要不充分条件C •充分必要条件D •既不充分也不必要条件16•在同一直角坐标系中,函数y =匚,y=log a(x+), (a>0且a^0)的图像可能是aB C D7.设O v a v 1,则随机变量X 的分布列是则当a 在(0,1 )内增大时 A . D ( X )增大B . D ( X )减小C .D ( X )先增大后减小D . D (X )先减小后增大8设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为a,直线PB 与平面ABC 所成角为3,二面角P-AC-B 的平面角X,X 9. 已知 a,b R ,函数 f (x)1 3 x 3有三个零点,则 A . a<-1, b<0 C . a > -1, b > 010. 设 a , b € R ,数列{a n }中 a n =a , a n+1=a n 2+b , b N ,则B .当 b=, a 10> 10D .当 b=-4 , a 10 > 10非选择题部分(共110分)二、填空题:本大题共 7小题,多空题每题 6分,单空题每题 4分,共36分。

新高考(精校版)2019年浙江卷数学高考试题文档版(含答案)

新高考(精校版)2019年浙江卷数学高考试题文档版(含答案)

2019 年浙江省高考数学试卷一、:本大共10 小,每小 4 分,共 40 分。

在每小出的四个中,只有一是符合目要求的。

1.已知全集 U{ 1 , 0, l , 2, 3} ,集合 A {0 , 1, 2} , B { 1 , 0, 1} , (e U A) B ()A.{ 1}B.{0 ,1}C.{ 1,2, 3}D. { 1,0,1, 3}2.方程x y0 的双曲的离心率是()A .2B . 1C. 2 D .2 2x 3 y 4⋯03.若数x,y足束条件 3x y 4,0 , z3x 2 y 的最大是()x y⋯0A .1B. 1C.10 D .124.祖是我国南北朝代的大科学家,他提出的“ 既同,不容异”称祖原理,利用原理可以得到柱体的体公式V柱体sh ,其中s是柱体的底面,h 是柱体的高.若某柱体的三如所示,柱体的体是()A . 158B. 162C.182 D . 3245.若 a 0 , b 0 ,“a b, 4 ”是“ ab, 4 ”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐系中,函数y1, y 1og a ( x 1) , ( a0 且 a1) 的象可能是()a x27. 0a 1 .随机量X的分布列是X0a1P111333当 a 在(0,1)内增大,()A. D(X) 增大B. D(X)减小C. D( X ) 先增大后减小D. D ( X ) 先减小后增大8.三棱 V ABC 的底面是正三角形,棱均相等,P是棱VA上的点(不含端点).直 PB 与直AC 所成角,直 PB 与平面ABC所成角,二面角 P AC B 的平面角,()A .,B .,C.,D.,x, x0,若函数 y f (x) ax b 恰有 39.a, b R ,函数 f (x) 1 312⋯个零点,()x(a 1)x ax, x 032A . a 1 , b0B . a1, b0C. a 1 , b0D. a1, b 010.a, b R ,数列 { a n } 足 a1 a , a n2b , n N*,()1a nA .当 b 1, a1010B.当 b1, a1010 24C.当 b 2 , a1010D.当 b 4 , a1010二、填空:本大共7 小,多空每 6 分,空每 4 分,共 36 分。

2019年浙江卷数学高考试题(含答案)

2019年浙江卷数学高考试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U AB ð=A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x±y=0的双曲线的离心率是A .22B.1C .2D.23.若实数x,y满足约束条件340340x yx yx y-+≥⎧⎪--≤⎨⎪+≥⎩,则z=3x+2y的最大值是A.1-B.1C.10 D.124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.325.若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y=log a(x+12),(a>0且a≠0)的图像可能是7.设0<a<1,则随机变量X的分布列是则当a 在(0,1)内增大时 A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则A .a <-1,b <0B .a <-1,b >0C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =12,a 10>10 B .当b =14,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019年高考数学浙江卷(附答案)

2019年高考数学浙江卷(附答案)

2019年高考数学浙江卷(附答案)1.已知全集 $U=\{-1.0.1.2.3\}$,集合 $A=\{0.1.2\}$,$B=\{-1.0.1\}$,则 $(A\cup B)^c$ 等于A。

$\{-1\}$ B。

$\{0.1\}$ C。

$\{-1.2.3\}$ D。

$\{-1.0.1.3\}$2.渐近线方程为 $x\pm y=0$ 的双曲线的离心率是A。

$\sqrt{2}$ B。

$1$ C。

$2$ D。

$\frac{\sqrt{2}}{2}$3.若实数 $x$,$y$ 满足约束条件 $\begin{cases} 3x-y-4\leq 0 \\ x+y\geq 0 \end{cases}$,则 $z=3x+2y$ 的最大值是A。

$-1$ B。

$1$ C。

$10$ D。

$12$4.XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式 $V_{\text{柱体}}=Sh$,其中 $S$ 是柱体的底面积,$h$ 是柱体的高。

若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm$^3$)是A。

$158$ B。

$162$ C。

$182$ D。

$324$非选择题部分(共110分)一、填空题:本大题共8小题,每小题5分,共40分。

请将答案填写在答题纸上。

1.设 $f(x)=\frac{1}{x-1}$,则 $f^{-1}(x)=$______________。

2.已知函数 $f(x)=x^2-2ax+a^2+1$,$a$ 为常数,若$f(1)=0$,$f(x)$ 的最小值为 $2$,则 $a=$______________。

3.已知 $\triangle ABC$,$\angle A=90^\circ$,$AB=3$,$BC=4$,则 $\sin\angle ACB=$______________。

4.已知函数 $f(x)=\log_2(x+1)-\log_2(x-1)$,则$f\left(\frac{1}{3}\right)=$______________。

2019高考数学浙江卷(附参考答案和详解)

2019高考数学浙江卷(附参考答案和详解)

第(题图
/!答 案 1
解析如图该柱体是 一 个 五 棱 柱棱 柱 的 高 为 0底 面 可 以
看作由两个直角梯 形 组 合 而 成其 中 一 个 上 底 为 /下 底 为
0#高为 (#另 一 个 的 上 底 为 "#下 底 为
0#高 为 (!
则底面面 积 4'""+0@(+/"+0@('
2019年高考数学浙江卷
!!本试卷分选择题和非选 择 题 两 部 分满 分 !"# 分考 试 用 时 !$# 分 钟 !
参考公式
若事件 +0 互斥则 1+00'1+010!
若事件 +0 相互独立则 1+0'1+10!
若事件 + 在 一 次 试 验 中 发 生 的 概 率 是9则- 次 独 立 重 复
其中 , 表示柱体的底面积K 表示柱体的高! 锥体的体积公式J' ! +,K
其中 , 表示锥体的底面积K 表示锥体的高!
球 的 表 面 积 公 式 ,')A$
球的体积公式J' ) +A+ 其中A 表示球的半径!
第)题图
"!若 ')##()##则 &'0(0)'是 &'(0)'的
Байду номын сангаас-%!#
.%!$
)!祖 是 我 国 南 北 朝 时 代 的 伟 大 科 学 家#他 提 出 的 &幂 势 既
同#则积不容异'称 为 祖 原 理#利 用 该 原 理 可 以 得 到 柱 体

2019年高考数学浙江卷-答案

2019年高考数学浙江卷-答案

2019年普通高等学校招生全国统一考试(浙江省)数学答案解析选择题部分一、选择题 1.【答案】A【解析】={1,3}U C A -,则(){1}U C A B =- 【考点】交集、补集的定义 【考查能力】基础知识、基本计算 2.【答案】C【解析】根据渐近线方程为0x y ±=的双曲线,可得a b =,所以c =,则该双曲线的离心率为ce a==, 故选:C.【考点】双曲线的离心率 【考查能力】基本计算 3.【答案】C【解析】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【考点】线性规划 4.【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭.【考点】空间几何体的三视图及体积 【考查能力】基础知识、视图用图,基本计算 5.【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a +b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【考点】充分条件,必要条件 【考查能力】逻辑推理能力 6.【答案】D【解析】当01a <<时,函数x y a =过定点BH ⊂且单调递减,则函数1xy a =过定点BH ⊂且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点BH ⊂且单调递增,则函数1x y a =过定点BH ⊂且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【考点】函数图象的识别 【考查能力】逻辑推理 7.【答案】D【解析】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在BH ⊂内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.【考点】随机变量的分布列及期望、方差 【考查能力】运算求解 8.【答案】B【解析】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,则cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>,tan tan PD PDED BDγβ=>=,即y β>,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γγ'=) 由最大角定理βγγ<'=,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin ααβγ=⇒===B. 【考点】空间中直线与直线、直线与平面所成的角及二面角的大小 【考查能力】空间想象,分析问题,解决问题 9.【答案】C【解析】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a + ,即1a - 时,0y ' ,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即13==时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如图:∴01ba <-且32011(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-.故选:C .【考点】函数的零点 【考查能力】运算求解 10.【答案】A【解析】对于B ,令2104x λ-+=,得12λ=, 取112a =,∴2111022n a a == ,<, ∴当14b =时,1010a <,故B 错误; 对于C ,令220x λ--=,得2λ=或1λ=-, 取12a =,∴22a =,…,210n a =<, ∴当2b =-时,1010a <,故C 错误; 对于D ,令240x λ--=,得λ=,取1a =2a =…,10n a =, ∴当4b -=时,1010a <,故D 错误;对于A ,221122a a =+≥,223113(224a a =++≥, 4224319117(14216216a a a =+++≥+=>,10n n a a +->,{}n a 递增,当4n ≥时,1113222n n n n a a a a +=++=>1, ∴5445109323232a a a a a a ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴610432a a ⎛⎫ ⎪⎝⎭,∴1072964a >>10.故A 正确. 故选:A .【考点】数列的综合应用【考查能力】分析问题与解决问题,运算求解非选择题部分二、填空题 11.【解析】1|||1|z i ===+【考点】复数的运算及复数的模 【考查能力】化归与转化,运算求解 12.【答案】2-【解析】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===. 【考点】圆的标准方程及直线与圆的位置关系 【考查能力】推理认证,运算求解 13.【答案】5【解析】9)x +的通项为919(0,1,29)r r r r T C x r -+==可得常数项为0919T C ==,因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项 【考点】二项式定理的应用【考查能力】运算求解,分析问题,解决问题14.【解析】在ABD △中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,5AC ==,34sin ,cos 55BCABBAC BAC AC AC ∠==∠==,所以BD =cos cos()coscos sinsin 44ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【考点】正弦定理,两角和的正弦公式,诱导公式 【考查能力】划归与转化,运算求解15. 【解析】【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得32P ⎛- ⎝⎭,所以212PF k ==【考点】圆的标准方程,椭圆的几何性质,直线与椭圆的位置关系 【考查能力】逻辑推理,运算求解 16.【答案】43【解析】使得()222(2)()2[(2)({]2)223642}f t f t a t t t t a t t +-=⋅++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在1m ≥,113am -≤,由折线函数,如图只需11133a --≤,即2433a ≤,即a 的最大值是43【考点】函数的最值,绝对值不等式的解法 【考查能力】逻辑推理,划归与转化,运算求解 17.【答案】0【解析】正方形ABCD 的边长为1,可得AB AD AC += ,BD AD AB =-,0AB AD =⋅, ()()12345613562456AB BC CD DA AC BD AB AD λλλλλλλλλλλλλλ+++++=-+-+-++要使123456AB BC CD DA AC BD λλλλλλ+++++的最小,只需要561356240λλλλλλλλ-+-=-++=,此时只需要取1234561,1,1,1,1,1λλλλλλ==-====此时123456min 0AB BC CD DA AC BD λλλλλλ+++++=()()2212345613562456AB BC CD DA AC BD AB AD λλλλλλλλλλλλλλ+++++=-+-+-++()()2213562456λλλλλλλλ=-+-+-++ ()()2213562456λλλλλλλλ≤++-++++()()22565622λλλλ=+-+++()()()225656565684λλλλλλλλ=+-+++-++()225682λλ=+++12=+1220=+等号成立当且仅当1356,,λλλλ--均非负或者均非正,并且2456,,λλλλ-+均非负或者均非正。

2019高考浙江卷数学试卷及答案(word版)

2019高考浙江卷数学试卷及答案(word版)

2019年普通高等学校招生全国统一考试(浙江卷)参考公式:若事件A ,B 互斥,则()()()P AB P A P B 若事件A ,B 相互独立,则()()()P AB P A P B 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)kkn kn nP k p p k n 台体的体积公式11221()3VS S S S h其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13VSh其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R球的体积公式343VR其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集1,0,1,2,3U ,集合0,1,2A,1,0,1B,则U A B e =()A .1B .C .1,2,3D .1,0,1,32.渐近线方程为x ±y=0的双曲线的离心率是()A .22B .1C .2D .23.若实数x ,y 满足约束条件3403400x yx yxy,则z=3x+2y 的最大值是()A .1B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是()A.158 B.162C.182 D.325.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa,y=log a(x+12),(a>0且a≠0)的图像可能是()7.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P-AC-B 的平面角为γ,则()A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a bR ,函数32,0()11(1),032x xf x x a x ax x,若函数()yf x axb 恰有三个零点,则()A .a<-1,b<0B .a<-1,b>0C .a >-1,b >0D .a >-1,b<010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b N,则()A .当b=12,a 10>10 B .当b=14,a 10>10C .当b=-2,a 10>10D .当b=-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{1U =-,0,l ,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B =)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}2.渐进线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C .2D .23.若实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩,则32z x y =+的最大值是( )A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh =柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .3245.若0a >,0b >,则“4a b +”是“4ab ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数1x y a=,11()2a y og x =+,(0a >且1)a ≠的图象可能是()A .B .C .D .X 0 a1 P131313A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<9.设a ,b R ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++⎪⎩若函数()y f x ax b =--恰有3个零点,则( ) A .1a <-,0b <B .1a <-,0b >C .1a >-,0b <D .1a >-,0b >10.设a ,b R ∈,数列{}n a 满足1a a =,21n na ab +=+,*n N ∈,则( ) A .当12b =时,1010a > B .当14b =时,1010a >C .当2b =-时,1010a >D .当4b =-时,1010a >二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

11.已知复数11z i=+,其中i 是虚数单位,则||z = .12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切与点(2,1)A --,则m = ,r = .13.在二项式9(2)x 的展开式中,常数项是 ,系数为有理数的项的个数是 . 14.在ABC ∆中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD = ,cos ABD ∠= .15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 .16.已知a R ∈,函数3()f x ax x =-.若存在t R ∈,使得2|(2)()|3f t f t +-,则实数a 的最大值是 .17.已知正方形ABCD 的边长为1.当每个(1i i λ=,2,3,4,5,6)取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是 ,最大值是 .三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

18.(14分)设函数()sin f x x =,x R ∈.(1)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.19.(15分)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.20.(15分)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)记2nn na cb =*n N ∈,证明:122n c c c n ++⋯+<,*n N ∈. 21.如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ABC ∆的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记AFG ∆,CQG ∆的面积分别为1S ,2S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12SS 的最小值及此时点G 点坐标.22.(15分)已知实数0a ≠,设函数()1f x alnx x =+0x >.(Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()2x f x a ,求a 的取值范围.注意: 2.71828e =⋯⋯为自然对数的底数.2019年浙江省高考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{1U =-,0,l ,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B =)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}【思路分析】由全集U 以及A 求A 的补集,然后根据交集定义得结果.【解析】:{1UA =-,3},()U A B ∴{1=-,3}{1-⋂,0,}l {1}=-故选:A .【归纳与总结】本题主要考查集合的基本运算,比较基础. 2.渐进线方程为0x y ±=的双曲线的离心率是( ) AB .1 CD .2【思路分析】由渐近线方程,转化求解双曲线的离心率即可.【解析】:根据渐进线方程为0x y ±=的双曲线,可得a b =,所以c =则该双曲线的离心率为ce a=C .【归纳与总结】本题主要考查双曲线的简单性质的应用,属于基础题. 3.若实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩,则32z x y =+的最大值是( )A .1-B .1C .10D .12【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解析】:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩作出可行域如图,联立340340x y x y -+=⎧⎨--=⎩,解得(2,2)A ,化目标函数32z x y =+为3122y x z =--,由图可知,当直线3122y x z =--过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10.故选:C .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 4.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh 柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .324【思路分析】由三视图还原原几何体,可知该几何体为直五棱柱,由两个梯形面积求得底面积,代入体积公式得答案.【解析】:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即()()114632632722ABCDE S =+⨯++⨯=五边形,高为6,则该柱体的体积是276162V =⨯=. 故选:B .【归纳与总结】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题. 5.若0a >,0b >,则“4a b +”是“4ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【思路分析】充分条件和必要条件的定义结合均值不等式、特值法可得结果【解析】:0a >,0b >,42a b ab ∴+,2ab ∴,4ab ∴,即44a b ab +⇒,若4a =,14b =,则14ab =,但1444a b +=+>,即4ab 推不出4a b +, 4a b ∴+是4ab 的充分不必要条件故选:A .【归纳与总结】本题主要考查充分条件和必要条件的判断,均值不等式,考查了推理能力与计算能力.6.在同一直角坐标系中,函数1xy a=,11()2a y og x =+,(0a >且1)a ≠的图象可能是( )A .B .C .D .【思路分析】对a 进行讨论,结合指数,对数的性质即可判断;【解析】:由函数1x y a=,11()2a y og x =+,当1a >时,可得1x y a =是递减函数,图象恒过(0,1)点,函数11()2a y og x =+,是递增函数,图象恒过1(2,0);当10a >>时,可得1x y a=是递增函数,图象恒过(0,1)点,函数11()2a y og x =+,是递减函数,图象恒过1(2,0);∴满足要求的图象为:D 故选:D .【归纳与总结】本题考查了指数函数,对数函数的图象和性质,属于基础题. X 0 a1 P131313A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【思路分析】方差公式结合二次函数的单调性可得结果【解析】:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<,()D X ∴先减小后增大 故选:D .【归纳与总结】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,是中档题.8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<【思路分析】本题以三棱锥为载体,综合考查异面直线所成角、直线和平面所成角和二倍角的概念和计算,解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小,充分运用图象,则可事半功倍,【解析】:方法一、如图G 为AC 的中点,V 在底面的射影为O ,则P 在底面上的射影D 在 线段AO 上,作DE AC ⊥于E ,易得//PE VG ,过P 作//PF AC 于F , 过D 作//DH AC ,交BG 于H ,则BPF α=∠,PBD β=∠,PED γ=∠,则cos cos PF EG DH BDPB PB PB PB αβ===<=,可得βα<;tan tan PD PDED BDγβ=>=,可得βγ<,方法二、由最小值定理可得βα<,记V AC B --的平面角为γ'(显然)γγ'=, 由最大角定理可得βγγ'<=;方法三、(特殊图形法)设三棱锥V ABC -为棱长为2的正四面体,P 为VA 的中点, 易得132cos 63α==,可得33sin 6α=,623sin 33β==,6223sin 332γ==,故选:B .【归纳与总结】本题考查空间三种角的求法,常规解法下易出现的错误的有:不能正确作出各种角,未能想到利用“特殊位置法”,寻求简单解法.9.设a ,b R ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++⎪⎩若函数()y f x ax b =--恰有3个零点,则( ) A .1a <-,0b <B .1a <-,0b >C .1a >-,0b <D .1a >-,0b >【思路分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【解析】:当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a <-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+.故选:C .【归纳与总结】本题考查了函数与方程的综合运用,属难题.10.设a ,b R ∈,数列{}n a 满足1a a =,21n na ab +=+,*n N ∈,则( ) A .当12b =时,1010a > B .当14b =时,1010a >C .当2b =-时,1010a >D .当4b =-时,1010a >【思路分析】对于B ,令2104x λ-+=,得12λ=,取112a =,得到当14b =时,1010a <;对于C ,令220x λ--=,得2λ=或1λ=-,取12a =,得到当2b =-时,1010a <;对于D ,令240x λ--=,得117λ±=,取1117a +=,得到当4b =-时,1010a <;对于A ,221122a a =+,223113()224a a =++,4224319117()14216216a a a =++++=>,当4n 时,11132122n n n n a a a a +=+>+=,由此推导出61043()2a a >,从而107291064a >>. 【解析】:对于B ,令2104x λ-+=,得12λ=,取112a =,∴211,,1022n a a =⋯=<, ∴当14b =时,1010a <,故B 错误;对于C ,令220x λ--=,得2λ=或1λ=-,取12a =,22a ∴=,⋯,210n a =<,∴当2b =-时,1010a <,故C 错误;对于D ,令240x λ--=,得λ=取1a =∴2a =⋯,10n a =<,∴当4b =-时,1010a <,故D 错误;对于A ,221122a a =+,223113()224a a =++,4224319117()14216216a a a =++++=>,10n n a a +->,{}n a 递增,当4n 时,11132122n n n n a a a a +=+>+=,∴5445109323232a a aaa a ⎧>⎪⎪⎪>⎪⎪⎪⎨⎪⎪⎪⎪⎪>⎪⎩,∴61043()2a a >,107291064a ∴>>.故A 正确.故选:A .【归纳与总结】本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,是中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

相关文档
最新文档