绝对值PPT课件
合集下载
绝对值ppt课件

做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12
原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −
=_______
4
4
距离为_______,所以
=_______
注意
绝对值是求数轴上某点到原点
距离的运算
02
方法展示
02 方法展示
【示例1】化简下列各数:
=_____
− +
−
2020
=_____43;
【示例2】如果 = ,则 =_______
-2020
=_____
A、±
B、
C、−
③
2018
=_____
D、
二
绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____
4
3
在数轴中标出点A、B的位置,并比较它们的大小:_____
所以 + =_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____
绝对值ppt课件

(5)|-3|=_____.
3
(1)一个正数的绝对值是它本身;
(2)一个负数的绝对值是它的相反数;
(3) 0 的绝对值是 0 .
求绝对值的法则
当堂巩固
做一做
求下列各数的绝对值:
(1) |-7|=_____.
7
2.05
(2) |-2.05|=_____.
(3) |0|=____.
0
(4) |1000|=_____.
标准直径长度的数量(mm)记作负数.检验员某次抽查了五件样品,检查结果如下:
序号
直径长度(mm)
1
+0.1
2
-0.15
3
0.2
4
-0.05
5
+0.25
(1)哪件样品的大小最符合要求?
(2)如果规定误差的绝对值在0.18 mm之内是正品,误差的绝对值在0.18~0.22 mm之间是
次品,误差的绝对值超过0.22 mm是废品,那么这五件样品分别属于哪类产品?
解 最接近标准质量的是第4个足球,理由如下:
因为 |+11|=11, |-24|=24, |+13|=13, |-7|=7,
第4个足球与标准质量差距的绝对值最小,为7克,所以最接近
标准质量.
归纳
用绝对值检验产品是否合格的方法:
(1)计算这个产品质量与标准质量的差;
(2)差的绝对值越小,产品越接近标准;绝对值为0,产品质量完全符合标准.
课堂小结
概念:
性质:
绝对值
一个数在数轴上对应的点到原点的距离叫做这个数的绝对值.
一个数a的绝对值表示为|a|. (画数轴,标出点,看距离)
数形结合
任何数的绝对值大于或等于0.
绝对值数学(22张PPT)

即:|10|=10,|-10|=10
表示 -4 的点到原点的距离是 4, 所以 -4的绝对值是4,记作| -4 | = 4
探究新知
表示4的点到原点的距离是4,所以4的绝对值是4,记作| 4 | = 4
探究新知
表示0的点到原点的距离是0,所以0的绝对值是0,记作| 0 | = 0
探究新知
归纳总结
1.2.4 绝对值
学习目标
知识回顾
互为相反数的两个数到原点的距离相等.
只有符号不同的两个数,互为相反数.
数轴上,点C、点D到原点的距离都是_____.
3
C
D
正数的相反数是负数;负数的相反数是正数; 0的
10
-10
10
10
【探究】10和-10互为相反数,在数轴上分别用点A,B表示这两个数
4
-4
A
B
C
D
D
5
9
2
10
-2024
C
C
A
小结
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
表示 -4 的点到原点的距离是 4, 所以 -4的绝对值是4,记作| -4 | = 4
探究新知
表示4的点到原点的距离是4,所以4的绝对值是4,记作| 4 | = 4
探究新知
表示0的点到原点的距离是0,所以0的绝对值是0,记作| 0 | = 0
探究新知
归纳总结
1.2.4 绝对值
学习目标
知识回顾
互为相反数的两个数到原点的距离相等.
只有符号不同的两个数,互为相反数.
数轴上,点C、点D到原点的距离都是_____.
3
C
D
正数的相反数是负数;负数的相反数是正数; 0的
10
-10
10
10
【探究】10和-10互为相反数,在数轴上分别用点A,B表示这两个数
4
-4
A
B
C
D
D
5
9
2
10
-2024
C
C
A
小结
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
绝对值课件(共20张PPT)

(4)绝对值等于2的数是___2_或__-_2.
易错提醒: 注意绝对值等于某个正数的数有两个,他们互为相反
数,解题时不要遗漏负值.
例 4 已知 x-4 y-3 =0,求 x+y 的值.
[解析] 一个数的绝对值总是大于或等于 0,即为非负 数,若两个非负数的和为 0,则这两个数同时为 0.
解:根据题意可知 x-4=0,y-3=0, 所以x=4,y=3,故x+y=7.
思考: 一个正数的绝对值是什么?
一个负数的绝对值是什么?
0的绝对值是什么?
结论1:一个正数的绝对值是正数.
一个负数的绝对值是正数.
0的绝对值是0.
|a|≥0
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
思考: 字母a表示一个有理数,你知道a的绝对值
等于什么吗?
正数的绝对值是它本身
()
思考: 一个正数的绝对值是什么?
驶,记向东行驶的里程数为正 两辆出租车都从O 字母a表示一个有理数,你知道a的绝对值等于什么吗?
(2)当a是负数时,|a|=__;
.
(2)绝对值等于的正数是_____,
地出发,甲车向东行驶10km到达A处,记作 (5)有理数的绝对值一定是非负数.
(2)一个数的绝对值等于它的相反数,这个数一定是
√
典例精析
例1 求下列各数的绝对值. 12, 3 -7.5, 0. 5
解:
|12|=12;
| 3 |= 3
5
5
;
正数的绝对值等于它本身
; 负数的绝对值等于它的相反数
|0|=0.
0的绝对值是0
例2 填一填
(1)绝对值等于0的数是___0, (2)绝对值等于的正数是_____,
易错提醒: 注意绝对值等于某个正数的数有两个,他们互为相反
数,解题时不要遗漏负值.
例 4 已知 x-4 y-3 =0,求 x+y 的值.
[解析] 一个数的绝对值总是大于或等于 0,即为非负 数,若两个非负数的和为 0,则这两个数同时为 0.
解:根据题意可知 x-4=0,y-3=0, 所以x=4,y=3,故x+y=7.
思考: 一个正数的绝对值是什么?
一个负数的绝对值是什么?
0的绝对值是什么?
结论1:一个正数的绝对值是正数.
一个负数的绝对值是正数.
0的绝对值是0.
|a|≥0
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
思考: 字母a表示一个有理数,你知道a的绝对值
等于什么吗?
正数的绝对值是它本身
()
思考: 一个正数的绝对值是什么?
驶,记向东行驶的里程数为正 两辆出租车都从O 字母a表示一个有理数,你知道a的绝对值等于什么吗?
(2)当a是负数时,|a|=__;
.
(2)绝对值等于的正数是_____,
地出发,甲车向东行驶10km到达A处,记作 (5)有理数的绝对值一定是非负数.
(2)一个数的绝对值等于它的相反数,这个数一定是
√
典例精析
例1 求下列各数的绝对值. 12, 3 -7.5, 0. 5
解:
|12|=12;
| 3 |= 3
5
5
;
正数的绝对值等于它本身
; 负数的绝对值等于它的相反数
|0|=0.
0的绝对值是0
例2 填一填
(1)绝对值等于0的数是___0, (2)绝对值等于的正数是_____,
绝对值ppt课件

(3)绝对值等于它本身的数有正数和0.
课本例题
例1 求下列各数的绝对值:
求一个数的绝对值的方法:
15
1
- ,+ ,-4.75,10.5.
2
10
解:
15
−
2
15
= ,
2
1
+
10
=
去掉绝对值符号时,必须按照“先
1
,
10
−4.75 = 4.75, 10.5 =10.5.
判后去”的原则,先判断这个数是
正数、0或负数,再根据绝对值的
值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.
试探索:(1)|5-(-2)|= 7
.
(2)探索猜想:对于任意有理数 x ,| x -(-6)|+| x -3|是否有最小值?
如果有,求出最小值;如果没有,说明理由.
【解】对于任意有理数 x ,| x -(-6)|+| x -3|有最小值.因为| x -(-6)|
【解】点 A3向左移动2个单位长度到达 A2点,再向右移动6个单位长度到
达 A5点.
(3)若原点是零件供应点,则5个机器人分别到达供应点取货的总路程是多
少?
【解】|-4|+|-3|+|-1|+|1|+|3|=12.
答:5个机器人分别到达供应点取货的总路程是12.
分层练习-拓展
15. [新考法 特例猜想法]同学们都知道,|5-(-2)|表示5与-2之差的绝对
A. x ≤2
B. x <2
| a |= a ;当 a < 0时,| a |=- a ;当 a =0时,
C. x ≥2
D. x >2
| a |= a =- a ,所以当 a ≤0时,| a |=- a .
课本例题
例1 求下列各数的绝对值:
求一个数的绝对值的方法:
15
1
- ,+ ,-4.75,10.5.
2
10
解:
15
−
2
15
= ,
2
1
+
10
=
去掉绝对值符号时,必须按照“先
1
,
10
−4.75 = 4.75, 10.5 =10.5.
判后去”的原则,先判断这个数是
正数、0或负数,再根据绝对值的
值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.
试探索:(1)|5-(-2)|= 7
.
(2)探索猜想:对于任意有理数 x ,| x -(-6)|+| x -3|是否有最小值?
如果有,求出最小值;如果没有,说明理由.
【解】对于任意有理数 x ,| x -(-6)|+| x -3|有最小值.因为| x -(-6)|
【解】点 A3向左移动2个单位长度到达 A2点,再向右移动6个单位长度到
达 A5点.
(3)若原点是零件供应点,则5个机器人分别到达供应点取货的总路程是多
少?
【解】|-4|+|-3|+|-1|+|1|+|3|=12.
答:5个机器人分别到达供应点取货的总路程是12.
分层练习-拓展
15. [新考法 特例猜想法]同学们都知道,|5-(-2)|表示5与-2之差的绝对
A. x ≤2
B. x <2
| a |= a ;当 a < 0时,| a |=- a ;当 a =0时,
C. x ≥2
D. x >2
| a |= a =- a ,所以当 a ≤0时,| a |=- a .
1.3绝对值课件(14张PPT)

+4和-4
问:为什么绝对值等于4的数有两个?
-4
4
三、辨别应用,巩固新知
(1)填表
课本21-22面课内练习
数
相反数
绝对值210Fra bibliotek-(2)画一条数轴,在数轴上分别标出绝对值是6,1.2,0的数.
再次播放动画,观察几个数的绝对值大小和对应点离原点的位置远近,你有什么发现?
一个数的绝对值越大,数轴上的对应点离原点越远;
2.互为相反数的两个数有什么相同点和不同点?
五、目标检测
课本22面作业题
同学们再见!
授课老师:
时间:2024年9月15日
是它本身
是0
是它的相反数
如果a>0,那么|a|=a
如果a=0,那么|a|=0
如果a<0,那么|a|=-a
问题5 (口答)说出下列各数的绝对值:
7
-7
-2.05
0
1000
观察绝对值的大小,你有什么发现?
任何数的绝对值都大于或等于0
问题6 求绝对值等于4的数.
答:数轴上到原点的距离等于4个单位长度的点总共有两个, 左右各一个。
|+5|=5
问题3:借助数轴,请你说出数轴上30,-1.6,-10,-4对应的点到原点的距离分别是多少?并求出它们的绝对值.
3对应的点到原点的距离是3,则3的绝对值是3,即|3|=3
+10对应的点到原点的距离是10,则+10的绝对值是10,即|+10|=10
对应的点到原点的距离是,则的绝对值是,即=
一个数的绝对值越小,数轴上的对应点离原点越近;
(3)举一个生活中的例子,说明解决某些问题只需考虑数的绝对值.
问:为什么绝对值等于4的数有两个?
-4
4
三、辨别应用,巩固新知
(1)填表
课本21-22面课内练习
数
相反数
绝对值210Fra bibliotek-(2)画一条数轴,在数轴上分别标出绝对值是6,1.2,0的数.
再次播放动画,观察几个数的绝对值大小和对应点离原点的位置远近,你有什么发现?
一个数的绝对值越大,数轴上的对应点离原点越远;
2.互为相反数的两个数有什么相同点和不同点?
五、目标检测
课本22面作业题
同学们再见!
授课老师:
时间:2024年9月15日
是它本身
是0
是它的相反数
如果a>0,那么|a|=a
如果a=0,那么|a|=0
如果a<0,那么|a|=-a
问题5 (口答)说出下列各数的绝对值:
7
-7
-2.05
0
1000
观察绝对值的大小,你有什么发现?
任何数的绝对值都大于或等于0
问题6 求绝对值等于4的数.
答:数轴上到原点的距离等于4个单位长度的点总共有两个, 左右各一个。
|+5|=5
问题3:借助数轴,请你说出数轴上30,-1.6,-10,-4对应的点到原点的距离分别是多少?并求出它们的绝对值.
3对应的点到原点的距离是3,则3的绝对值是3,即|3|=3
+10对应的点到原点的距离是10,则+10的绝对值是10,即|+10|=10
对应的点到原点的距离是,则的绝对值是,即=
一个数的绝对值越小,数轴上的对应点离原点越近;
(3)举一个生活中的例子,说明解决某些问题只需考虑数的绝对值.
1.4 绝对值课件(共22张PPT)

试一试
(1)|+2|=______,||=______,|+8.2|=______;(2)|0|=______;(3)|-3|=______;|-0.2|=______;|-8.2|=______.
2
8.2
0
3
0.2
8.2
怎样求一个数的绝对值?从这些结果中你能发现什么规律?
1.一个正数的绝对值是它本身;2.0的绝对值是0;3.一个负数的绝对值是它的相反数.
知识点2 绝对值的性质
思考:你能将上面的结论用数学式子表示吗?
1.当a>0时,|a|=______;2.当a=0时,|a|=______;3.当a<0时,|a|=______.
a
0
-a
由此可以看出,任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任何有理数a,总有|a|≥0.
一个数的绝对值就是表示这个数的点到原点的距离,离原点越远,绝对值越大;离原点越近,绝对值越小.
1.4 绝对值
课时导入
知识讲解
随堂小测
小结
学习目标
1.理解绝对值的概念及性质.2.会求一个数的绝对值.
课时导入
西
东
3米
3米
观察下图两只狗狗追寻食物的情景,请试着在数轴上表示出这一情境,并回答问题.
0
1
2
3
4
-1
-2
-3
5
两只狗狗从同一点出发,分别向东、西方向奔跑了_____米,它们奔跑的路线_________(填相同或不相同),它们奔跑的距离_____.
不相同
3
相同
由上图可知,3到原点的距离是_____,-3到原点的距离是_____.到原点的距离等于3的数有_____个,它们互为_________.
(1)|+2|=______,||=______,|+8.2|=______;(2)|0|=______;(3)|-3|=______;|-0.2|=______;|-8.2|=______.
2
8.2
0
3
0.2
8.2
怎样求一个数的绝对值?从这些结果中你能发现什么规律?
1.一个正数的绝对值是它本身;2.0的绝对值是0;3.一个负数的绝对值是它的相反数.
知识点2 绝对值的性质
思考:你能将上面的结论用数学式子表示吗?
1.当a>0时,|a|=______;2.当a=0时,|a|=______;3.当a<0时,|a|=______.
a
0
-a
由此可以看出,任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任何有理数a,总有|a|≥0.
一个数的绝对值就是表示这个数的点到原点的距离,离原点越远,绝对值越大;离原点越近,绝对值越小.
1.4 绝对值
课时导入
知识讲解
随堂小测
小结
学习目标
1.理解绝对值的概念及性质.2.会求一个数的绝对值.
课时导入
西
东
3米
3米
观察下图两只狗狗追寻食物的情景,请试着在数轴上表示出这一情境,并回答问题.
0
1
2
3
4
-1
-2
-3
5
两只狗狗从同一点出发,分别向东、西方向奔跑了_____米,它们奔跑的路线_________(填相同或不相同),它们奔跑的距离_____.
不相同
3
相同
由上图可知,3到原点的距离是_____,-3到原点的距离是_____.到原点的距离等于3的数有_____个,它们互为_________.
1.4 绝对值 课件(共20张PPT)华东师大版数学七年级上册

答案:C
知2-练
感悟新知
3-1.关于| a | +2,下列叙述正确的是( ) A. 有最大值 2B. 有最小值 2C. 有最小值 0D. 有最大值 0
B
感悟新知
知2-练
如果 a=-4,且 | a | = | b |,求 | b+4 | 的值 .
例4
解题秘方:紧扣“若 |x|=a(a>0),则 x=± a”进行值
性质
绝对值
探究
绝对值的非负性
归纳
同学们再见!
授课老师:
时间:2024年9月15日
知1-练
感悟新知
1-1.下列等式正确的是( )A.| - 9|= - 9B. | - | =3C. - | - 7|=7D. - ( +2) = - 2
D
知1-练
感悟新知
若 |x|=2 024,则 x=_________ .
例2
± 2 024
解题秘方:根据绝对值的几何意义可知,数轴上表示数 x 的点与原点的距离为 2 024 个单位长度,则 x 为 2 024 或- 2 024.
知1-练
感悟新知
2-1. [ 月考·攀枝花 ]一个数的相反数的绝对值等于 3,则这个数是( )A.3 B. - 3C.± 3 D.
C
感悟新知
知2-讲
知识点
绝对值的非负性
2
1. 非负性 任何一个有理数的绝对值总是正数或 0(通常也称非负数) . 即对任意有理数 a,总有 | a | ≥ 0.2. 绝对值等于它本身的数是非负数,绝对值等于它相反数的数是非正数, 0 是绝对值最小的数,即:若 | a |=a,则a ≥ 0;若 | a |=-a,则 a ≤ 0.
知2-练
感悟新知
3-1.关于| a | +2,下列叙述正确的是( ) A. 有最大值 2B. 有最小值 2C. 有最小值 0D. 有最大值 0
B
感悟新知
知2-练
如果 a=-4,且 | a | = | b |,求 | b+4 | 的值 .
例4
解题秘方:紧扣“若 |x|=a(a>0),则 x=± a”进行值
性质
绝对值
探究
绝对值的非负性
归纳
同学们再见!
授课老师:
时间:2024年9月15日
知1-练
感悟新知
1-1.下列等式正确的是( )A.| - 9|= - 9B. | - | =3C. - | - 7|=7D. - ( +2) = - 2
D
知1-练
感悟新知
若 |x|=2 024,则 x=_________ .
例2
± 2 024
解题秘方:根据绝对值的几何意义可知,数轴上表示数 x 的点与原点的距离为 2 024 个单位长度,则 x 为 2 024 或- 2 024.
知1-练
感悟新知
2-1. [ 月考·攀枝花 ]一个数的相反数的绝对值等于 3,则这个数是( )A.3 B. - 3C.± 3 D.
C
感悟新知
知2-讲
知识点
绝对值的非负性
2
1. 非负性 任何一个有理数的绝对值总是正数或 0(通常也称非负数) . 即对任意有理数 a,总有 | a | ≥ 0.2. 绝对值等于它本身的数是非负数,绝对值等于它相反数的数是非正数, 0 是绝对值最小的数,即:若 | a |=a,则a ≥ 0;若 | a |=-a,则 a ≤ 0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-6 -5 -4 -3 -2
│4│=4
0 1 2 3 4
B
5 6
-1
-5的绝对值应该记作│-5︱=? 4的绝对值应该记作 │4︱ =? 0的绝对值应该如何表示呢? │0︱ =?
练习:
-6 -5 -4 -3 -2
-1
0
1
2
3
4
5
6
1.表示+7的点与原点的距离是 7 , 即+7的绝对值是 7 ,记作 7 7 ; 表示2.8的点与原点的距离是 2.8 , 即2.8的绝对值是 2.8 ,记作 2.8 2.8 ; 2.表示0的点与原点的距离是 0 , 即0的绝对值是 0 ,记作 0 0 ;
0 0
7 7
1、(1)正数的绝对值是它的本身;
(2)0的绝对值是0;
(3)负数的绝对值是它的相反数。
2、非负性 由绝对值的定义可知绝对值 具有非负性,即|a|≥0。
练习:
1、判断下列各题: (1)负数没有绝对值。 × (2)有些数的绝对值有两个。× (3)正数和零的绝对值是它的本身。√ (4)负数和零的绝对值是它的相反数。√ √ (5)任何有理数的绝对值一定不是负数。
答:记为-8的足球质量好一些。
因为 │-20│= 20, │-8│ = 8, │+10│=10, │+12│=12, │-11│=11;
所以│-8│ < │+10│ < │-11│ < │+12│ < │-20│
也就是说记为-8的足球与规定的质量相差比较小, 因此其质量比较好。
思考:
1.计算:|–(+3.6)| + |–(–1.2)| – |–[+(–4)]| 2.已知 |x–2| + |y–3| + |z–4| = 0, 求x+y–z的值。
练习:
5.2 2、-5.2 的绝对值是 ________,
3.1或-3.1 绝对值等于3.1的数是________________.
0 3.、绝对值最小的数是_________,
非负数 绝对值等于它本身的数是_______.
4或-4 4.如果 x 4, 则x ________;
3 1.5或-1.5 若 a , 则a _________ 2
8.用>、<、=号填空: > │-0.05│ 0; │-3│ │0.8│ =│-0.8│
|-5|; <
练习:足球比赛中对所用的足球有严格的规定, 下面是5个足球的质量检测结果(用正数表示超 过规定质量的克数,用负数表示不足规定质量 的克数)-20 +10 +12 -8 -11请指 出哪个足球的质量好一些,并用绝对值的知识 加以说明。
3. 表示-7的点与原点的距离是 7 , 即-7的绝对值是 7 ,记作 7 7 ;
议一议:
(1) 7 7
(2) (3)
2.8 2.8
0 0
7 7
从上题中你有什么样的启示?你能用自 已的话总结出绝对值的性质吗?
(1) 7 7
2.8 2.8
议一议:
绝对值的性质:
Hale Waihona Puke (2) (3)非正数 5.若 a a, 则a一定是 _______;
如果 a b , 那么a与b的关系是相等或相反 ______
练习:
9 2 2 9 -2.3 7. 2.3 _____, _____, 15 ( ) _____ 2 .
15 2
-2、-1 6.绝对值小于3的负整数有______;
本节课你掌握了以下知识吗?
绝对值的定义是什么?
绝对值的性质是什么?
一个数a的绝对值就是数轴上表示 这个数的点与原点之间的距离。
绝对值的性质: (1)正数的绝对值是它的本身; (2)0的绝对值是0;
(3)负数的绝对值是它的相反数。
作业:
课本P18
4、7
思考:
课本P18 10
新课标人教版七年级数学
1.2.4 绝 对 值
情境引入:
博物馆 学校
农场
6千米
6千米
A
-6 -5 -4 -3 -2
B
-1
0
1
2
3
4
5
6
a
-6 -5 -4
A
-3
-2
-1
0
1
2
3
4
5
6
数a的绝对值:
数轴上表示这个数的点与原点之间的距离。 记作: |a|
问:像-5、4的绝对值应该如何记呢?
│-5│=5 A
│4│=4
0 1 2 3 4
B
5 6
-1
-5的绝对值应该记作│-5︱=? 4的绝对值应该记作 │4︱ =? 0的绝对值应该如何表示呢? │0︱ =?
练习:
-6 -5 -4 -3 -2
-1
0
1
2
3
4
5
6
1.表示+7的点与原点的距离是 7 , 即+7的绝对值是 7 ,记作 7 7 ; 表示2.8的点与原点的距离是 2.8 , 即2.8的绝对值是 2.8 ,记作 2.8 2.8 ; 2.表示0的点与原点的距离是 0 , 即0的绝对值是 0 ,记作 0 0 ;
0 0
7 7
1、(1)正数的绝对值是它的本身;
(2)0的绝对值是0;
(3)负数的绝对值是它的相反数。
2、非负性 由绝对值的定义可知绝对值 具有非负性,即|a|≥0。
练习:
1、判断下列各题: (1)负数没有绝对值。 × (2)有些数的绝对值有两个。× (3)正数和零的绝对值是它的本身。√ (4)负数和零的绝对值是它的相反数。√ √ (5)任何有理数的绝对值一定不是负数。
答:记为-8的足球质量好一些。
因为 │-20│= 20, │-8│ = 8, │+10│=10, │+12│=12, │-11│=11;
所以│-8│ < │+10│ < │-11│ < │+12│ < │-20│
也就是说记为-8的足球与规定的质量相差比较小, 因此其质量比较好。
思考:
1.计算:|–(+3.6)| + |–(–1.2)| – |–[+(–4)]| 2.已知 |x–2| + |y–3| + |z–4| = 0, 求x+y–z的值。
练习:
5.2 2、-5.2 的绝对值是 ________,
3.1或-3.1 绝对值等于3.1的数是________________.
0 3.、绝对值最小的数是_________,
非负数 绝对值等于它本身的数是_______.
4或-4 4.如果 x 4, 则x ________;
3 1.5或-1.5 若 a , 则a _________ 2
8.用>、<、=号填空: > │-0.05│ 0; │-3│ │0.8│ =│-0.8│
|-5|; <
练习:足球比赛中对所用的足球有严格的规定, 下面是5个足球的质量检测结果(用正数表示超 过规定质量的克数,用负数表示不足规定质量 的克数)-20 +10 +12 -8 -11请指 出哪个足球的质量好一些,并用绝对值的知识 加以说明。
3. 表示-7的点与原点的距离是 7 , 即-7的绝对值是 7 ,记作 7 7 ;
议一议:
(1) 7 7
(2) (3)
2.8 2.8
0 0
7 7
从上题中你有什么样的启示?你能用自 已的话总结出绝对值的性质吗?
(1) 7 7
2.8 2.8
议一议:
绝对值的性质:
Hale Waihona Puke (2) (3)非正数 5.若 a a, 则a一定是 _______;
如果 a b , 那么a与b的关系是相等或相反 ______
练习:
9 2 2 9 -2.3 7. 2.3 _____, _____, 15 ( ) _____ 2 .
15 2
-2、-1 6.绝对值小于3的负整数有______;
本节课你掌握了以下知识吗?
绝对值的定义是什么?
绝对值的性质是什么?
一个数a的绝对值就是数轴上表示 这个数的点与原点之间的距离。
绝对值的性质: (1)正数的绝对值是它的本身; (2)0的绝对值是0;
(3)负数的绝对值是它的相反数。
作业:
课本P18
4、7
思考:
课本P18 10
新课标人教版七年级数学
1.2.4 绝 对 值
情境引入:
博物馆 学校
农场
6千米
6千米
A
-6 -5 -4 -3 -2
B
-1
0
1
2
3
4
5
6
a
-6 -5 -4
A
-3
-2
-1
0
1
2
3
4
5
6
数a的绝对值:
数轴上表示这个数的点与原点之间的距离。 记作: |a|
问:像-5、4的绝对值应该如何记呢?
│-5│=5 A