《绝对值_》优秀教案

合集下载

《绝对值》教案

《绝对值》教案

《绝对值》教案一、教学内容本节课的教学内容来自于人教版数学八年级上册第六章第一节《绝对值》。

绝对值是实数的一个基本概念,表示数与零点的距离。

具体内容如下:1. 绝对值的概念:一个数的绝对值是它与零点的距离,用符号“|x|”表示,规定|x|>=0。

2. 绝对值的性质:(1) |x|是非负数。

(2) |x|等于x或x,即|x|=x (x>=0),|x|=x (x<0)。

(3) 几个数的绝对值相加,等于这几个数的绝对值相加,即||a|+|b||<=|a|+|b|。

3. 绝对值的应用:(1) 求两个数的距离。

(2) 解绝对值方程。

二、教学目标1. 学生能够理解绝对值的概念,掌握绝对值的性质。

2. 学生能够运用绝对值解决实际问题,如求距离、解绝对值方程等。

3. 学生能够运用绝对值性质进行证明和推理。

三、教学难点与重点重点:绝对值的概念和性质。

难点:绝对值的应用,如解绝对值方程。

四、教具与学具准备教具:黑板、粉笔、直尺。

学具:笔记本、笔、练习本。

五、教学过程1. 实践情景引入:讲解一个数轴,数轴上有点A和点B,求点A 和点B的距离。

2. 讲解绝对值的概念:绝对值表示数与零点的距离,用符号“|x|”表示,规定|x|>=0。

3. 讲解绝对值的性质:(1) |x|是非负数。

(2) |x|等于x或x,即|x|=x (x>=0),|x|=x (x<0)。

(3) 几个数的绝对值相加,等于这几个数的绝对值相加,即||a|+|b||<=|a|+|b|。

4. 例题讲解:求下列各数的绝对值。

(1) 2的绝对值。

(2) 3的绝对值。

(3) 5的绝对值。

5. 随堂练习:求下列各数的绝对值。

(1) 3的绝对值。

(2) 4的绝对值。

(3) 2的绝对值。

6. 讲解绝对值的应用:(1) 求两个数的距离。

(2) 解绝对值方程。

7. 例题讲解:解下列绝对值方程。

(1) |x2|=3。

(2) |x+1|=4。

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。

通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:一、创设情境,复习导入。

今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。

(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。

在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。

这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。

你还能举出其他类似的例子吗?。

小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。

绝对值教案(优秀6篇)

绝对值教案(优秀6篇)

绝对值教案(优秀6篇)七年级数学《绝对值》教案篇一教学目标1、了解绝对值的概念,会求有理数的绝对值;2、会利用绝对值比较两个负数的大小;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。

教学建议一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。

关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

教材上绝对值的定义是从几何角度给出的。

,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。

这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。

此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

二、知识结构绝对值的定义;绝对值的表示方法;用绝对值比较有理数的大小。

三、教法建议用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。

可以把利用数轴给出的定义作为绝对值的一种直观解释。

此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。

“非负数”的概念视学生的情况,逐步渗透,逐步提出。

四、有关绝对值的一些内容1.绝对值的代数定义一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

2.绝对值的几何定义在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

3.绝对值的主要性质(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。

(4)两个相反数的绝对值相等。

五、运用绝对值比较有理数的大小1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

2022年 《绝对值1》名师优秀教案

2022年 《绝对值1》名师优秀教案

第一课时〔蒋庆东〕绝对值一、教学目标〔一〕学习目标1理解绝对值的概念及通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;2会求一个数的绝对值;知道一个数的绝对值,会求这个数;3通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.〔二〕学习重点理解绝对值的概念,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法〔三〕学习难点会求一个数的绝对值,知道一个数的绝对值,会求这个数二、教学设计〔一〕课前设计1预习任务(1)一般地,数轴上表示数的点与原点的距离叫做数的绝对值,记作(2)一个正数的绝值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0(3)一个数的绝对值一定是一个非负数(4)2预习自测(1)-2021的绝对值是〔〕A.-2021 C D【知识点】绝对值【解题过程】解:-2021的绝对值是2021【思路点拨】根据负数的绝对值等于它的相反数即可求解【答案】B(2)的相反数是【知识点】绝对值【解题过程】解:的相反数是-2【思路点拨】先化简为2,即求2的相反数【答案】-2(3)以下说法中正确的选项是A.符号相反的数互为相反数;B.一个数的绝对值越大,表示它的点在数轴上越靠右;C.一个数的绝对值越大,表示它的点在数轴上离原点越远;D.当时,【知识点】绝对值【解题过程】解:符号相反的数互为相反数错误,如-1与2,故A说法不正确;一个数的绝对值越大,表示它的点在数轴上离原点越远,故B错误,C正确;当时,,故D错误,故应选C【思路点拨】根据绝对值的意义和性质即可求解【答案】C(4)以下等式不成立的是A B C D【知识点】绝对值【解题过程】解:不成立的是B,因为【思路点拨】根据绝对值的意义和性质即可求解【答案】B〔二〕课堂设计1知识回忆(1)数轴的三要素是什么?(2)什么叫互为相反数?它的几何意义是什么?2问题探究探究一绝对值的定义及其几何意义●活动 :绝对值的概念及其几何意义两辆汽车从同一处O出发,分别向东、西方向行驶10m,到达A、B两处。

七年级数学《绝对值》教案

七年级数学《绝对值》教案

七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。

这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。

七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。

这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。

绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。

(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。

(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。

(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。

教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。

初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。

三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。

演示法中需要的教具有多媒体和温度计。

四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。

所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。

五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。

七年级数学《绝对值》教案精选3篇

七年级数学《绝对值》教案精选3篇

七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。

数a的绝对值记作|a|。

举例说明数a的绝对值的几何意义。

(按教材P63的倒数第二段进行讲解。

)强调:表示0的点与原点的距离是0,所以|0|=0。

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。

首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。

初中绝对值教案模板范文

初中绝对值教案模板范文

---一、教案基本信息课程名称:初中数学课题:绝对值授课年级:七年级授课课时:2课时教学目标:1. 知识与能力目标:- 借助于数轴,初步理解绝对值的概念,能求一个数的绝对值。

- 初步学会求绝对值等于某一个正数的有理数。

2. 过程与方法目标:- 通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。

- 通过应用绝对值解决实际问题,体会绝对值的意义。

3. 情感态度与价值观:- 通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣。

- 使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

二、教学重点与难点教学重点:- 绝对值的几何意义和代数意义。

- 求一个数的绝对值。

教学难点:- 绝对值定义的得出、意义的理解。

- 求绝对值等于某一个正数的有理数。

三、教学准备- 多媒体课件- 数轴教具- 练习题四、教学过程第一课时一、导入新课1. 复习数轴和相反数的相关知识。

2. 提出问题:如何表示数轴上各点到原点的距离?二、新课讲解1. 绝对值的定义:- 利用数轴,介绍绝对值的概念。

- 举例说明如何求一个数的绝对值。

2. 绝对值的性质:- 通过数形结合,讲解绝对值的性质。

- 引导学生观察、归纳、总结绝对值的性质。

3. 绝对值的应用:- 举例说明绝对值在实际生活中的应用。

三、课堂练习1. 完成多媒体课件中的练习题。

2. 教师巡视指导,解答学生疑问。

四、课堂小结1. 回顾本节课所学内容。

2. 强调绝对值的意义和应用。

第二课时一、复习导入1. 复习上节课所学内容。

2. 提出问题:如何求绝对值等于某一个正数的有理数?二、新课讲解1. 求绝对值等于某一个正数的有理数:- 利用数轴,讲解如何求绝对值等于某一个正数的有理数。

- 举例说明求解过程。

2. 绝对值方程:- 介绍绝对值方程的概念。

- 举例说明如何解绝对值方程。

三、课堂练习1. 完成多媒体课件中的练习题。

2. 教师巡视指导,解答学生疑问。

四、课堂小结1. 回顾本节课所学内容。

《绝对值》数学教案

《绝对值》数学教案

《绝对值》数学教案
标题:《绝对值》数学教案
一、教学目标
1. 知识与技能:理解绝对值的概念,掌握求解绝对值的方法。

2. 过程与方法:通过观察、比较、归纳等数学活动,提高学生的逻辑思维能力。

3. 情感态度价值观:培养学生的探索精神和严谨的学习态度。

二、教学重点与难点
1. 教学重点:绝对值的概念及其运算性质。

2. 教学难点:理解和运用绝对值的运算性质。

三、教学过程
1. 导入新课:利用生活中的实际问题引出绝对值的概念。

2. 新课讲授:
- 绝对值的概念:以数轴为工具,讲解绝对值表示数轴上点到原点的距离。

- 绝对值的性质:通过实例引导学生发现并归纳绝对值的性质。

- 绝对值的计算:结合例题,教授如何计算绝对值。

3. 巩固练习:设计一系列习题,让学生独立完成,教师巡回指导。

4. 小结:回顾本节课的主要内容,强调重点和难点。

四、作业布置
设计一些包含绝对值的题目,让学生在课后继续巩固所学知识。

五、教学反思
对于本次课程的效果进行反思,总结成功之处和需要改进的地方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值
【教学目标】
使学生初步理解绝对值的概念;明确绝对值的代数定义和几何意义;会求一个已知数的绝对值。

【教学重难点】
会在已知一个数的绝对值条件下求这个数;培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想。

【教学过程】
一、自学检测
1.想一想,你会想些什么?
问题1:两辆汽车从同一处O出发,分别向东、西方向行驶10km,到达A、B两处(图1.2-5)。

(1)它们的行驶路线的方向相同吗?。

(2)它们行驶路程的距离(线段OA、OB的长度)相同吗?
2.理解绝对值的概念
思考:-8与8是相反数,把它们在数轴上表示出来,那么它们的方向又有什么关系?到原点的距离又有什么关系?
想一想,互为相反数的两个数的绝对值有什么关系?你能给大家举几对吗?
那么互为相反数的两个数有什么特征相同呢?由此引入新课,归纳出绝对值的几何意义。

二、新知探索
1.绝对值的几何意义。

一个数a的绝对值就是数轴上表示数a的点与原点的距离。

如|–5|=5,|3.5|=3.5,
|–6|=6,|6|=6,|0|=0.
2.绝对值的表示方法。

数a的绝对值记作|a|,读作“a的绝对值”。

3.绝对值的代数定义(性质)。

①一个正数的绝对值是它本身;
②一个负数的绝对值是它的相反数;
③0的绝对值是0.
即:①若a >0,则|a|=a ;
②若a <0,则|a|=–a ;
③若a=0,则|a|=0; 或写成:)
0()0()
0(0<=>⎪⎩⎪⎨⎧-=a a a a a a 。

4.绝对值的非负性。

由绝对值的定义可知绝对值具有非负性,即|a|≥0。

三、范例共做
1:1 求下列各数的绝对值。

-19,3
2,0,-2.3,+0.56,-6,+6,-21/2
议一议:上述各数的绝对值与这些数本身有什么关系?
要点归纳:
思考:
(1)当a 是正数时,|a |=____;
(2)当a 是负数时,|a |=__;
(3)当a=0时,|a |=___。

)
0()
0()
0(0<=>⎪⎩⎪⎨⎧-=a a a a a
a
2:强化训练
判断
(1) |-1.4|>0 ( )
(2)|-0.3|=|0.3| ( )
(3)有理数的绝对值一定是正数。

( )
(4)绝对值最小的数是0。

( )
(5)如果数a 的绝对值等于a ,那么a 一定为正数。

( )
(6)符号相反且绝对值相等的数互为相反数。

( )
(7)一个数的绝对值越大,表示它的点在数轴上越靠右。

( )
(8)一个数的绝对值越大,表示它的点在数轴上离原点越远 ( )
(9)若a=b,则|a|=|b|( )
(10)若|a|=|b|,则a=b。

( )
3、迁移应用练
1、已知|x|=3,|y|=4,求x+y的值。

2、正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超过规定
问题:
(1)指出哪个排球的质量好一些(即重量最接近规定质量)?
(2)如果对两个排球作上述检查,检查的结果分别为p和q,请利用学过的绝对值的知识指出这两个排球中哪个质量好一些?
4、当堂训练
(一)、化简
(1)|-0.1|=____; (2) |-101|=____;
(3)| 3/100|=______; (4) |-6|=_____;
(5) |y|=____ = (y<0); (6)| -3.14 |=____.
(7) -|-7.5|=_____(8) -(+8)=____
(9)如果|x|=2,则x=______
(二)、(1)、绝对值是3的数有几个?各是什么?
(2)、绝对值是0的数有几个?各是什么?
(3)、绝对值是-2的数是否存在?若存在,请说出来?
5、课堂小结
本节课里你学到了什么?
(1)绝对值的几何意义及代数意义。

(2)如何求一个数的绝对值。

6、思维训练:
一般地点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a-b|
(1)若|x-3|=4,求x的值;
(2)|x+2|+|x-6|表示数轴上有理数x所对应的点到-2和6所对应的点的距离之和,请找出符合条件的x的值,使得|x+2|+|x-6|=10
(3)|x+2|+|x-6|是否有最小值?
(4)点A、B、C在数轴上分别表示有理数x,-3,1,那么A到B的距离与A到C的距离之和可表示为()满足 |x-3|+|x+2| =7的值是()。

(5)求|x+3|+|x-1|+|x-5| 的最小值。

(6)试求|x-1|+|x-2|+|x-3|+...... |x-100|的最小值.
四、小结提高
1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

2.求一个数的绝对值注意先判断这个数是正数还是负数、0。

相关文档
最新文档