数字频率计的基本原理
数字频率计的测量原理

量化误差示意图
计数闸门开启时间不刚好 是被测信号周期的整数倍造 成的量化误差。在时间 T 内 脉冲个数为7.5,测出数可能 为6。
返回本章首页
计数开始不刚好是第一个脉 冲到达时刻,造成的量化误差。 在时间 T 内,被测脉冲个数为 7,测出数可能为5。
三、计数器的测量误差 1. 秒信号时间不准造成的误差:
由于电子数字频率计是把规定的一秒钟内所计的信 号个数作为频率,如果秒信号本身不准确,必然造成 计数误差。
2.触发误差:
由于干扰造成计数器的误触发所产生的误差。
3.量化误差:
计数闸门开启时间不刚好是被测信号周期的整数倍, 而且脉冲到达时刻不刚好是闸门开启时刻,因此在相 同的开启时间内,可能会有正负一个数的误差。
一硬件计数频率计硬件计数频率计其结构如下图所示被测信号通过整形转换为与被测信号频率相同的脉冲然后对脉冲进行计数也就是把频率测量转换为脉冲个数的测量
数字频率计的测量原理
一、硬件计数频率计
硬件计数频率计其结构如下图所示,被测信号通过 整形,转换为与被测信号频率相同的脉冲,然后对脉冲 进行计数,也就是把频率测量转换为脉冲个数的测量。 计数器可选用专用的集成电路,外围再配上显示器、放 大整形以及电源电路即可组成频率计。
二、软件计数频率计 1.软件计数频率计的结构
软件计数是指用单片机软件进行计数而构成的频率计, 它由单片机,以及外围配置的显示器件、放大整形、电源 等电路组成。
Байду номын сангаас
2.软件计数频率计的工作原理 整形放大:将任意波形的被测信号,转换为 前沿陡峭的脉冲,以利计数。 计数:由单片机内部的计数单元完成,每当 被测信号从低到高变化时,将计数器加 1,并 由内部时钟计时,每一秒所计的变化次数,就 等于被测信号的频率。 数码转换与显示:读出的频率值由软件将它 转换为七段码,送LED数码管显示。
数字频率计

数字频率计数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号的频率及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。
一、设计目的掌握数字频率计的设计二、设计内容技术要求:测量频率范围 0-9999 Hz和1Hz-100 KHz。
测量信号方波峰--峰值为3-5V(与TTL兼容)。
闸门时间 10ms,0.1s,1s和10s,脉冲波峰—峰值为3-5V。
三、数字频率计的基本原理数字频率计的原理框图如图所示:它由4个基本单元组成:1.带衰减器的放大整形系统包括从被测信号到衰减放大整形系统此部分。
其中衰减放大整形系统包括衰减器、跟随器、放大器、施密特触发器。
它将正弦波输入信号Vx整形成同频率方波Vo,测试信号通过衰减开关选择输入衰减倍数,衰减器有分压器构成幅值过大的被测信号经过分压器的分压送入后级放大器,以避免波形失真。
由运算放大器构成的射极跟随器起阻抗变换作用,使输入阻抗提高。
系统的整形电路由施密特触发器组成,整形后的方波送到闸门以便计数。
2.石英晶体振荡器及多级分频系统石英晶体振荡器如图振荡频率为4MHz,经过÷4(用74LS47芯片),÷10(用74LS90芯片)等分频器的分频作用,使输出频率的周期范围1us~10s。
根据被测信号的频率大小,通过闸门时基选择开关选择时基。
时基信号经过门控电路得到方波,其正脉宽时间T控制闸门的开放时间。
3.闸门电路闸门电路由与门组成,其开通与否受门控信号的控制,当门控信号为高电平“1”时,闸门开启,为“0”时,闸门关闭。
显然,只有在闸门开启时间内,其产生的脉冲信号送到计数器,计数器开始计数,直到门控信号结束,闸门关闭4.可控制的计数锁存、译码显示系统本系统由计数器、锁存器、译码器、显示器、单稳态触发器组成。
其中计数器按十进制计数。
如果在系统中不接锁存器,则显示器上的数字就会随计数器的状态不停地变化,只有在计数器停止计数时,显示器上的显示数字才能稳定,所以,在计数器后边必须接锁存器。
频率计的原理及应用

频率计的原理及应用1. 频率计的基本原理频率计是一种用于测量信号频率的仪器。
它的工作原理基于信号周期的计数。
频率计可以分为模拟频率计和数字频率计两种类型。
1.1 模拟频率计模拟频率计使用模拟电路来测量信号的频率。
它通过将输入信号转换为频率相关的模拟电压或电流,并使用自动刻度电路对信号进行测量。
模拟频率计的精度受限于模拟电路的性能和环境因素。
1.2 数字频率计数字频率计使用数字技术来测量信号的频率。
它将输入信号转换为数字形式,并使用计数器和计时器对信号进行计数和测量。
数字频率计具有更高的精度和稳定性,并能够提供更多的功能和数据处理能力。
2. 频率计的应用领域频率计在各个领域中具有广泛的应用,以下列举了几个常见的应用领域:2.1 通信领域频率计在无线通信中起着重要的作用。
它可以用来测量无线电信号的频率,并帮助调节和优化通信系统的性能。
频率计可以用于调整无线电设备的发射频率,以保证信号的稳定性和传输质量。
2.2 电子领域在电子设备的设计和开发过程中,频率计是一个必备的工具。
它能够帮助工程师测量和分析电路中信号的频率,并进行精确的频率控制和调试。
频率计在频率合成器、振荡器、滤波器等电路的设计和测试中发挥着重要作用。
2.3 运动测量领域在运动测量领域,频率计用于测量旋转物体的转速或周期。
例如,频率计可以用于测量发动机的转速、风扇的转速、电机的转速等。
频率计通过测量转速的频率来计算物体的运动速度和加速度,为运动控制和监测提供准确的数据。
2.4 实验室研究领域频率计在科学实验室中也被广泛应用。
它可以用于测量和研究不同物理量的频率变化,如光的频率、声音的频率、电磁波的频率等。
频率计在物理、化学、生物等科学领域的研究中起到了关键的作用,提供了实验数据的准确性和可靠性。
3. 使用频率计的注意事项在使用频率计时,需要注意以下几点:3.1 符合工作范围使用频率计时,需要确保所测量信号的频率在频率计的工作范围内。
如果信号频率超出了频率计的测量范围,可能会导致测量结果不准确或无法测量。
频率计的基本原理及应用

频率计的基本原理及应用频率计是一种可以测量并显示信号频率的仪器,广泛应用于各种行业中。
它的基本原理是通过对信号进行计数和计时并在计算机内进行处理,从而得出信号的频率。
频率计的工作原理频率计的工作原理分为两个方面:一个是信号的计数,另一个是对计时的处理。
在信号计数部分,频率计将输入信号转换为方波,然后将方波输入到一个计数器中,计数器对方波的每一周期进行计数,从而得到信号的频率。
在计时的处理部分,频率计将每个周期的时间戳存储在寄存器中,并按照一定的算法对时间戳进行处理,从而得出信号的频率。
频率计的精度和稳定性与计时部分的精度和稳定性有关。
一般情况下,计时部分采用定时器或计数器,计时精度达到微秒级别。
频率计的基本应用频率计广泛用于各种行业中,在电子、通信、机械、化工等领域都有重要的应用。
下面分别介绍一些主要的应用。
在电子领域中的应用频率计在电子领域中主要应用于信号测试、信号分析和频率合成中。
例如,测试电子设备的工作频率、分析信号的频谱分布、合成一定频率的信号等。
在通信领域中的应用频率计在通信领域中主要应用于信号收发和频率的稳定性测试。
例如,测试无线电设备的工作频率、测量电话信号的频率、测试卫星信号的频率等。
在机械领域中的应用频率计在机械领域中主要用于转速的测量和控制。
例如,测试轴承的转速、测试风扇的转速、测试电机的转速等。
在化工领域中的应用频率计在化工领域中主要用于流量的测量和控制。
例如,测试流量计的频率输出、控制泵的流量、测试管道内网站的流量等。
频率计的优缺点频率计的优点很明显,首先,它的精度高、稳定性好,可以满足各种场合的测量需求;其次,频率计采用数字技术,易于自动化和集成,提高了工作的效率和可靠性。
然而,频率计的缺点也十分明显,它的测量范围和最大测量频率有限,一般在数百兆赫兹以内,无法测量高频和微弱信号;此外,频率计受到环境温度和电源噪声等因素的影响,影响其稳定性和准确性。
结语总体来说,频率计是一种非常重要的测量仪器,在各种行业中都有重要的应用。
1数字频率计原理

1数字频率计原理数字频率计的基本原理频率计是对信号的频率进行测量并显示测量结果。
对频率的测量有多种方式,采用数字计数的方法进行测量,数字计数测量精度较高,且性能比较稳定,容易实现。
一、测量原理频率为单位时间内信号的周期数。
对脉冲信号而言,其频率为一秒钟内的脉冲个数;计数器在一秒钟内对脉冲信号进行计数,计数的结果就是该信号的频率。
只要计数结果以十进制方式显示出来,就是最简单的频率计。
如图2.1.1所示,被测脉冲信号为X,在T1时刻出现一个脉冲宽度为一秒的闸门脉冲信号P,用闸门脉冲P取出一秒时间内的输入脉冲信号X 形成计数脉冲Y,计数器对计数脉冲信号Y进行计数;计数的结果(频率值)在T2时刻被锁存信号S控制,锁存到寄存器,并通过译码器、显示器把并率显示出来。
在T3时刻计数器被清除信号R清零,准备下一次的计数,一次测量结束。
1图2.1.1 频率器的测量原理显示数值在T2时刻更换,S脉冲信号的周期为显示时间,其大小反映显示值的变化快慢。
显示时间Tx为:Tx=T3-T2+(0~2)(秒)可见,改变T3-T2的值可调节显示时间,通常T3是通过T2的延时而得,通过调节延时时间来调节显示时间。
二、方案框图频率计的框图如图2.1.2,由六部分组成,以计数器为核心,各部分的功能如下:2图2.1.2 频率计总体框图1、计数器:在规定的时间内完成对被测脉冲信号的计数。
由输入电路提供计数脉冲输入,对脉冲进行计数(在规定的测量频率范围内计数无益出)。
计数结果一般为十进制,并将计数结果输出送往寄存器,再由控制电路提供的清除信号R清零。
等待下一次计数的开始。
该部分主要考虑计数器的工作频率和计数容量问题。
2、锁存器:暂存每次测量的计数值。
为显示电路提供显示数据。
锁存器由控制电路提供的琐存信号S控制更换数值。
以正确地显示每一次的测量结果。
3、译码显示电路:对锁存器的输出数据译码,变为七段数码显示码,并驱动数码显示器显示出十进制的测量结果。
简易数字频率计的设计说明

《电子技术》课程设计报告题目简易数字频率计的设计学院(部)电子与控制工程学院专业电气工程及其自动化班级3204080123学生楠学号**********06月12日至06月22日共周指导教师(签字)前言在电子测量技术中,频率是一个最基本的参量,对适应晶体振荡器、各种信号发生器、倍频和分频电路的输出信号的频率测量,广播、电视、电讯、微电子技术等现代科学领域。
因此,数字频率计是一种应用很广泛的仪器。
那么频率应该如何测量呢?根据频率的的定义我们可以知道,在一个标准一秒的时间被测信号的脉冲个数就是它的频率,我们只要测出它的大小,就可以测出信号的频率了。
数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差。
而在设计中,我们常用学习软件multisim 来仿真设计,通过严格的测试后,能够较准确地测量方波、正弦波等各种常用的信号的频率。
在此次设计中我们经过网上搜索,查阅图书阅览室的有关书籍等途径,搜集了大量的资料。
经过我们对资料的分析整理,以及细心地设计,最终成功设计出了一台简易数字频率计,在我们付出了汗水之后总算是尝到了成功的甘甜。
我们的设计可能不是很完美,但是我们尽力去做了,如果有什么意见或建议,希望能多提出一些,我们会努力做到最好的。
目录摘要及设计要求 1 第一章系统概述21.1数字频率计的基本原理21.2数字频率计设计的系统框图1.3系统各部分功能论述1.3.1电源波形整形电路1.3.2分频器1.3.3待测信号放大、波形整形电路1.3.4控制门1.3.5计数器1.3.6超量程报警器1.3.7锁存器1.3.8显示译码器与数码管第二章单元电路的设计与分析第三章系统综述,总体电路图3.1 数字频率计设计原理图3.2电路的检测方法与步骤第四章总结参考文献元件明细表附图鸣收获与体会,存在的问题简易数字频率计的设计摘要数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器。
数字频率计测频率与测周期的基本原理

了解数字频率计测频率与测周期的基本原理;熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。
[重点与难点]重点:数字频率计的组成框图和波形图。
难点:时基电路和逻辑控制电路。
[理论内容]一、数字频率计测频率的基本原理所谓频率,就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N/T (1)二、数字频率计的主要技术指标1、频率准确度2、频率测量范围在输入电压符合规定要求值时,能够正常进行测量的频率区间称为频率测量范围。
频率测量范围主要由放大整形电路的频率响应决定。
3、数字显示位数频率计的数字显示位数决定了频率计的分辨率。
位数越多,分辨率越高。
4、测量时间频率计完成一次测量所需要的时间,包括准备、计数、锁存和复位时间。
三、数字频率计的电路设计与调试1.基本电路设计数字频率计的基本框图如图2所示,各部分作用如下。
①放大整形电路放大整形电路由晶体管3DG100与74LS00等组成。
其中3DGl00组成放大器将输入频率为的周期信号如正弦波、三角波等进行放大。
与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。
实验五数字频率计实验目的1. 了解数字频率计测量频率与测量周期的基本原理;2. 熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。
实验任务用中小规模集成电路设计一台简易的数字频率计,频率显示为四位,显示量程为四挡, 用数码管显示。
1HZ—9.999KHZ ,闸门时间为1S ;10HZ—99.99KHZ, 闸门时间为0.1S ;100HZ—999.9KHZ, 闸门时间为10MS ;1KHZ—9999KHZ, 闸门时间为1MS ;实验五数字频率计实验原理1. 方案设计原理框图见图1:原理简述所谓频率,就是周期性信号在单位时间(1s) 内变化的次数.若在一定时间间隔T 内测得这个周期性信号的重复变化次数为N ,则其频率可表示为f=N/T 原理框图中,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
数字频率计的基本原理

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载数字频率计的基本原理地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容数字频率计的基本原理设计并制作出一种数字频率计,其技术指标如下:1.频率测量范围: 10 ~ 9999Hz 。
2.输入信号波形:任意周期信号。
输入电压幅度 >300mV 。
3.电源: 220V 、 50Hz4. 系统框图从数字频率计的基本原理出发,根据设计要求,得到如图1所示的电路框图。
图1 数字频率计框图下面介绍框图中各部分的功能及实现方法(1)电源与整流稳压电路框图中的电源采用50Hz的交流市电。
市电被降压、整流、稳压后为整个系统提供直流电源。
系统对电源的要求不高,可以采用串联式稳压电源电路来实现。
(2)全波整流与波形整形电路本频率计采用市电频率作为标准频率,以获得稳定的基准时间。
按国家标准,市电的频率漂移不能超过0.5Hz,即在1%的范围内。
用它作普通频率计的基准信号完全能满足系统的要求。
全波整流电路首先对50Hz交流市电进行全波整流,得到如图2(a)所示100Hz的全波整流波形。
波形整形电路对100Hz信号进行整形,使之成为如图2(b)所示100Hz的矩形波。
波形整形可以采用过零触发电路将全波整流波形变为矩形波,也可采用施密特触发器进行整形。
图2 全波整流与波形整形电路的输出波形(3)分频器分频器的作用是为了获得1S的标准时间。
电路首先对图2所示的100Hz信号进行100分频得到如图3(a)所示周期为1S的脉冲信号。
然后再进行二分频得到如图3(b)所示占空比为50%脉冲宽度为1S的方波信号,由此获得测量频率的基准时间。
利用此信号去打开与关闭控制门,可以获得在1S时间内通过控制门的被测脉冲的数目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字频率计的基本原理设计并制作出一种数字频率计,其技术指标如下: 1. 频率测量范围:10 〜9999HZ 。
2. 输入信号波形:任意周期信号。
输入电压幅度>300mV 。
3. 电源:220V 、50Hz4. 系统框图从数字频率计的基本原理出发,根据设计要求,得到如图1所示的电路框图。
下面介绍框图中各部分的功能及实现方法 (1) 电源与整流稳压电路框图中的电源采用 50Hz 的交流市电。
市电被降压、整流、稳压后为整个系统提供直流 电源。
系统对电源的要求不高,可以采用串联式稳压电源电路来实现。
(2) 全波整流与波形整形电路 本频率计采用市电频率作为标准频率, 以获得稳定的基准时间。
按国家标准,市电的频率漂移不能超过0∙5Hz ,即在1 %的范围内。
用它作普通频率计的基准信号完全能满足系统 的要求。
全波整流电路首先对50Hz 交流市电进行全波整流,得到如图 2 (a)所示100Hz 的 全波整流波形。
波形整形电路对100Hz 信号进行整形,使之成为如图 2(b) 所示100Hz 的矩形波。
波形整形可以采用过零触发电路将全波整流波形变为矩形波, 也可采用施密特触发器进行整形。
图1数字频率计框图彼测信号图2全波整流与波形整形电路的输出波形(3)分频器分频器的作用是为了获得 1S的标准时间。
电路首先对图2所示的IOOHz信号进行100分频得到如图3( a)所示周期为1S的脉冲信号。
然后再进行二分频得到如图3( b)所示占空比为50%脉冲宽度为1S的方波信号,由此获得测量频率的基准时间。
利用此信号去打开与关闭控制门,可以获得在1S时间内通过控制门的被测脉冲的数目。
图3 分频器的输出波形分频器可以采用教材中介绍过的方法,由计数器通过计数获得。
二分频可以采用触发器来实现。
(4)信号放大、波形整形电路为了能测量不同电平值与波形的周期信号的频率,必须对被测信号进行放大与整形处理,使之成为能被计数器有效识别的脉冲信号。
信号放大与波形整形电路的作用即在于此。
信号放大可以采用一般的运算放大电路,波形整形可以采用施密特触发器。
(5)控制门控制门用于控制输入脉冲是否送计数器计数。
它的一个输入端接标准秒信号,一个输入端接被测脉冲。
控制门可以用与门或或门来实现。
当采用与门时,秒信号为正时进行计数,当采用或门时,秒信号为负时进行计数。
(6)计数器计数器的作用是对输入脉冲计数。
根据设计要求,最高测量频率为9999Hz,应采用4位十进制计数器。
可以选用现成的10进制集成计数器。
(7)锁存器在确定的时间(1S)内计数器的计数结果 (被测信号频率)必须经锁定后才能获得稳定的显示值。
锁存器的作用是通过触发脉冲控制,将测得的数据寄存起来,送显示译码器。
锁存器可以采用一般的8位并行输入寄存器,为使数据稳定,最好采用边沿触发方式的器件。
(8)显示译码器与数码管显示译码器的作用是把用 BCD码表示的10进制数转换成能驱动数码管正常显示的段信号,以获得数字显示。
选用显示译码器时其输出方式必须与数码管匹配。
5. 实际参考电路根据系统框图,设计出的电路如图4所示。
2图4数字频率计电路图图中,稳压电源采用 7805来实现,电路简单可靠,电源的稳定度与波纹系数均能达到 要求。
对100Hz 全波整流输出信号的分频采用7位二进制计数器 74HC4024组成100进制计数器来实现。
计数脉冲下降沿有效。
在74HC4024的QZ Q6 Q3端通过与门加入反馈清零信号, 当计数器输出为二进制数 1100100 (十进制数为100)时,计数器异步清零。
实现 100进制计数。
为了获得稳定的分频输出, 清零信号与输入脉冲“与”后再清零, 使分频输出脉冲在计数脉冲为低电平时保持一段时间(10mS 为高电平。
电路中采用双JK 触发器74HC109中的一个触发器组成触发器,它将分频输出脉冲整A AB EC CD DE ErF K GLEQQ⅛D g CDT ttKVCCWB>CLK4^13>CTL K Or X 4J1812T TIeIJ T 41312ITIC1413 πIT ICα)m □cH □tm 6盘建EH g:KTlBEl 归1M4 >11]D3C T 但匚121ICIJia&UJA fc1213 1*IeIJAECDEF & A^CDLIKLEg □Q □Got □cd B疋LRENUSBMHC1】丄1#AECDE11 10TZL2形为脉宽为1S、周期为2S的方波。
从触发器 Q端输出的信号加至控制门,确保计数器只在1S的时间内计数。
从触发器Q端输出的信号作为数据寄存器的锁存信号。
被测信号通过741组成的运算放大器放大 20倍后送施密特触发器整形,得到能被计数器有效识别的矩形波输出,通过由74HC11组成的控制门送计数器计数。
为了防止输入信号太强损坏集成运放,可以在运放的输入端并接两个保护二极管。
频率计数器由两块双十进制计数器74HC4518组成,最大计数值为 9999HZ。
由于计数器受控制门控制,每次计数只在JK触发器Q端为高电平时进行。
当JK触发器Q端跳变至低电平时,Q 端的由低电平向高电平跳变,此时,8D锁存器74HC374(上升沿有效)将计数器的输出数据锁存起来送显示译码器。
计数结果被锁存以后,即可对计数器清零。
由于74HC4518为异步高电平清零,所以将JK触发器的Q同100Hz脉冲信号“与”后的输出信号作为计数器的清零脉冲。
由此保证清零是在数据被有效锁存一段时间(IOmS以后再进行。
显示译码器采用与共阴数码管匹配的CMoSfe路74HC4511, 4个数码管采用共阴方式,以显示4位频率数字,满足测量最高频率为9999HZ的要求。
2 •方法与步骤1)器件检测用数字集成电路检测仪对所要用的IC进行检测,以确定每个器件完好。
如有兴趣,也可对LED数码管进行检测,检测方法由自己确定。
2)电路连接在自制电路板上将IC插座及各种器件焊接好;装配时,先焊接IC等小器件,最后固定并焊接变压器等大器件。
电路连接完毕后,先不插IC。
3)电源测试将与变压器连接的电源插头插入220V电源,用万用表检测稳压电源的输出电压。
输出电压的正常值应为+ 5V。
如果输出电压不对,应仔细检查相关电路,消除故障。
稳压电源输出正常后,接着用示波器检测产生基准时间的全波整流电路输出波形。
正常情况应观测到如图2(a)所示波形。
4)基准时间检测关闭电源后,插上全部 IC。
依次用示波器检测由 U1(74HC4024)与U3A组成的基准时间计数器与由U2A组成的触发器的输出波形,并与图3所示波形对照。
如无输出波形或波形形状不对,则应对 U1、U3 U2各引脚的电平或信号波形进行检测,消除故障。
5)输入检测信号从被测信号输入端输入幅值在 1V左右频率为1KHz左右的正弦信号,如果电路正常,数码管可以显示被测信号的频率。
如果数码管没有显示,或显示值明显偏离输入信号频率,则作进一步检测。
6)输入放大与整形电路检测用示波器观测整形电路 U1A(74HC14)的输出波形,正常情况下,可以观测到与输入频率一致、信号幅值为 5V左右的矩形波。
如观测不到输出波形,或观测到的波形形状与幅值不对,则应检测这一部分电路,消除故障。
如该部分电路正常,或消除故障后频率计仍不能正常工作,则检测控制门。
7)控制门检测检测控制门U3C(74HC11输出信号波形,正常时,每间隔1S时间,可以在荧屏上观测到被测信号的矩形波。
如观测不到波形,则应检测控制门的两个输入端的信号是否正常,并通过进一步的检测找到故障电路,消除故障。
如电路正常,或消除故障后频率计仍不能正常工作,则检测计数器电路。
8) 计数器电路的检测依次检测4个计数器74HC4518时钟端的输入波形,正常时,相邻计数器时钟端的波形频率依次相差 10 倍。
如频率关系不一致或波形不正常,则应对计数器和反馈门的各引脚电平与波形进行检测。
正常情况各电平值或波形应与电路中给出的状态一致。
通过检测与分析找出原因,消除故障。
如电路正常,或消除故障后频率计仍不能正常工作,则检测锁存器电路。
9) 锁存电路的检测依次检测74HC374锁存器各引脚的电平与波形。
正常情况各电平值应与电路中给出的状态一致。
其中,第11脚的电平每隔1S钟跳变一次。
如不正常,则应检查电路,消除故障。
如电路正常,或消除故障后频率计仍不能正常工作,则检测锁存器电路。
10) 显示译码电路与数码管显示电路的检测检测显示译码器74HC4511各控制端与电源端引脚的电平,同时检测数码管各段对应引脚的电平及公共端的电平。
通过检测与分析找出故障。