山东省泰安市2017-2018学年高一上学期期末考试数学试卷(含答案)

合集下载

山东师范大学附属中学2017-2018学年高一上学期第二次学分认定(期末)考试语文试题及答案 人教

山东师范大学附属中学2017-2018学年高一上学期第二次学分认定(期末)考试语文试题及答案  人教

山东师范大学附属中学2017-2018学年高一上学期第二次学分认定(期末)考试语文试题及答案人教版高一下册绝密★启用前试卷类型A山东师大附中2017级第二次学分认定考试语文试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页,满分为150分,考试用时150分钟。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

第Ⅰ卷(共44分)一、(每小题2分,共20分)1.下列句中加点词语的解释正确的一组是()A.①游于三辅(结交,交往)②终鲜兄弟(少)B.①道芷阳间行(之间)②博闻强志(记忆)C.①舅夺母志(强行改变)②人穷则反本(陷入困境)D.①如听仙乐耳暂明(暂时)②庶刘侥幸(或许)2.下列句中加点词语的解释正确的一组是()A.①项伯杀人,臣活之(使……活)②老大嫁作商人妇(排行第一的人)B.①臣具以表闻(被……知道)②不好交接俗人(交往,接待)C.①大将军邓骘奇其才(认为……奇特)②备他盗之出入与非常也(意外变故)D.①吾得兄事之(用对待兄长的礼节)②墙往往而是(经常)3.下列句中加点词语的解释正确的一组是()A.①形影相吊(慰问)②视事三年(任职)B.①冀幸君之一悟(一次)②形容枯槁(形体容貌)C.①安帝雅闻衡善术学(高雅)②则告诉不许(申诉)D.①举类迩而见义远(近)②秋月春风等闲度(有空闲)4.下列各句中加点词语的解释全都正确的一组是()①连辟公府不就(开辟)②征拜尚书(朝拜)③过蒙拔擢(提拔)④出为河间相(贬黜)⑤历职郎署(任职,承担职责)⑥除臣洗马(驱除)⑦所居之官,辄积年不徙(调动)⑧屈平既绌(免除官职)A.①②⑤⑥B.③⑤⑦⑧C.②④⑤⑦D.①⑤⑥⑦5.下列各句中加点词语的解释全都不正确的一组是()①员径八尺(通“圆”)②梦啼妆泪红阑干(通“栏杆”)③愿伯具言臣之不敢倍德也(通“陪”)④令将军与臣有郤(通“隙”)⑤齐与楚从亲(通“纵”)⑥夙遭闵凶(通“素”)⑦而母立于兹(通“尔”)⑧屈平属草稿未定(通“嘱”)A.①②③⑥B.②③⑤⑧C.②③④⑥D.②③⑥⑧6.下列各组句子中加点词的意义全都不相同的一组是()A.①张良入谢②哙拜谢,起,立而饮之③谢曰:臣与将军戮力而攻秦B.①其后,秦欲伐齐②每一令出,平伐其功③王怒,大兴师伐秦C.①遂见用于小邑②生孩六月,慈父见背③何故怀瑾握瑜而自令见放为D.①举孝廉不行②举世混浊而我独清③后刺史臣荣举臣秀才7.下列各组句子中加点词的意义全都相同的一组是()A.①一日,大母过余曰②闻大王有意督过之③过蒙拔擢B.①举酒属客②然亡国破家相随属③衡少善属文C.①其志洁,故其称物芳②君安与项伯有故③故遣将守关者D.①交戟之卫士欲止不内②亡走赵,赵不内③距关,毋内诸侯 8.下列各组句子中加点词的意义不相同的一组是()A.①不积小流,无以至江海②祖母无臣,无以终余年B.①常从容淡静②然皆祖屈原之从容辞令C.①颜色憔悴,形容枯槁②暮去朝来颜色故D.①举孝廉不行②臣少多疾病,九岁不行9.下列有关文学文化常识的说法不正确的一项是()A.“乞骸骨”,意思是请求赐还自己的身体,回家乡去,在封建社会大臣年老了往往用这一说法请求辞职。

2019-2020学年山东省泰安市高三上期末数学测试卷(理)(含答案)

2019-2020学年山东省泰安市高三上期末数学测试卷(理)(含答案)

山东省泰安市高三(上)期末测试数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .1203.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.下列命题错误的是( )A .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β 5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A. B.C.D.8.已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x﹣b的零点所在的区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是.13.如果实数x,y满足条件,则z=x+y的最小值为.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= .三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC 的内角A 、B 、C 所对的边a 、b 、c ,且(Ⅰ)求角A(Ⅱ)若,求a 的最小值.17.如图,多面体ABCDEF 中,四边形ABCD 是矩形,EF ∥AD ,FA ⊥面ABCD ,AB=AF=EF=1,AD=2,AC 交BD 于点P(Ⅰ)证明:PF ∥面ECD ; (Ⅱ)求二面角B ﹣EC ﹣A 的大小.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n .19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 21.已知函数f (x )=lnx+ax 在点(t ,f (t ))处切线方程为y=2x ﹣1 (Ⅰ)求a 的值(Ⅱ)若,证明:当x >1时,(Ⅲ)对于在(0,1)中的任意一个常数b ,是否存在正数x 0,使得:.2019-2020学年山东省泰安市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}【考点】Venn 图表达集合的关系及运算.【分析】由韦恩图可知阴影部分表示的集合为(C U A )∩B ,根据集合的运算求解即可. 【解答】解:全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6}, 由韦恩图可知阴影部分表示的集合为(C U A )∩B , ∵C U A={4,6,7,8}, ∴(C U A )∩B={4,6}. 故选B .2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .120 【考点】等差数列的通项公式.【分析】由已知得a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根,解方程x 2﹣10x+16=0,得a 1=2,a 3=8,由此求出公差,从而能求出a 11+a 12+a 13的值.【解答】解:∵{a n }是公差为正数的等差数列,a 1+a 3=10,且a 1a 3=16, ∴a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根, 解方程x 2﹣10x+16=0,得a 1=2,a 3=8, ∴2+2d=8,解得d=3,∴a 11+a 12+a 13=3a 1+33d=3×2+33×3=105. 故选:C .3.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数y=x2﹣ax+a的值恒为正,即x2﹣ax+a>0恒成立,则判别式△=a2﹣4a<0,则0<a<4,则p是q的充要条件,故选:C4.下列命题错误的是()A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β【考点】平面与平面之间的位置关系.【分析】命题A,B可以通过作图说明;命题C可以直接进行证明;命题D可以运用反证法的思维方式说明是正确的.【解答】解:A、如图,平面α⊥平面β,α∩β=l,l⊂α,l不垂直于平面β,所以不正确;B、如A中的图,平面α⊥平面β,α∩β=l,a⊂α,若a∥l,则a∥β,所以正确;C、如图,设α∩γ=a,β∩γ=b,在γ内直线a、b外任取一点O,作OA⊥a,交点为A,因为平面α⊥平面γ,所以OA⊥α,所以OA⊥l,作OB⊥b,交点为B,因为平面β⊥平面γ,所以OB⊥β,所以OB⊥l,又OA∩OB=O,所以l⊥γ.所以正确.D 、若平面α内存在直线垂直于平面β,根据面面垂直的判定,则有平面α垂直于平面β,与平面α不垂直于平面β矛盾,所以,如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β,正确; 故选:A .5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)【考点】绝对值不等式的解法.【分析】由条件利用绝对值的意义,求得绝对值不等式|x ﹣5|+|x+1|<8的解集. 【解答】解:由于|x ﹣5|+|x+1|表示数轴上的x 对应点到5、﹣1对应点的距离之和, 而数轴上的﹣2和6对应点到5、﹣1对应点的距离之和正好等于8, 故不等式|x ﹣5|+|x+1|<8的解集为(﹣2,6), 故选:B .6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .【考点】椭圆的简单性质.【分析】把x=﹣c 代入椭圆,解得y=±.由于△MNF 2为等腰直角三角形,可得=2c ,由离心率公式化简整理即可得出.【解答】解:把x=﹣c 代入椭圆方程,解得y=±,∵△MNF 2为等腰直角三角形,∴=2c ,即a 2﹣c 2=2ac ,由e=,化为e 2+2e ﹣1=0,0<e <1. 解得e=﹣1+.故选C .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A .B .C .D .【考点】利用导数研究函数的单调性.【分析】由f (x )的图象可得在y 轴的左侧,图象下降,f (x )递减,y 轴的右侧,图象先下降再上升,最后下降,即有y 轴左侧导数小于0,右侧导数先小于0,再大于0,最后小于0,对照选项,即可判断. 【解答】解:由f (x )的图象可得,在y 轴的左侧,图象下降,f (x )递减, 即有导数小于0,可排除C ,D ;再由y 轴的右侧,图象先下降再上升,最后下降, 函数f (x )递减,再递增,后递减, 即有导数先小于0,再大于0,最后小于0, 可排除A ; 则B 正确. 故选:B .8.已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x ﹣b 的零点所在的区间是( ) A .(﹣2,﹣1) B .(﹣1,0)C .(0,1)D .(1,2)【考点】函数的零点;指数函数的图象与性质.【分析】根据对数,指数的转化得出f (x )=(log 23)x +x ﹣log 32单调递增,根据函数的零点判定定理得出f (0)=1﹣log 32>0,f (﹣1)=log 32﹣1﹣log 32=﹣1<0,判定即可. 【解答】解:∵实数a ,b 满足2a =3,3b =2, ∴a=log 23>1,0<b=log 32<1, ∵函数f (x )=a x +x ﹣b ,∴f (x )=(log 23)x +x ﹣log 32单调递增, ∵f (0)=1﹣log 32>0f (﹣1)=log 32﹣1﹣log 32=﹣1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x ﹣b 的零点所在的区间(﹣1,0), 故选:B .9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]【考点】正弦函数的图象.【分析】由题意求得sin(ωx+φ)=﹣1,函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,根据周期性求得ω的值,可得f(x)的解析式.再根据当x∈(﹣,)时,f(x)>1,可得sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,由此求得φ的取值范围.【解答】解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤)的图象与直线y=﹣1相邻两个交点的距离为π,令2sin(ωx+φ)+1=﹣1,即sin(ωx+φ)=﹣1,即函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,故 T==π,求得ω=2,∴f(x)=2sin(2x+φ)+1.由题意可得,当x∈(﹣,)时,f(x)>1,即 sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,求得φ≥2kπ+,且φ≤2kπ+,k∈Z,故φ的取值范围是[2kπ+,2kπ+],k∈Z,结合所给的选项,故选:B.10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.【考点】函数的值.【分析】由已知得a≤﹣1,a﹣2b=a﹣e a﹣1,再由函数y=﹣e x+a﹣1,(x≤﹣1)单调递减,能求出实数a﹣2b的范围.【解答】解:∵函数f(x)=,a<b,f(a)=f(b),∴a≤﹣1,∵f(a)=e a,f(b)=2b﹣1,且f(a)=f(b),∴e a=2b﹣1,得b=,∴a﹣2b=a﹣e a﹣1,又∵函数y=﹣e x+a﹣1(x≤﹣1)为单调递减函数,∴a﹣2b<f(﹣1)=﹣e﹣1=﹣,∴实数a﹣2b的范围是(﹣∞,﹣).故选:B.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用.【分析】首先根据诱导公式和同角三角函数的关系式进行恒等变换,整理成正切函数的关系式,进一步求出正切的函数值.【解答】解:cos2α+cos(+2α)=,则:,则:,整理得:3tan2α+20tanα﹣7=0,所以:(3tanα﹣1)(tanα+7)=0解得:tan或tanα=﹣7,由于:α∈(0,),所以:.故答案为:12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是﹣2 .【考点】直线与圆的位置关系.【分析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.【解答】解:圆x2+y2﹣2ax+a=0可化为(x﹣a)2+y2=a2﹣a∴圆心为:(a,0),半径为:圆心到直线的距离为:d==.∵直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,∴a2+1+1=a2﹣a,∴a=﹣2.故答案为:﹣2.13.如果实数x,y满足条件,则z=x+y的最小值为.【考点】简单线性规划.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,直线在y轴上的截距最小,z有最小值为.故答案为:.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.【考点】由三视图求面积、体积.【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算. 【解答】解:由三视图知几何体是圆锥的一部分, 由正视图可得:底面扇形的圆心角为120°, 又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=.故答案为:15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= ﹣4 . 【考点】根的存在性及根的个数判断.【分析】由题意可得f (x )=x 2+2x ,可得图象关于x=﹣1对称,由函数图象的变换可得函数y=ln|x+1|(x ≠﹣1)的图象关于直线x=﹣1对称,进而可得四个根关于直线x=﹣1对称,由此可得其和. 【解答】解:由题意可得f (x )=x*2=x 2+2x , 其图象为开口向上的抛物线,对称轴为x=﹣1, 函数y=ln|x+1|可由y=ln|x|向左平移1个单位得到, 而函数函数y=ln|x|为偶函数,图象关于y 轴对称, 故函数y=ln|x+1|的图象关于直线x=﹣1对称,故方程为f (x )=ln|x+1|(x ≠﹣1)四个互不相等的实数根x 1,x 2,x 3,x 4, 也关于直线x=﹣1对称,不妨设x 1与x 2对称,x 3与x 4对称, 必有x 1+x 2=﹣2,x 3+x 4=﹣2,故x1+x2+x3+x4=﹣4,故答案为:﹣4.三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC的内角A、B、C所对的边a、b、c,且(Ⅰ)求角A(Ⅱ)若,求a的最小值.【考点】正弦定理.【分析】(Ⅰ)由正弦定理化简已知可得sinAsinB=sinBcosA,又sinB≠0,从而可求tanA,由于0<A <π,即可解得A的值.(Ⅱ)利用平面向量数量积的运算和余弦定理化简已知等式可得bc=8,利用余弦定理及基本不等式即可求得a的最小值.【解答】(本题满分为12分)解:(Ⅰ)因为,由正弦定理,得sinAsinB=sinBcosA,又sinB≠0,从而tanA=,由于0<A<π,所以A=.…4分(Ⅱ)由题意可得:=+•(﹣)﹣=+﹣•﹣=c2+b2﹣bccosA﹣a2=2bccosA﹣bccosA=bc=4,∵bc=8,由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc=8,∴a≥2,∴a的最小值为.…12分17.如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD 于点P(Ⅰ)证明:PF∥面ECD;(Ⅱ)求二面角B﹣EC﹣A的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取CD中点G,连结EG、PG,推导出四边形EFPG是平行四边形,由此能证明FP∥平面ECD.(Ⅱ)以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣EC﹣A的大小.【解答】证明:(Ⅰ)取CD中点G,连结EG、PG,∵点P为矩形ABCD对角线交点,∴在△ACD中,PG AD,又EF=1,AD=2,EF∥AD,∴EF PG,∴四边形EFPG是平行四边形,∴FP∥EG,又FP⊄平面ECD,EG⊂平面ECD,∴FP∥平面ECD.解:(Ⅱ)由题意,以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,则F(0,0,1),B(1,0,0),C(1,2,0),E(0,1,1),∴=(0,2,0),=(1,1,﹣1),=(1,2,0),取FB中点H,连结AH,则=(),∵=0, =0,∴AH⊥平面EBC,故取平面AEC法向量为=(),设平面AEC 的法向量=(x ,y ,1),则,∴=(2,﹣1,1),cos <>===,∴二面角B ﹣EC ﹣A 的大小为.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n . 【考点】数列的求和;数列递推式.【分析】(I )设正项等比数列{a n }的公比为q (q >0),由等比数列的通项公式,解方程可得首项和公比均为2,可得a n =a 1q n ﹣1=2n ;再由n 换为n+1,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,运用等比数列的通项公式,即可得到所求b n ;(Ⅱ)讨论n 为奇数和偶数,运用分组求和和等比数列的求和公式,化简整理即可得到所求和. 【解答】解:(I )设正项等比数列{a n }的公比为q (q >0), 由题意可得a 1+a 1q=6,a 1+a 1q+a 1q 2+a 1q 3=30, 解得a 1=q=2(负的舍去), 可得a n =a 1q n ﹣1=2n ; 由b n •b n+1=a n =2n ,b 1=1, 可得b 2=2,即有b n+1•b n+2=a n =2n+1,可得=2,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,即有b n =;(Ⅱ)当n 为偶数时,前n 项和为T n =(1+2+..+)+(2+4+..+)=+=3•()n ﹣3;当n 为奇数时,前n 项和为T n =T n ﹣1+=3•()n ﹣1﹣3+=()n+3﹣3.综上可得,T n =.19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.【考点】扇形面积公式;弧度制的应用.【分析】(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点建立平面直角坐标系,求出曲边AB 所在的抛物线方程,利用积分计算曲边三角形ABC 地块的面积;(Ⅱ)设出点D 为(x ,x 2),表示出|DF|、|DE|与|CF|的长,求出直角梯形CEDF 的面积表达式,利用导数求出它的最大值即可.【解答】解:(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点,建立平面直角坐标系xOy ,如图所示;则A(0,0),C(0,8),设曲边AB所在的抛物线方程为y=ax2(a>0),则点B(2,4a),又|BC|==2,解得a=1或a=3(此时4a=12>8,不合题意,舍去);∴抛物线方程为y=x2,x∈[0,2];又x2=x3=,∴此曲边三角形ABC地块的面积为﹣x2=×(8+4)×2﹣=;S梯形ACBM(Ⅱ)设点D(x,x2),则F(0,x2),直线BC的方程为:2x+y﹣8=0,∴E(x,8﹣2x),|DF|=x,|DE|=8﹣2x﹣x2,|CF|=8﹣x2,直角梯形CEDF的面积为S(x)=x[(8﹣2x﹣x2)+(8﹣x2)]=﹣x3﹣x2+8x,x∈(0,2),求导得S′(x)=﹣3x2﹣2x+8,令S′(x)=0,解得x=或x=﹣2(不合题意,舍去);当x∈(0,)时,S(x)单调递增,x∈(,2)时,S(x)单调递减,∴x=时,S(x)取得最大值是S ()=﹣﹣+8×=;∴科技园区面积S 的最大值为.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可得a=2,代入点,解方程可得椭圆方程;(Ⅱ)设过点B (1,0)的直线l 方程为:y=k (x ﹣1),由,可得(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,由已知条件利用韦达定理推导出直线PB 的斜率k 2=﹣,由此能证明k •k ′为定值﹣.【解答】解:(Ⅰ)由题意可得a=2, +=1,a 2﹣b 2=c 2, 解得b=1,即有椭圆方程为+y 2=1;(Ⅱ)证明:设过点B (1,0)的直线l 方程为:y=k 1(x ﹣1), 由,可得:(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,因为点B (1,0)在椭圆内,所以直线l 和椭圆都相交, 即△>0恒成立.设点E (x 1,y 1),F (x 2,y 2),则x 1+x 2=,x 1x 2=.因为直线AE 的方程为:y=(x ﹣2),直线AF的方程为:y=(x﹣2),令x=3,得M(3,),N(3,),所以点P的坐标(3,(+)).直线PB的斜率为k2==(+)=•=•=•=﹣.所以k1•k2为定值﹣.21.已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x﹣1(Ⅰ)求a的值(Ⅱ)若,证明:当x>1时,(Ⅲ)对于在(0,1)中的任意一个常数b,是否存在正数x,使得:.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出f(x)的导数,可得切线的斜率和切点,解方程可得a的值;(Ⅱ)求出f(x)=lnx+x,要证原不等式成立,即证xlnx+x﹣k(x﹣3)>0,可令g(x)=xlnx+x﹣k(x ﹣3),求出导数,判断符号,可得单调性,即可得证;(Ⅲ)对于在(0,1)中的任意一个常数b,假设存在正数x,使得:.运用转化思想可令H(x)=(x+1)•e﹣x+x2﹣1,求出导数判断单调性,可得最小值,即可得到结论.【解答】解:(Ⅰ)函数f(x)=lnx+ax的导数为f′(x)=+a,在点(t,f(t))处切线方程为y=2x﹣1,可得f′(t)=+a=2,f(t)=2t﹣1=lnt+at,解得a=t=1;(Ⅱ)证明:由(Ⅰ)可得f (x )=lnx+x ,要证当x >1时,,即证lnx >k (1﹣)﹣1(x >1), 即为xlnx+x ﹣k (x ﹣3)>0,可令g (x )=xlnx+x ﹣k (x ﹣3),g ′(x )=2+lnx ﹣k ,由,x >1,可得lnx >0,2﹣k ≥0,即有g ′(x )>0,g (x )在(1,+∞)递增, 可得g (x )>g (1)=1+2k ≥0,故当x >1时,恒成立;(Ⅲ)对于在(0,1)中的任意一个常数b ,假设存在正数x 0,使得:.由e f (x0+1)﹣2x0﹣1+x 02=e ln (x0+1)﹣x0+x 02=(x 0+1)•e ﹣x0+x 02.即对于b ∈(0,1),存在正数x 0,使得(x 0+1)•e ﹣x0+x 02﹣1<0, 从而存在正数x 0,使得上式成立,只需上式的最小值小于0即可.令H (x )=(x+1)•e ﹣x +x 2﹣1,H ′(x )=e ﹣x ﹣(x+1)•e ﹣x +bx=x (b ﹣e ﹣x ), 令H ′(x )>0,解得x >﹣lnb ,令H ′(x )<0,解得0<x <﹣lnb , 则x=﹣lnb 为函数H (x )的极小值点,即为最小值点.故H (x )的最小值为H (﹣lnb )=(﹣lnb+1)e lnb +ln 2b ﹣1=ln 2b ﹣blnb+b ﹣1,再令G (x )=ln 2x ﹣xlnx+x ﹣1,(0<x <1),G ′(x )=(ln 2x+2lnx )﹣(1+lnx )+1=ln 2x >0,则G (x )在(0,1)递增,可得G (x )<G (1)=0,则H (﹣lnb )<0.故存在正数x 0=﹣lnb ,使得.。

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。

-2 B。

-1 C。

1 D。

22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。

- B。

C。

-2 D。

2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。

- B。

C。

-2 D。

23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。

1/33 B。

- C。

-2 D。

-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。

1/33 B。

- C。

-2 D。

-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。

3/33 B。

- C。

3 D。

33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。

3/33 B。

- C。

2023-2024学年山东省泰安市泰安一中高一(上)期中数学试卷【答案版】

2023-2024学年山东省泰安市泰安一中高一(上)期中数学试卷【答案版】

2023-2024学年山东省泰安市泰安一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,2,3,4,5},N ={2,4,6,8},则M ∩(∁U N )( ) A .{1,3,5}B .{1,3,5,7}C .{2,4}D .∅2.设p :△ABC 是等腰三角形,q :△ABC 是等边三角形,则p 是q 的( )条件. A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要3.关于x 的不等式3x−4x−1<2的解集为( )A .(﹣∞,2)B .(2,+∞)C .(0,1)D .(1,2)4.已知实数a ,b >0,则下列选项中正确的是( ) A .a 23=√a 3 B .a 23⋅a 32=aC .(a √b)6=a 6b 3D .a π3⋅a−π3=05.函数f(x)=x 2−1x的大致图像为( ) A . B .C .D .6.已知函数f (x 2)的定义域为[﹣1,2],则函数f (x )的定义域为( ) A .[−1,√2]B .[0,4]C .[0,2]D .[1,4]7.已知实数x ,y >0,1x+4y=2,且x +y ≥m 恒成立,则实数m 的取值范围为( )A .(−∞,92]B .(﹣∞,9]C .[92,+∞)D .[9,+∞)8.若实数a >0,函数f(x)={ax +52,x ∈(−∞,2)x +ax +2a ,x ∈[2,+∞)在R 上是单调函数,则a 的取值范围为( ) A .(0,4]B .[1,2]C .[1,4]D .[2,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有错选的得0分. 9.下列选项正确的是( ) A .若a >b ,则ab >1B .若a >b ,c >d ,则a ﹣d >b ﹣cC .若ac 2>bc 2,则a >bD .若a >b ,则1a<1b10.下列各选项给出的两个函数中,表示相同函数的有( ) A .f (x )=x 0,g (x )=1B .f(x)=(√x 3)3,g (x )=x C .f(x)=x 2−4x−2,g (x )=x +2D .f (x )=x 2﹣1,g (t )=t 2﹣111.已知函数f(x)=x 2+1x 2−1的定义域为I ,则下列选项正确的是( )A .I ={x |x ≠1且x ≠﹣1}B .f (x )的图象关于y 轴对称C .f (x )的值域为(﹣∞,﹣1)∪(1,+∞)D .当x ∈I 且x ≠0时,f(x)+f(1x)=012.某工厂生产的产品分正品和次品,正品每个重10g ,次品每个重9g ,正品次品分别装袋,每袋装50个产品.现有10袋产品,其中有且只有一袋次品,为找出哪一袋是次品,质检员设计了如下方法:将10袋产品从1~10编号,从第i 袋中取出i 个产品(i =1,2,…,10)(如:从第1袋取出1个产品),并将取出的所有产品一起用秤称出其重量为wg .设次品袋的编号为n ,则下列选项正确的是( ) A .w 是n 的函数 B .n =2时,w =551C .w 的最小值为540D .w =549时,第1袋为次品袋三、填空题:本题共4小题,每小题5分,共20分.13.计算:√(√3−2)44−(827)−23+(1√33)−32= .14.已知函数f (x )=ax 5+bx 3+cx +1(abc ≠0),则f (1)+f (﹣1)= .15.已知二次函数f (x )=ax 2+bx +c (a ≠0)满足∀x ∈R ,f (x )≤f (3),则函数f (x )的单调递增区间为 .16.已知y =f (x )是定义在R 上的偶函数,且在(﹣∞,0]上单调递减,f (3)+f (﹣3)=2,则关于x 的不等式f (x +1)≥1的解集为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=√−x2+3x+4的定义域为A,集合B={x|2m≤x≤m+3},(1)当m=﹣2时,求A∩B;(2)若A∩B=B,求实数m的取值范围.18.(12分)已知函数y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求函数y=f(x)的解析式,并在答题卡上作出函数y=f(x)的图象;(2)直接写出函数f(x)的单调递增区间;(3)直接写出不等式f(x)≥0的解集.19.(12分)已知关于x的不等式x2+bx+c>0的解集为{x|x<1或x>3}.(1)求实数b,c的值;(2)求函数f(x)=x2+bx+c在[t,t+2]上的最小值g(t).20.(12分)已知函数f(x)=ax2﹣ax﹣1,a∈R,(1)设命题p:∃x∈R,f(x)>0,若p为假命题,求实数a的取值范围;(2)若实数a>0,解关于x的不等式f(x)≤x﹣2.21.(12分)已知函数y=f(x)满足:f(x)+2f(1x )=2√x1√x>0).(1)求函数y=f(x)的解析式;(2)判断函数f(x)在(0,+∞)上的单调性并证明.22.(12分)已知幂函数f(x)=(m2+m−11)x m7的图象过原点,(1)求实数m的值;(2)判断函数f(x)的奇偶性并证明;(3)若∀x∈[0,3],f(x2﹣4﹣a)+f(x﹣ax)≤0,求实数a的取值范围.2023-2024学年山东省泰安市泰安一中高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,2,3,4,5},N ={2,4,6,8},则M ∩(∁U N )( ) A .{1,3,5}B .{1,3,5,7}C .{2,4}D .∅解:因为U ={1,2,3,4,5,6,7,8},M ={1,2,3,4,5},N ={2,4,6,8}, 所以∁U N ={1,3,5,7},故M ∩(∁U N )={1,3,5}. 故选:A .2.设p :△ABC 是等腰三角形,q :△ABC 是等边三角形,则p 是q 的( )条件. A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要解:设△ABC 中角A 、B 、C 所对的边分别为a 、b 、c ,若△ABC 是等腰三角形,假设是a =b ≠c ,此时△ABC 不是等边三角形,故p 不能推出q , 反之,若△ABC 是等边三角形,则有a =b =c ,此时△ABC 一定是等腰三角形,故q 能推出p . 综上所述,p 是q 的必要不充分条件. 故选:B . 3.关于x 的不等式3x−4x−1<2的解集为( )A .(﹣∞,2)B .(2,+∞)C .(0,1)D .(1,2)解:由3x−4x−1<2,得3x−4x−1−2=x−2x−1<0⇔(x −1)(x −2)<0,解得1<x <2,所以不等式的解集为(1,2). 故选:D .4.已知实数a ,b >0,则下列选项中正确的是( )A .a 23=√a 3B .a 23⋅a 32=aC .(a √b)6=a 6b 3D .a π3⋅a−π3=0解:对A ,a 23=√a 23,A 错误; 对B ,a 23⋅a 32=a 136,B错误;对C ,(a √b)6=a 6b 3,C 正确; 对D ,a π3⋅a−π3=a 0=1,D 错误.故选:C .5.函数f(x)=x 2−1x 的大致图像为( )A .B .C .D .解:由题意x ≠0,因为f(x)=x 2−1x, 所以f (﹣x )=x 2−1−x=−f (x ),即f (x )为奇函数,图象关于原点对称,排除选项A ,B , 当x >1时,f (x )>0,排除选项D . 故选:C .6.已知函数f (x 2)的定义域为[﹣1,2],则函数f (x )的定义域为( ) A .[−1,√2]B .[0,4]C .[0,2]D .[1,4]解:依题意,函数f (x 2)的定义域为[﹣1,2], 所以﹣1≤x ≤2,0≤x 2≤4, 所以f (x )的定义域是[0,4]. 故选:B .7.已知实数x ,y >0,1x +4y=2,且x +y ≥m 恒成立,则实数m 的取值范围为( )A .(−∞,92] B .(﹣∞,9]C .[92,+∞)D .[9,+∞)解:由1x +4y=2,可得:12x+2y=1,x ,y >0,则x +y =(x +y)⋅(12x +2y )=12+2+y2x +2xy ≥52+2√y2x ⋅2xy =92,当且仅当y2x=2x y,即y =2x =3时取等号,所以(x +y)min =92,由x +y ≥m 恒成立,可得m ≤(x +y)min =92,即实数m 的取值范围为(−∞,92]. 故选:A .8.若实数a >0,函数f(x)={ax +52,x ∈(−∞,2)x +ax +2a ,x ∈[2,+∞)在R 上是单调函数,则a 的取值范围为( ) A .(0,4]B .[1,2]C .[1,4]D .[2,+∞)解:根据题意,因为实数a >0且函数f(x)={ax +52,x ∈(−∞,2)x +ax +2a ,x ∈[2,+∞)在R 上是单调函数, 则有{√a ≤22a +52≤2+a2+2a,解得1≤a ≤4,所以a 的取值范围为[1,4]. 故选:C .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有错选的得0分. 9.下列选项正确的是( ) A .若a >b ,则ab >1B .若a >b ,c >d ,则a ﹣d >b ﹣cC .若ac 2>bc 2,则a >bD .若a >b ,则1a<1b解:当a =2,b =﹣1时,a b=−2<1,1a=12>1b=−1,A 、D 两项均不正确;c >d ⇔﹣d >﹣c ,结合a >b ,可得a ﹣d >b ﹣c ,故B 正确; ac 2>bc 2,则c 2>0,可得a >b ,C 正确. 故选:BC .10.下列各选项给出的两个函数中,表示相同函数的有( ) A .f (x )=x 0,g (x )=1B .f(x)=(√x 3)3,g (x )=x C .f(x)=x 2−4x−2,g (x )=x +2D .f (x )=x 2﹣1,g (t )=t 2﹣1解:对于A ,由于f (x )=x 0的定义域为(﹣∞,0)∪(0,+∞),g (x )=1的定义域为R ,故A 错误;对于B ,由于f(x)=(√x 3)3=x ,与g (x )=x 的定义域与值域均为R ,且对应关系也相同,故B 正确; 对于C ,由于f(x)=x 2−4x−2的定义域为(﹣∞,2)∪(2,+∞),g (x )=x +2的定义域为R ,故C 错误;对于D ,由于f (x )=x 2﹣1与g (t )=t 2﹣1的定义域均为R ,值域均为[﹣1,+∞),且对应关系也相同,故D 正确. 故选:BD .11.已知函数f(x)=x 2+1x 2−1的定义域为I ,则下列选项正确的是( )A .I ={x |x ≠1且x ≠﹣1}B .f (x )的图象关于y 轴对称C .f (x )的值域为(﹣∞,﹣1)∪(1,+∞)D .当x ∈I 且x ≠0时,f(x)+f(1x )=0解:由解析式知:x 2﹣1≠0,即x =1且x =﹣1,故I ={x |x ≠1且x ≠﹣1},A 对;由f(−x)=(−x)2+1(−x)2−1=x 2+1x 2−1=f(x),故f (x )的图象关于y 轴对称,B 对; 由f(x)=1+2x 2−1,显然f(0)=1+20−1=−1,值域含﹣1,C 错;由f(x)+f(1x )=x 2+1x 2−1+1x 2+11x 2−1=x 2+1x 2−1+1+x 21−x 2=x 2+1x 2−1−x 2+1x 2−1=0,D 对.故选:ABD .12.某工厂生产的产品分正品和次品,正品每个重10g ,次品每个重9g ,正品次品分别装袋,每袋装50个产品.现有10袋产品,其中有且只有一袋次品,为找出哪一袋是次品,质检员设计了如下方法:将10袋产品从1~10编号,从第i 袋中取出i 个产品(i =1,2,…,10)(如:从第1袋取出1个产品),并将取出的所有产品一起用秤称出其重量为wg .设次品袋的编号为n ,则下列选项正确的是( ) A .w 是n 的函数 B .n =2时,w =551C .w 的最小值为540D .w =549时,第1袋为次品袋解:由题意w =10×(55﹣n )+9n =550﹣n 且n =1,2,⋯,10, 即w 是n 的函数,A 对;当n =2时,w =550﹣2=548,B 错;由于w =550﹣n 递减,故w 的最小值为w =550﹣10=540,C 对; 令w =550﹣n =549⇒n =1,D 对. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.计算:√(√3−2)44−(827)−23+(1√33)−32= −14 .解:原式=(2−√3)﹣[(32)3]23+(3−13)−32=2−√3−94+√3=−14.故答案为:−14.14.已知函数f (x )=ax 5+bx 3+cx +1(abc ≠0),则f (1)+f (﹣1)= 2 . 解:根据题意,函数f (x )=ax 5+bx 3+cx +1(abc ≠0), 则f (1)=a +b +c +1,f (﹣2)=﹣a ﹣b ﹣c +1, 故f (1)+f (﹣1)=a +b +c +1﹣a ﹣b ﹣c +1=2. 故答案为:2.15.已知二次函数f (x )=ax 2+bx +c (a ≠0)满足∀x ∈R ,f (x )≤f (3),则函数f (x )的单调递增区间为 (﹣∞,3] .解:依题意,二次函数f (x )满足f (x )≤f (3), 所以f (x )的对称轴是直线x =3,且图象开口向下, 所以函数f (x )的单调递增区间为(﹣∞,3]. 故答案为:(﹣∞,3].16.已知y =f (x )是定义在R 上的偶函数,且在(﹣∞,0]上单调递减,f (3)+f (﹣3)=2,则关于x 的不等式f (x +1)≥1的解集为 (﹣∞,﹣4]∪[2,+∞) .解:由题设,易知偶函数y =f (x )在(﹣∞,0]上递减,在(0,+∞)上递增,且f (3)=f (﹣3)=1,所以f (x +1)≥1=f (|±3|),故|x +1|≥3,可得x +1≥3或x +1≤﹣3, 所以x ≥2或x ≤﹣4,故解集为(﹣∞,﹣4]∪[2,+∞). 故答案为:(﹣∞,﹣4]∪[2,+∞).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤 17.(10分)已知函数f(x)=√−x 2+3x +4的定义域为A ,集合B ={x |2m ≤x ≤m +3}, (1)当m =﹣2时,求A ∩B ;(2)若A ∩B =B ,求实数m 的取值范围. 解:(1)由已知,﹣x 2+3x +4≥0, ∴﹣1≤x ≤4,A =[﹣1,4].m =﹣2时,B =[﹣4,1],∴A ∩B =[﹣1,1]. (2)A ∩B =B ⇔B ⊆A .当2m >m +3即m >3时,B =∅⊆A ,适合题意; 当m ≤3时,B ⊆A ⇔{m ≤32m ≥−1,m +3≤4,∴−12≤m ≤1.综上,m∈[−12,1]∪(3,+∞).18.(12分)已知函数y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求函数y=f(x)的解析式,并在答题卡上作出函数y=f(x)的图象;(2)直接写出函数f(x)的单调递增区间;(3)直接写出不等式f(x)≥0的解集.解:(1)由已知,f(0)=0,当x<0时,﹣x>0,∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x=﹣f(x),∴f(x)=﹣x2﹣2x,x<0.∴f(x)={−x2−2x,x<0 x2−2x,x≥0;图象如下图所示:(2)由图象可得,f(x)的单调递增区间为:(﹣∞,﹣1],[1,+∞).(开区间亦可,用连接不得分)(3)由图可得,不等式f(x)≥0的解集为[﹣2,0]∪[2,+∞).19.(12分)已知关于x 的不等式x 2+bx +c >0的解集为{x |x <1或x >3}. (1)求实数b ,c 的值;(2)求函数f (x )=x 2+bx +c 在[t ,t +2]上的最小值g (t ). 解:(1)由已知得关于x 的方程x 2+bx +c =0的两根1,3, 由韦达定理,{3+1=−b 3×1=c ,∴{b =−4c =3.(2)由(1)得f (x )=x 2﹣4x +3,f (x )图象的对称轴直线x =2,f (2)=﹣1, 当t +2≤2即t ≤0时,f (x )在[t ,t +2]上单调递减, ∴f(x)min =f(t +2)=t 2−1;当t <2<t +2即0<t <2时,f (x )在[t ,2]上单调递减,在[2,t +2]上单调递增, (或由二次函数的性质得)∴f (x )min =f (2)=﹣1; 当t ≥2时,f (x )在[t ,t +2]上单调递增, ∴f(x)min =f(t)=t 2−4t +3;综上,g(t)={t 2−1,t ≤0−1,0<t <2t 2−4t +3,t ≥2.20.(12分)已知函数f (x )=ax 2﹣ax ﹣1,a ∈R ,(1)设命题p :∃x ∈R ,f (x )>0,若p 为假命题,求实数a 的取值范围; (2)若实数a >0,解关于x 的不等式f (x )≤x ﹣2. 解:(1)由已知¬p :∀x ∈R ,f (x )≤0为真命题, 当a =0时,f (x )=﹣1≤0显然成立, 当a ≠0时,¬p 为真命题, 则 {a <0Δ=a 2−4a ≤0,解得﹣4≤a <0;综上,a ∈[﹣4,0];(2)f (x )≤x ﹣2⇒g (x )=f (x )﹣x +2=ax 2﹣(a +1)x +1≤0, ∵a >0,g (x )=(ax ﹣1)(x ﹣1)=0的根为1a ,1,当1a=1时,即a =1,∴g (x )≤0解集为{1}; 当1a <1,即a >1时,第11页(共12页) ∴g (x )≤0解集为[1a,1];当1a >1,即0<a <1时, ∴g (x )≤0解集为[1,1a],综上,当a =1时,不等式的解集为{1};当a >1时,不等式的解集为[1a ,1]; 当0<a <1时,不等式的解集为[1,1a ]. 21.(12分)已知函数y =f (x )满足:f(x)+2f(1x )=2√x 1√x >0). (1)求函数y =f (x )的解析式;(2)判断函数f (x )在(0,+∞)上的单调性并证明.解:(1)∵x >0,f(x)+2f(1x )=2√x 1√x ,① ∴1x>0,∴f(1x )+2f(x)=1√x +√x ,② ∴②×2﹣①得,3f(x)=3√x ,∴f(x)=1√x ,x >0. (2)f (x )在(0,+∞)上单调递减,证明如下:∀x 1,x 2∈(0,+∞),且x 1<x 2,f(x 1)−f(x 2)=1x 1x =√x 2−√x 1x x =21x x (x +x ), ∵0<x 1<x 2,∴x 2﹣x 1>0,√x 1√x 2>0,√x 2+√x 1>0.∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上单调递减.22.(12分)已知幂函数f(x)=(m 2+m−11)x m 7的图象过原点,(1)求实数m 的值;(2)判断函数f (x )的奇偶性并证明;(3)若∀x ∈[0,3],f (x 2﹣4﹣a )+f (x ﹣ax )≤0,求实数a 的取值范围.解:(1)由已知{m 2+m −11=1m 7>0, 解得m =3;(2)f (x )为奇函数,理由如下:由(1)可知f(x)=√x 37,定义域为R ,∀x ∈R ,﹣x ∈R ,则f(−x)=√(−x)37=−√x 37=−f(x),故f(x)为奇函数;(3)∵f(x)为奇函数,∴f(x2﹣4﹣a)≤﹣f(x﹣ax)=f(ax﹣x),∵f(x)为增函数,∴x2﹣4﹣a≤ax﹣x,∴∀x∈[0,3],f(x2﹣4﹣a)+f(x﹣ax)≤0,等价于∀x∈[0,3],x2+x﹣4≤a(x+1),∵x+1>0,∴a≥x2+x−4x+1=x(x+1)−4x+1=x−4x+1,令g(x)=x−4x+1,x∈[0,3],∵g(x)=x−4x+1在[0,3]上单调递增,∴g(x)max=g(3)=3﹣1=2,∴a≥2,即a∈[2,+∞).第12页(共12页)。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

2017-2018学年高一下学期期末考试试卷 物理 (含答案)

2017-2018学年高一下学期期末考试试卷 物理 (含答案)

2017-2018学年高一下学期期末考试试卷物理 (含答案)XXX2018-201年度下学期期末考试高一(18届)物理试题说明:1.测试时间:90分钟,总分:100分。

2.客观题需涂在答题纸上,主观题需写在答题纸的相应位置上。

第Ⅰ卷(48分)一、选择题(本题共12小题,每小题4分,共48分。

在每个小题所给出的四个选项中,第9、10、11、12题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不答的得分。

其余题目为单选题)1.下列说法正确的是()A.XXX的“XXX说”阐述了宇宙以太阳为中心,其它星体围绕太阳旋转。

B.XXX因为发表了行星运动的三个定律而获得了诺贝尔物理学奖。

C.XXX得出了万有引力定律并测出了引力常量G。

D.库仑定律是库仑经过实验得出的,适用于真空中两个点电荷间。

2.质量为2 kg的质点在xy平面上做曲线运动,在x方向的速度图像和y方向的位移图像如图所示,下列说法正确的是()A.质点的初速度为3 m/s。

B.质点所受的合外力为3 N。

C.质点初速度的方向与合外力方向垂直。

D.2 s末质点速度大小为6 m/s。

3.如图所示,将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直墙上,不计空气阻力,则下列说法中正确的是()A.从抛出到撞墙,第二次球在空中运动的时间较短。

B.篮球两次撞墙的速度可能相等。

C.篮球两次抛出时速度的竖直分量可能相等。

D.抛出时的动能,第一次一定比第二次大。

4.地球半径为R,在距球心r处(r>R)有一同步卫星。

另有一半径为2R的星球A,在距球心3r处也有一同步卫星,它的周期是48 h。

那么A星球平均密度与地球平均密度的比值为()A.9∶32B.3∶8C.27∶32D.27∶165.如图,小球从高处下落到竖直放置的轻弹簧上,刚接触轻弹簧的瞬间速度是5 m/s,接触弹簧后小球速度v和弹簧缩短的长度△x之间关系如图所示,其中A为曲线的最高点。

已知该小球重为2 N,弹簧在受到撞击至压缩到最短的过程中始终发生弹性形变。

2017-2018学年山东省泰安市新泰二中高一(上)第三次月考数学试卷

2017-2018学年山东省泰安市新泰二中高一(上)第三次月考数学试卷

2017-2018学年山东省泰安市新泰二中高一(上)第三次月考数学试卷一、选择题:本题共12小题,每小题5分共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)如图是由哪个平面图形旋转得到的()A.B.C.D.2.(5分)设p:|4x﹣3|≤1;q:x2﹣(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,则实数a的取值范围是()A.[0,]B.(0,)C.(﹣∞,0]∪[,+∞)D.(﹣∞,0)∪(,+∞)3.(5分)函数f(x)=πx+log2x的零点所在区间为()A.[0,]B.[,]C.[,]D.[,1]4.(5分)函数的定义域是()A.(0,+∞)B.(1,+∞)C.(0,1) D.(0,1)∪(1,+∞)5.(5分)设f(x)=,则f(f(﹣2))=()A.2 B.﹣2 C.4 D.﹣46.(5分)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④7.(5分)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成()A.5部分B.6部分C.7部分D.8部分8.(5分)下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形B.棱柱即是两个底面全等且其余各面都是矩形的多面体C.任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥D.通过圆台侧面上一点,有无数条母线9.(5分)已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:110.(5分)正方体内切球和外接球半径的比为()A.1:B.1:C.: D.1:211.(5分)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是()A.B.C.D.12.(5分)若函数y=ax与y=﹣在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是()A.增函数B.减函数C.先增后减D.先减后增二、填空题:本题共4小题,每小题5分共20分.把答案填在答题卡的对应题号后的横线上.13.(5分)函数的零点个数是个.14.(5分)若函数y=2﹣x+1+m的图象不经过第一象限,则m的取值范围是.15.(5分)若圆锥的表面积为3π,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为.16.(5分)利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的是.三、解答题(17~21题每题12分,22题14分共74分)17.(12分)如图:S是平行四边形ABCD平面外一点,M,N分别是SA,BD上的中点,求证:MN∥平面SBC.18.(12分)如图,在底面半径为2、母线长为4的圆锥中内接一个高为的圆柱,求圆柱的体积及表面积.19.(12分)已知函数f(x)=b•a x(其中a,b为常量,且a>0,且a≠1)图象过点A(1,6),B(3,24).(Ⅰ)求f(x)的解析式;(Ⅱ)若不等式满足()x+()x﹣m≥0 在x∈(﹣∞,1]上恒成立,求实数m的取值范围.20.(12分)如图,空间四边形ABCD中,E、F分别是AD、AB的中点,G、H 分别在BC、CD上,且BG:GC=DH:HC=1:2.(1)求证:E、F、G、H四点共面;(2)设FG与HE交于点P,求证:P、A、C三点共线.21.(12分)若函数y=lg(3﹣4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2﹣3×4x的最大值及相应的x的值.22.(10分)如图.已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1.H是B1C1的中点.(1)求证:E,B,F,D1四点共面:(2)求证:平面A1GH∥平面BED1F.2017-2018学年山东省泰安市新泰二中高一(上)第三次月考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)如图是由哪个平面图形旋转得到的()A.B.C.D.【分析】利用所给的几何体是由上部的圆锥和下部的圆台组合而成的,从而得到轴截面的图形.【解答】解:图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故轴截面的上部是直角三角形,下部为直角梯形构成,故选:D.【点评】本题考查旋转体的结构特征,旋转体的轴截面的形状.2.(5分)设p:|4x﹣3|≤1;q:x2﹣(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,则实数a的取值范围是()A.[0,]B.(0,)C.(﹣∞,0]∪[,+∞)D.(﹣∞,0)∪(,+∞)【分析】先化简命题p,q即解绝对值不等式和二次不等式,再求出┐p,┐q,据已知写出两集合端点的大小关系,列出不等式解得.【解答】解:∵p:|4x﹣3|≤1,∴p:≤x≤1,∴┐p:x>1或x<;∵q:x2﹣(2a+1)x+a(a+1)≤0,∴q:a≤x≤a+1,┐q:x>a+1或x<a.又∵┐p是┐q的必要而不充分条件,即┐q⇒┐p,而┐p推不出┐q,∴⇒0≤a≤.故选:A.【点评】本题考查解绝对值不等式和二次不等式;考查充要条件的转化.3.(5分)函数f(x)=πx+log2x的零点所在区间为()A.[0,]B.[,]C.[,]D.[,1]【分析】根据函数的零点存在性定理,把题目中所给的四个选项中出现在端点的数字都代入函数的解析式中,得到函数值,把区间两个端点对应的函数值符合相反的找出了,得到结果.【解答】解:∵f()=<0,f()=<0,f()=>0,f(1)=π,∴只有f()•f()<0,∴函数的零点在区间[,]上.故选:C.【点评】本题考查函数零点的存在性判定定理,考查基本初等函数的函数值的求法,是一个基础题,这是一个新加内容,这种题目可以出现在高考题目中.4.(5分)函数的定义域是()A.(0,+∞)B.(1,+∞)C.(0,1) D.(0,1)∪(1,+∞)【分析】由题意可得2x﹣1>0,且x>1,由此求得函数的定义域.【解答】解:∵函数,∴2x﹣1>0,且x>1.解得x>1,故函数的定义域为{x|x>1},故选:B.【点评】本题主要考查求函数的定义域,属于基础题.5.(5分)设f(x)=,则f(f(﹣2))=()A.2 B.﹣2 C.4 D.﹣4【分析】根据分段函数的表达式,直接代入即可得到结论.【解答】解:由分段函数的表达式可知f(﹣2)=10﹣2>0,则f(f(﹣2))=f(10﹣2)=lg10﹣2=﹣2,故选:B.【点评】本题主要考查函数值的计算,根据分段函数的表达式是解决本题的关键.6.(5分)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④【分析】利用线线关系以及线面平行、线面垂直的性质对四个命题分析解答.【解答】解:由平行线的传递性可以判断①正确;在空间,垂直于同一条直线的两条直线,可能平行、相交或者异面.故②错误;平行于同一个平面的两条直线的位置关系有:平行、相交、异面.故③错误;垂直于同一个平面的两条直线是平行的;故④正确;故选:C.【点评】本题考查了线线关系,线面关系的判断;关键是熟练运用相关的公里或者定理.7.(5分)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成()A.5部分B.6部分C.7部分D.8部分【分析】画出图形,用三线表示三个平面,结合图形进行分析.【解答】解:可用三线a,b,c表示三个平面,其截面如图,将空间分成7个部分,故选:C.【点评】画出简图是解决问题的关键,结合图形进行分析,增强直观性.8.(5分)下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形B.棱柱即是两个底面全等且其余各面都是矩形的多面体C.任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥D.通过圆台侧面上一点,有无数条母线【分析】根据圆锥的几何特征,可判断A;根据棱柱的几何特征,可判断B;根据棱台的几何特征,可判断C;根据圆台的几何特征,可判断D.【解答】解:圆锥的侧面展开图是一个扇形,故A错误;棱柱即是两个底面全等且平行,其它各面的交线均互相平行的多面体,故B错误;棱台是由一个大棱锥被一个平行于底面的平面所截,夹在截面与底面的部分,故任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥,故C正确;通过圆台侧面上一点,有且只有一条母线,故D错误;故选:C.【点评】本题考查的知识点是棱锥,棱台,棱柱,圆台,圆锥,圆柱的几何特征,难度不大,属于基础题.9.(5分)已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:1【分析】由柱体,锥体的体积公式,代入计算即可.【解答】解:设圆柱,圆锥的底面积为S,高为h,则由柱体,锥体的体积公式得:故选:D.【点评】本题考查柱体,锥体体积公式的直接应用,是基础题目.10.(5分)正方体内切球和外接球半径的比为()A.1:B.1:C.: D.1:2【分析】设出正方体的棱长,利用正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,分别求出半径,即可得到结论.【解答】解:正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a.则a=2r内切球,r内切球=;a=2r外接球,r外接球=,r内切球:r外接球=1:.故选:B.【点评】本题的关键是正方体的对角线就是外接球的直径,正方体的棱长是内切球的直径,考查计算能力.11.(5分)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是()A.B.C.D.【分析】对a的范围进行讨论,判断f(x)的单调性和增长快慢,判断g(x)的单调性,得出结论.【解答】解:由g(x)=log a x有意义可知a>0且a≠1,∴f(x)=x a在[0,+∞)是过原点的增函数,排除A;(1)若a>1,则g(x)为过点(1,0)的增函数,f′(x)=ax a﹣1,∴f′(x)是增函数,即f(x)的增加速度逐渐变大,排除C,(2)若0<a<1,则g(x)为过点(1,0)的减函数,f′(x)=ax a﹣1,∴f′(x)是减函数,即f(x)的增加速度逐渐减小,排除B,故选:D.【点评】本题考查了基本初等函数的性质,导数的几何意义,属于中档题.12.(5分)若函数y=ax与y=﹣在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是()A.增函数B.减函数C.先增后减D.先减后增【分析】根据y=ax与y=﹣在(0,+∞)上都是减函数,得到a<0,b<0,对二次函数配方,即可判断y=ax2+bx在(0,+∞)上的单调性.【解答】解:∵y=ax与y=﹣在(0,+∞)上都是减函数,∴a<0,b<0,∴y=ax2+bx的对称轴方程x=﹣<0,∴y=ax2+bx在(0,+∞)上为减函数.故选:B.【点评】此题是个基础题.考查基本初等函数的单调性,考查学生熟练应用知识分析解决问题的能力.二、填空题:本题共4小题,每小题5分共20分.把答案填在答题卡的对应题号后的横线上.13.(5分)函数的零点个数是2个.【分析】把函数每一段上的零点求出即可,本题函数的零点转化为对应方程的实数根即可.【解答】解:①当x≤0时,可求出f(x)=0的实数根,即x2+2x﹣3=0,解得:x1=﹣3,x2=1(舍去).②当x>0时,可求出f(x)=0的实数根,即﹣2+lnx=0,解得:x=e2.所以函数的零点个数是2.故答案为:2.【点评】本题考查分段函数的零点,把函数的零点转化为对应方程的实数根是解本题的关键.14.(5分)若函数y=2﹣x+1+m的图象不经过第一象限,则m的取值范围是m≤﹣2.【分析】函数y=2﹣x+1+m是由指数函数y=()x平移而来的,根据条件作出其图象,由图象来解.【解答】解:∵y=2﹣x+1+m=()x﹣1+m,分析可得函数y=()x﹣1+m过点(0,2+m),如图所示图象不过第一象限则,2+m≤0∴m≤﹣2故答案为:m≤﹣2.【点评】本题主要考查基本函数的图象变换,通过变换我们不仅通过原函数了解新函数的图象和性质,更重要的是学习面加宽,提高学习效率.15.(5分)若圆锥的表面积为3π,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为2.【分析】设出圆锥的底面半径,由它的侧面展开图是一个半圆,分析出母线与半径的关系,结合圆锥的表面积为3π,构造方程,可求出直径.【解答】解:设圆锥的底面的半径为r,圆锥的母线为l,则由πl=2πr得l=2r,而S=πr2+πr•2r=3πr2=3π故r2=1解得r=1,所以直径为:2.故答案为:2.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.(5分)利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的是①.【分析】由斜二测画法规则:平行x轴的线段长度不变,平行y轴的线段长度减半,直接判断即可.【解答】解:由斜二测画法规则知:三角形的直观图一定是三角形;①正确;平行性不变,正方形的直观图一定是平行四边形,平行x轴的线段长度不变,平行y轴的线段长度减半,故②不正确;等腰梯形的直观图是梯形,不可以是平行四边形,③错误;因为平行于y′轴的线段长减半,平行于x′轴的线段长不变,菱形的直观图不一定是菱形可能是矩形,故④错误.只有①正确,故答案为:①.【点评】本题考查对斜二测画法的理解,属基础知识的考查.三、解答题(17~21题每题12分,22题14分共74分)17.(12分)如图:S是平行四边形ABCD平面外一点,M,N分别是SA,BD上的中点,求证:MN∥平面SBC.【分析】取AD的中点Q,连接MQ,NQ,可得面MNQ∥面SDC,即可得MN∥面SDC.【解答】证明:取AD的中点Q,连接MQ,NQ,∵在△SAD中,M是SA中点,Q是AD中点∴MQ∥SD,又∵MQ⊄面SDC,而SD⊂面SDC∴MQ∥面SDC,同理NQ∥面SDC又∵MQ∩NQ=Q,∴面MNQ∥面SDC,∴MN∥面SDC【点评】本题考查了线面平行的判定定理、三角形的中位线定理、考查了推理能力和计算能力,属于中档题.18.(12分)如图,在底面半径为2、母线长为4的圆锥中内接一个高为的圆柱,求圆柱的体积及表面积.【分析】设圆柱的底面半径为r,高为h′,由已知求出圆锥的高,再由三角形的相似性求得圆柱底面半径,代入体积公式及表面积公式得答案.【解答】解:设圆柱的底面半径为r,高为h′,圆锥的高h=,∵h′=,∴,则,∴r=1.∴圆柱的体积V=;表面积S==.【点评】本题考查旋转体的体积与表面积的求法,考查空间想象能力和思维能力,是中档题.19.(12分)已知函数f(x)=b•a x(其中a,b为常量,且a>0,且a≠1)图象过点A(1,6),B(3,24).(Ⅰ)求f(x)的解析式;(Ⅱ)若不等式满足()x+()x﹣m≥0 在x∈(﹣∞,1]上恒成立,求实数m的取值范围.【分析】(Ⅰ)把A、B的坐标代入解析式,得关于a、b的方程组,解出a、b,则函数解析式可求;(Ⅱ)把()x+()x﹣m≥0 在x∈(﹣∞,1]上恒成立化为m≤()x+()x,只需m≤[()x+()x]即可,利用函数的y=()x+()x的单调性min可求得其最小值,从而得到实数m的取值范围.【解答】解:(Ⅰ)把A(1,6),B(3,24)代入f(x)=b•a x,得6=ab,24=ba3,解得a=2,b=3,∴f(x)=3•2x ;(Ⅱ)∵()x+()x﹣m≥0 在x∈(﹣∞,1]上恒成立,∴m≤()x+()x在x∈(﹣∞,1]上恒成立,∴m≤[()x+()x]min,x∈(﹣∞,1],令f(x)=()x+()x ,x∈(﹣∞,1],∵y=与y=在(﹣∞,1]上均为减函数,∴f(x)=()x+()x 在(﹣∞,1]上是减函数,f(x)min=f(1)=,则.【点评】本题考查恒成立问题,训练了分离参数法,考查利用函数的单调性求函数的最值,是中档题.20.(12分)如图,空间四边形ABCD中,E、F分别是AD、AB的中点,G、H 分别在BC、CD上,且BG:GC=DH:HC=1:2.(1)求证:E、F、G、H四点共面;(2)设FG与HE交于点P,求证:P、A、C三点共线.【分析】(1)推导出EF∥BD,GH∥BD,从而EF∥GH,由此能证明E、F、G、H 四点共面.(2)由FG∩HE=P,P∈FG,P∈HE,从而P∈平面ABC,P∈平面ADC,推导出P ∈直线AC.由此能证明P、A、C三点共线.【解答】证明:(1)△ABD中,∵E、F为AD、AB中点,∴EF∥BD.△CBD中,BG:GC=DH:HC=1:2,∴GH∥BD,∴EF∥GH(平行线公理),∴E、F、G、H四点共面.(2)∵FG∩HE=P,P∈FG,P∈HE,∴P∈平面ABC,P∈平面ADC,又平面ABC∩平面ADC=AC,∴P∈直线AC.∴P、A、C三点共线.【点评】本题考查四点共面的证明,考查三点其线的证明,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.21.(12分)若函数y=lg(3﹣4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2﹣3×4x的最大值及相应的x的值.【分析】根据题意可得M={x|x2﹣4x+3>0}={x|x>3,x<1},f(x)=2x+2﹣3×4x=﹣3•(2x)2+4•2x,令t=2x,则t>8,或0<t<2∴f(t)=﹣3t2+4t利用二次函数在区间(8,+∞)或(0,2)上的最值及x即可.【解答】解:y=lg(3﹣4x+x2),∴3﹣4x+x2>0,解得x<1或x>3,∴M={x|x<1,或x>3},f(x)=2x+2﹣3×4x=4×2x﹣3×(2x)2.令2x=t,∵x<1或x>3,∴t>8或0<t<2.∴f(t)=4t﹣3t2=﹣3t2+4t(t>8或0<t<2).由二次函数性质可知:当0<t<2时,f(t)∈(﹣4,],当t>8时,f(t)∈(﹣∞,﹣160),当2x=t=,即x=log2时,f(x)max=.综上可知:当x=log2时,f(x)取到最大值为.【点评】本题主要考查了对数函数的定义域,以指数函数的最值的求解为载体进而考查了二次函数在区间上的最值的求解,体现了转化思想在解题中的运用,是一道综合性比较好的试题.22.(10分)如图.已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1.H是B1C1的中点.(1)求证:E,B,F,D1四点共面:(2)求证:平面A1GH∥平面BED1F.【分析】(1)在DD1上取点N,使DN=1,连接EN,CN,易得四边形ADNE是平行四边形,以及四边形BCNE是平行四边形,由此推知CN∥BE,则FD1∥BE,得到E、B、F、D1四点共面;(2)利用三角形相似证明HG∥FB,由(1)知,A1G∥BE,从而可证平面A1GH∥平面BED1F.【解答】证明:(1)如图:在DD1上取一点N使得DN=1,连接CN,EN,则AE=DN=1.CF=ND1=2、因为CF∥ND1所以四边形CFD1N是平行四边形,所以D1F∥CN.同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,所以四边形CNEB是平行四边形,所以CN∥BE,所以D1F∥BE,所以E,B,F,D1四点共面;(2)因为H是B1C1的中点,所以B1H=,因为B1G=1,所以=,因为=,且∠FCB=∠GB1H=90°,所以△B1HG∽△CBF,所以∠B1GH=∠CFB=∠FBG,所以HG∥FB,由(1)知,A1G∥BE且HG∩A1G=G,FB∩BE=B,所以平面A1GH∥平面BED1F.【点评】本题主要考查了了共面的判定,考查面面平行的判定,考查对基础知识的综合应用能力和基本定理的掌握能力,属于中档题.。

【新】贵州省遵义航天高级中学2017-2018学年高一数学上学期期末考试试题(含解析)

【新】贵州省遵义航天高级中学2017-2018学年高一数学上学期期末考试试题(含解析)

2017―2018学年度第一学期期末试题高一年级数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 设集合 ,则()A. B. C. D.【答案】B2. 下列函数中,在其定义域上既是奇函数又是增函数的为()A. B. C. D.【答案】D【解析】试题分析:A.是增函数但不是奇函数;B.是奇函数但是为减函数;是奇函数,但在定义域上不是增函数;D.,首先,,故该函数是奇函数,其次,该函数是增函数,故选D考点:函数的单调性和奇偶性视频3. f (x)=-x2+4x+a,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( )A. -1B. 0C. 1D. 2【答案】C【解析】因为对称轴,所以选C.4. 手表时针走过1小时,时针转过的角度()A. 60°B. -60°C. 30°D. -30°【答案】D【解析】因为顺时针为负,所以时针转过的角度为,选D.5. ()【答案】C【解析】故选C6. 已知向量,则等于( )A. B. C. D.【答案】B【解析】,选B.7. 已知 ,则等于()A. B. C. D.【答案】A【解析】,选A.8. 函数的值域是()A. B. C. D.【答案】B【解析】因为为单调递增,所以值域是,选B.9. 要得到函数的图象,只需将函数的图象( )A. 向左平移个单位B. 向左平移个单位C. 向右平移个单位D. 向右平移个单位【答案】B【解析】因为,所以将函数的图象向左平移个单位得函数的图象,选B.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10. 已知角的终边经过点,且,则m等于( )【答案】B【解析】试题分析:,解得.考点:三角函数的定义.11. 已知函数是上的偶函数,且在区间上单调递增,A,B,C是锐角三角形的三个内角,则下列不等式中一定成立的是 ( )A. B.C. D.【答案】C【解析】时因为函数是上的偶函数,且在区间上单调递增,所以在区间上单调递减,所以,选C.12. 下面有命题:①y=|sinx-|的周期是2π;②y=sinx+sin|x|的值域是[0,2] ;③方程cosx=lgx有三解;④为正实数,在上递增,那么的取值范围是;⑤在y=3sin(2x+)中,若f(x)=f(x 2)=0,则x1-x2必为的整数倍;⑥若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在第二象限;⑦在中,若,则钝角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年山东省泰安市高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.设全集,集合,,则()A. B. C. D.【答案】B【解析】由题,则.故选B2.若直线l与直线x+y+1=0垂直,则l的倾斜角为()A. B. C. D.【答案】A【解析】【分析】求出直线x+y+1=0的斜率,利用两条直线的垂直关系,求出直线l的倾斜角α的值.【详解】直线x+y+1=0的斜率为,因为直线l与直线x+y+1=0垂直,所以直线l的斜率为,设l的倾斜角为为α,则tanα=,所以α=30°故选:A.【点睛】本题考查两条直线垂直与倾斜角、斜率的关系,考查计算能力,是基础题.3.圆O1:(x-2)2+(y+3)2=4与圆O2:(x+1)2+(y-1)2=9的公切线有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】先求出两圆的圆心距为5,再分别求出两圆的半径,可知两圆外切,即可求出公切线的条数。

【详解】两圆O1:(x-2)2+(y+3)2=4与圆O2:(x+1)2+(y-1)2=9的圆心距为:两个圆的半径和为:5,∴两个圆外切.公切线有3条.故选:B.【点睛】本题考查圆的公切线的条数,判断两个圆的位置关系是解题的关键。

4.在x轴、y轴上的截距分别是2,-3的直线方程为()A. B. C. D.【答案】B【解析】在轴、轴上的截距分别是2、的直线方程为即故选:B5.下列函数中,既是偶函数,又在上单调递增的是()A. B. C. D.【答案】D【解析】对A:定义域为,函数为非奇非偶函数,排除A;对B:为奇函数, 排除B;对C:在上单调递减,排除C;故选D6.函数的零点所在的一个区间是()A. B. C. D.【答案】D【解析】试题分析:因为,,,,,故有,所以函数的零点所在的一个区间是.故选D.考点:零点存在性定理(函数零点的判定).7.若两平行直线与之间的距离是,则A. 0B. 1C.D.【答案】C【解析】【分析】由题意首先求得m,n的值,然后求解m+n的值即可.【详解】两直线平行则:,解得:,则两直线方程为:,,由平行线之间距离公式有:,解得:或(不合题意,舍去)据此可知:.本题选择C选项.【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.8.若,,,则a,b,c大小关系为()A. B. C. D.【答案】D【解析】【分析】利用指数函数的单调性可知,又由对数的性质可知,从而得到答案。

【详解】因为,而,所以a,b,c大小关系为b>a>c.故选:D.【点睛】本题考查三个数的大小的比较,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.9.已知f(x)=a x,g(x)=log a x(a>0,且a≠1),若f(3)•g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能是()A. B.C. D.【答案】C【解析】【分析】由指数函数和对数函数的单调性知,f(x)=a x,g(x)=log a x(a>0,且a≠1),在(0,+∞)上单调性相同,再由关系式f(3)•g(3)<0即可选出答案.【详解】由指数函数和对数函数的单调性知,f(x)=a x,g(x)=log a x(a>0,且a≠1),在(0,+∞)上单调性相同,可排除B、D,再由关系式f(3)•g(3)<0可排除A.故选:C.【点睛】本题考查指数函数和对数函数的单调性,考查识图能力.10.设m,n是两条不同的直线,α,β是两个不同的平面()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】A【解析】【分析】结合空间中的线面关系,对4个选项逐个讨论,即可得出结论.【详解】A.,,利用线面垂直的性质定理即可得出,因此正确;B.由于,,则α与β平行或相交,不正确;C.由于,,则m与n平行或相交或为异面直线,因此不正确;D.由于,,则m与β相交或者平行或者m⊂β,因此不正确.故选:A.【点睛】本题考查了空间位置关系、线面垂直与平行的性质定理,考查了推理能力与计算能力,属于中档题.11.如图,三棱柱中,侧棱底面,底面三角形是正三角形,E是BC中点,则下列叙述正确的是A. 与是异面直线B. 平面C. AE,为异面直线,且D. 平面【答案】C【解析】试题分析:A不正确,因为与在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面;C正确,因为AE,为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为所在的平面与平面AB1E 相交,且与交线有公共点,故∥平面不正确;故选C.考点:空间中直线与平面之间的位置关系.12.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A. B. C. D.【答案】B【解析】【分析】利用分段函数的定义作出函数f(x)的图象,然后可令f(a)=f(b)=f(c)=k则可得a,b,c即为函数y=f(x)与y=k的交点的横坐标,根据图象可得出a,b,c的范围同时a,b还满足-log2a=log2b,即可得答案.【详解】根据已知画出函数f(x)的图象(如下图):不妨设a<b<c,∵f(a)=f(b)=f(c),∴-log2a=log2b=-c2+4c-3,∴log2(ab)=0,解得ab=1,2<c<3,∴2<abc<3.故选:B.【点睛】本题考查了利用分段函数的图象结合数形结合的思想求方程根的积得取值范围,由题意正确画出图象和熟练掌握对数函数的图象是解题的关键.二、填空题(本大题共4小题,共20.0分)13.函数的定义域为.【答案】【解析】试题分析:要使函数的解析式有意义,自变量须满足:,解得,且,故函数的定义域是,故答案为:.考点:函数的定义域及其求法.【思路点晴】函数的定义域就是使函数有意义的自变量的取值范围,高考会考中多以小题形式出现,也可以是大题中的一小题.求解函数定义域的常规方法:①分母不等于零;②根式(开偶次方)被开方式;③对数的真数大于零,以及对数底数大于零且不等于;④指数为零时,底数不为零.⑤实际问题中函数的定义域.14.两个球的体积之比为8:27,则这两个球的表面积之比为________.【答案】【解析】试题分析:设两球半径分别为,由可得,所以.即两球的表面积之比为.考点:球的表面积,体积公式.15.设函数f(x)=,(a∈R),若f(f(4))=1,则a=______.【答案】【解析】【分析】利用分段函数,由里及外,逐步求解即可.【详解】函数f(x)=,(a∈R),若f(f(4))=1,可得f(4)=log24=2,f(f(4))=1,即f(2)=1,可得a•22=1,解得a.故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.16.若圆锥的侧面展开图是半径为、圆心角为的扇形,则该圆锥的体积为______.【答案】【解析】∵圆锥侧面展开图的半径为5,∴圆锥的母线长为5.设圆锥的底面半径为r,则,解得r=3,∴圆锥的高为4.∴圆锥的体积 .点睛:旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.三、解答题(本大题共6小题,共70.0分)17.已知全集U=R,集合A={x|1≤x≤3},B={x|2<x<4}.(1)求图中阴影部分表示的集合C;(2)若非空集合D={x|4-a<x<a},且D⊆(A∪B),求实数a的取值范围.【答案】(1){x|1≤x≤2}(2){a|2<a≤3}【解析】【分析】(1)根据题意,分析可得C=A∩(∁U B),进而由补集的定义求出∁U B,再由交集的定义可得A∩(∁U B),即可得出答案;(2)根据题意,先求出集合A∪B,结合集合子集的定义可得,解出的范围,即可得到答案.【详解】(1)根据题意,分析可得:C=A∩(∁U B),B={x|2<x<4},则∁U B={x|x≤2或x≥4},而A={x|1≤x≤3},则C=A∩(∁U B)={x|1≤x≤2};(2)集合A={x|1≤x≤3},B={x|2<x<4}.则A∪B={x|1≤x<4},若非空集合D={x|4-a<x<a},且D⊆(A∪B),则有,解可得2<a≤3,即实数a的取值范围是{a|2<a≤3}.【点睛】本题考查集合间包含关系的运用,涉及venn图表示集合的关系,(2)中注意D为非空集合.18.已知直线l经过直线3x+4y-2=0与直线2x+y+2=0的交点P.(Ⅰ)求过点O、P的直线的倾斜角;(Ⅱ)若直线l与经过点A(8,-6),B(2,2)的直线平行,求直线l的方程.【答案】(I)(II)4x+3y+2=0【解析】【分析】(I)联立,解得P坐标.设过点O、P的直线的倾斜角为θ,θ∈[0,π).则tanθ=k OP.(II)k l=k AB,利用点斜式即可得出直线l的方程.【详解】(I)联立,解得,可得P(-2,2).设过点O、P的直线的倾斜角为θ,θ∈[0,π).∴k OP==-1=tanθ.解得θ=.(II)k l=k AB==-,∴直线l的方程为:y-2=(x+2),化为:4x+3y+2=0.【点睛】本题考查了两条直线平行与斜率之间的关系、直线交点、点斜式,考查了推理能力与计算能力,属于基础题.19.如图,三棱柱ABC-A1B1C1中,M,N分别为CC1,A1B1的中点,CA=CB1,BA=BB1.(Ⅰ)求证:直线MN∥平面CAB1;(Ⅱ)求证:平面A1BC⊥平面CAB1.【答案】(I)详见解析(II)详见解析【解析】【分析】(I)取AA1中点D,连结MD,ND,则MD∥AC,ND∥AB1,从而平面MND∥平面CAB1,由此能证明直线MN∥平面CAB1.(Ⅱ)连结CO,推导出CO⊥AB1,A1B⊥AB1,从而AB1⊥平面A1BC,由此能证明平面A1BC⊥平面CAB1.【详解】证明:(I)取AA1中点D,连结MD,ND,∵三棱柱ABC-A1B1C1中,M,N分别为CC1,A1B1的中点,CA=CB1,BA=BB1.∴MD∥AC,ND∥AB1,∵MD∩ND=D,AC∩AB1=A,∴平面MND∥平面CAB1,∵MN⊂平面MND,∴直线MN∥平面CAB1.(II)连结CO,∵M,N分别为CC1,A1B1的中点,CA=CB1,BA=BB1.∴CO⊥AB1,A1B⊥AB1,∵CO∩A1B=O,∴AB1⊥平面A1BC,∵AB1⊂平面CAB1,∴平面A1BC⊥平面CAB1.【点睛】本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.20.已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.(1)求圆M的方程;(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB 面积的最小值.【答案】(1)(x﹣1)2+(y﹣1)2=4.(2)2.【解析】试题分析:(1)设出圆的标准方程,利用圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上,建立方程组,即可求圆M的方程;(2)四边形PAMB的面积为S=2,因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,利用点到直线的距离公式,即可求得结论.试题解析:(1) 设圆M的方程为(x-a)2+(y-b)2=r2(r>0),根据题意得解得a=b=1,r=2.故所求圆M的方程为(x-1)2+(y-1)2=4.(2) 由题知,四边形PA′MB′的面积为S=S△PA′M+S△PB′M=|A′M||PA′|+|B′M||PB′|.又|A′M|=|B′M|=2,|PA′|=|PB′|,所以S=2|PA′|.而|PA′|=.即S=2.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,所以|PM|min=,所以四边形PA′MB′面积的最小值为S=2=2=2.21.已知函数(x≠0).(1)当m=2时,判断在(-∞,0)的单调性,并用定义证明;(2)讨论零点的个数.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先判断函数是单调递减的,然后根据函数单调性的定义证明即可;(2)由f(x)=0可得x|x|-2x+m=0(x≠0),则m=-x|x|+2x(x≠0),数形结合并讨论m的范围,即可判断函数的零点个数.【详解】(1)当m=2时,且<0时,是单调递减的.证明:设x1<x2<0,则===,又x1<x2<0,所以x2-x1>0,x1x2>0,所以,所以f(x1)-f(x2)>0,即f(x1)>f(x2),故当m=2时,在(-∞,0)上单调递减.(2)由f(x)=0可得x|x|-2x+m=0(x≠0),则m=-x|x|+2x(x≠0),令结合函数的图象知,当m>1或m<-1时,f(x)有1个零点.当m =1或m =0或m =-1时,f (x )有2个零点; 当0<m <1或-1<m <0时,f (x )有3个零点.【点睛】本题考查了函数的单调性的证明,考查函数的零点问题以及分类讨论思想,是一道中档题.22. 某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:(1)写出价格关于时间的函数关系式;(表示投放市场的第天);(2)销售量与时间的函数关系:,则该产品投放市场第几天销售额最高?最高为多少千元?【答案】(1);(2)第天和第天,最高销售额为(千元). 【解析】试题分析:(1)直线上升或直线下降都是直线方程,利用直线方程两点式求出两段函数的解析式;(2)价格乘以销售量等于销售额,销售额是二次函数,利用二次函数的对称轴求出最大值. 试题解析: (1)由题意,设同样设(2)设该产品的日销售额为此时当此时综上,销售额最高在第10天和第11天,最高销售额为808.5(千元)考点:函数应用问题.【方法点晴】对函数应用问题的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.应用问题首要问题是阅读问题,将实际问题转化为函数问题来求最优解.。

相关文档
最新文档