南昌大学概率论与数理统计2020第一学期

合集下载

2020年大学基础课概率论与数理统计期末考试题及答案(最新版)

2020年大学基础课概率论与数理统计期末考试题及答案(最新版)

2020年大学基础课概率论与数理统计期末考试题及答案(最新版)一、单选题 1、设()(P Poission λX分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ=A )1,B )2,C )3,D )0 【答案】A2、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 (A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭(B){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ (C ){}(1),k k n k n kP X C p p n-==-0,1,2,,k n =⋅⋅⋅ (D ){}(1),1k kn k i nP X k C p p i n -==-≤≤ 【答案】B3、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C4、掷一颗均匀的骰子600次,那么出现“一点”次数的均值为 A ) 50 B ) 100 C )120 D ) 150 【答案】B5、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则 2()E Y =A )1.B )9.C )10.D )6. 【答案】C6、设离散型随机变量(,)X Y 的联合分布律为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则A ) 9/1,9/2==βαB ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα 【答案】A7、对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则 A )()()()D XY D X D Y =⋅ B )()()()D X Y D X D Y +=+ C )X 和Y 独立 D )X 和Y 不独立 【答案】B8、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C9、若X ~()t n 那么2χ~(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A10、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A 二、填空题1、设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。

概率论与数理统计 (1)

概率论与数理统计 (1)

概率论与数理统计
§1.1 样本空间与随机事件
若事件A1, A2 ,..., An满足 : (1) A1 A2 ... An (2) Ai Aj (i j) 则称A1, A2 ,..., An为完备事件组.
概率论与数理统计
§1.1 样本空间与随机事件
事件的运算法则
1.交换律
AB B A ; AB B A
概率论与数理统计
§1.2 概率的直观定义
A={某指定的n个房间中各有一个人住}
P( A)
n! Nn
B={恰好有n个房间,其中各住一人}
P(B)
C
n N
N
n!
n
N! N n ( N n)!
C={某指定的一间房中恰好有m (m<n)人}
P(C )
Cnm ( N 1)nm Nn
Cnm
1 N
m
1
1 N
2.结合律
A (B C) (A B) C A (B C) (A B) C
3.分配律
A (B C) (A B) (A C) A (B C) (A B) (A C)
4.对偶原则 A B A B ; A B A B
概率论与数理统计
§1.1 样本空间与随机事件
者 实验者实验者 掷币 实次 验数 者掷币 n 次掷数币n次出 数现掷n正币面次 出次数 现数正n出m面现次正数面m次出数现频正 m率面fn次(频 A数)率mfn频(A率) fn(A)频 弗 隶莫弗隶莫弗 隶20莫48弗 2048 2048 12006418 1061 1061 0.15016811 0.51810.5181 0
则称P(A)为事件A的概率。
概率论与数理统计
§1.3 概率的公理化定义

南昌大学概率论期末试卷2011-2013答案.

南昌大学概率论期末试卷2011-2013答案.

—南昌大学考试试卷答案—【适用时间:20 13 ~20 14 学年第一学期课程编号:课程名称: J5510N0008 试卷类型:[ A ]卷】试卷编号:概率论与数理统计(II)教 30 教师填写栏试卷说明: 1、本试卷共 6 页。

2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

开课学院:适用班级:理学院48 学时考试形式:考试时间:闭卷 120 分钟题号题分得分一 24 二 24 三 40 四12 五六七八九十总分累分人 100 签名考生姓名:考生学号:所属班级:考试日期: 1、请考生务必查看试卷中是否有缺页或破损。

如有立即举手报告以便更换。

2、严禁代考,违者双方均开除学籍;严禁舞弊,违者取消学位授予资格;严禁带手机等有储存或传递信息功能的电子设备等入场(包括开卷考试),违者按舞弊处理;不得自备草稿纸。

本人知道考试违纪、作弊的严重性,将严格遵守考场纪律,如若违反则愿意接受学校按有关规定处分!考生签名:第 1 页共 4 页考生填写栏所属学院:所属专业:考生须知考生承诺得分一、填空题:(每空 4 分,共 24 分)评阅人 1. 0.375 2. 2/3 3. 18 4. k Cn( n 6. 0.967 得分二、单项选择题:(每题 4 分,共 24 分) 1. D 2. B 3. B 4. C 5. A 6. A 得分三、计算题:(每题 10 分,共 40 分) 1. 解:设事件 A={取到的数能被 2 整除},事件 B={取到的数能被 3 整除},则有 P 评阅人评阅人所求概率为解:2 2 有 f(x,y=fX(xfY(y,故 X 与 Y 独立第 2 页共 4 页3. 解:设表示第 k 个学生来参加会议的家长数,则 X k (k的分布律为 Xk Pk 0 0.05 1 0.8 2 0.15 易知而,根据同分布中心极限定理随机变量近似服从标准正态分布, 400 0.19 因此解:似然函数令的极大似然第 3 页共 4 页得分四、证明题:(每题 6 分,共 12 分) 1、证明:因为,所以 P ( X 评阅人,因为 X 与 Y 相互独立所以即得证。

概率论与数理统计(完整版)

概率论与数理统计(完整版)
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定义 : 若B1,B2,,Bn一组事件 : 满足
(iB i) B j φ ,i ji,j, 12,.,.n .,,
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
A中 的 基 本 事k件 数 P(A)S中的基本事n件总数 15
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,相 则容
P(Bi |A)P(Bi |A.)
i1
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.

商学院《概率论与数理统计》第一学期期末考试试题测试卷及参考答案

商学院《概率论与数理统计》第一学期期末考试试题测试卷及参考答案

n-1 n-1 n《概率论与数理统计》第一学期期末试卷一.判断题(10 分,每题 2 分)1.在古典概型的随机试验中,P( A) = 0 当且仅当A 是不可能事件 ( )2.连续型随机变量的密度函数f (x) 与其分布函数F (x) 相互唯一确定 ( )3.若随机变量X 与Y 独立,且都服从p = 0.1的 (0,1) 分布,则X =Y ( )4.设X 为离散型随机变量, 且存在正数k使得P( X >k ) = 0 ,则X 的数学期望E( X ) 未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( )二.选择题(15 分,每题 3 分)1.设每次试验成功的概率为p (0 <p < 1) ,重复进行试验直到第n 次才取得r (1 ≤r ≤n) 次成功的概率为.(a) (c) C r -1 p r (1 -p)n-r ;(b)C r -1 p r -1 (1 -p)n-r +1 ;(d)C r p r (1 -p)n-r ;p r (1 -p)n-r .2.离散型随机变量X 的分布函数为F (x) ,则P( X =xk) = .(a) (c) P(xk -1≤X ≤xk) ;(b)P(xk -1<X <xk +1) ;(d)F (xk +1) -F (xk -1) ;F (xk) -F (xk -1) .3.设随机变量X 服从指数分布,则随机变量Y = max ( X , 2003) 的分布函数.(a) 是连续函数;(b) 恰好有一个间断点;(c) 是阶梯函数;(d) 至少有两个间断点.4.设随机变量( X , Y ) 的方差D( X ) = 4 , D(Y ) = 1, 相关系数ρXY= 0.6 , 则n ⎩方差 D ( 3X - 2Y ) = .(a) 40;(b) 34;(c) 25.6; (d) 17.625. 设( X 1 , X 2 , , X ) 为总体 N( 1, 2 ) 的一个样本, X 为样本均值,则下列结论中正确的是.X - 1 1 n 2(a)2 / ~ t ( n ) ;(b)n∑( X i - 1) i =1 ~ F ( n , 1) ;X - 1 1n22(c)2 / n~ N ( 0, 1) ;(d)∑( X i- 1) i =1~ χ ( n ) .二. 填空题(28 分,每题 4 分)1. 一批电子元件共有 100 个, 次品率为 0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2. 设连续随机变量的密度函数为 f (x ) ,则随机变量Y = 3e X 的概率密度函数为 f Y ( y ) =3. 设 X 为总体 X ~ N ( 3 , 4) 中抽取的样本( X 1 , X 2 , X 3 , X 4 )的均值, 则P (-1 < X < 5) =.4. 设二维随机变量( X , Y ) 的联合密度函数为⎧1, y < x , 0 < x < 1;f (x , y ) = ⎨ 0 , 其 他则条件密度函数为,当时 , f Y X ( y x ) =5. 设 X ~ t ( m ) ,则随机变量Y = X 2 服从的分布为( 需写出自由度 )6. 设某种保险丝熔化时间 X 样本均值和方差分别为 X ~ N (μ, σ2 ) (单位:秒),取n = 16 的样本,得 = 15, S 2 = 0.36 ,则μ的置信度为 95%的单侧 置信区间上限为7. 设 X 的分布律为4 41 2X 1 2 3 Pθ22θ(1 -θ)(1 -θ)2已知一个样本值(x 1 , x 2 , x 3 ) = ( 1, 2 , 1) ,则参数的极大似然估计值为三. 计算题(40 分,每题 8 分)1. 已知一批产品中 96 %是合格品. 检查产品时,一合格品被误认为是次品的概率是 0.02;一次品被误认为是合格品的概率是 0.05.求在被检查后认为是合格品的产品确实是合格品的概率2. 设随机变量 X 与Y 相互独立, X , Y 分别服从参数为λ,μ(λ≠ μ) 的指数分布,试求Z = 3X + 2Y 的密度函数 f Z (z ) .3. 某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为λ= 1的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52 周)售出该商品件数在 50 件到 70 件之间的概率.4. 总体 X ~ N (μ,σ2 ) , ( X , X , , X n ) 为总体 X 的一个样本.求常数 k , 使k ∑ i =1X i - X 为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力 X ~ N (μ, σ2 )(单位:kg). 已知σ = 8 kg , 现从该厂生产的一大批特种金属丝中随机抽取 10 个样品,测得样本均值 x = 575.2 kg . 问这批特种金属丝的平均折断力可否认为是 570 kg ? ( α= 5 % )(2) 已知维尼纶纤度在正常条件下服从正态分布 N (μ, 0.0482 ) . 某日抽取5 个样品,测得其纤度为:1.31, 1.55, 1.34, 1.40, 1.45 .问 这天的纤度的总体方差是否正常?试用 α= 10 % 作假设检验.四. 证明题(7 分)nY设随机变量 X ,Y , Z 相互独立且服从同一贝努利分布 B (1, p ) . 试证明随机变量 X + Y 与Z 相互独立.附表: 标准正态分布数值表χ2 分布数值表t 分布数值表参 考 答 案一. 判断题(10 分,每题 2 分)是 非 非 非 是 .二. 选择题(15 分,每题 3 分) (a)(d)(b)(c)(d).三. 填空题(28 分,每题 4 分)1.1/22 ;2. ⎧ 1 f ( y ) = ⎨ y ⎩f [ln(y / 3)]) 0 y > 0 y ≤ 0 ; 3.0.9772 ; ⎧1/(2x ) - x < y < x4. 当0 < x < 1 时 f Y X ( y x ) = ⎨ ;⎩ 0其 他5. F (1, m )6. 上限为 15.263 .7. 5 / 6 .四. 计算题(40 分,每题 8 分) 1. A被查后认为是合格品的事件, B抽查的产品为合格品的事件. (2 分)P ( A ) = P (B )P ( A B ) + P (B )P ( A B ) = 0.96 ⨯ 0.98 + 0.04 ⨯ 0.05 = 0.9428 , (4 分)P (B A ) = P (B )P ( A B ) / P ( A ) = 0.9408/ 0.9428 = 0.998.(2 分)⎧ λe- λx2.f X (x ) = ⎨x > 0 ⎧ μe - μy f Y ( y ) = ⎨ y > 0(1 分)⎩ 0其他⎩ 0其他z ≤ 0 时, F Z (z ) = 0 ,从而 f Z (z ) = 0 ;(1 分)t 0.025 (15) = 2.1315 t 0.05 (15) = 1.7531 t 0.025 (16) = 2.1199 t 0.05 (16) = 1.7459(5) = 1.145 0.95 χ2(5) = 11.071 0.05 χ2(4) = 0.711 0.95 χ2(4) = 9.488 0.05 χ2Φ(0.28) = 0.6103Φ(1.96) = 0.975Φ(2.0) = 0.9772Φ(2.5) = 0.9938+∞ 2⎰-∞ ⎨ ⎨ ∑ | z ZZ z ≤ 0 时, f Z (z ) =1f X (x ) f Y [(z - 3x ) / 2]dx(2 分)= 1 z / 3λμe -λx -μ[( z - x ) / 2] dx =λμ(e -λz / 3 - e -μz / 2 )(2 分)2 ⎰3μ- 2λ所以⎧ λμ(e -λz / 3 - e -μz / 2 ),z > 0f (z ) = ⎪3μ- 2λ [⎩⎪ 0, ⎧ λμ(e-λz / 2- e-μz / 3),z ≤ 0z > 0f (z ) = ⎪ 2μ- 3λ](2 分)⎩⎪ 0,z ≤ 03. 设 X i 为第 i 周的销售量, i = 1, 2 , , 52X i ~ P (1 )(1 分)则一年的销售量为 52Y =X i, E (Y ) = 52 ,i =1D (Y ) = 52 .(2 分)由独立同分布的中心极限定理,所求概率为⎛ - 2 Y - 52 18 ⎫ ⎛ 18 ⎫ ⎛ 2 ⎫(4 分)P (50 < Y < 70) = P < 52 < ⎪ ≈ Φ 52 52 ⎪ + Φ 52 ⎪ - 152 ⎝ ⎭ ⎝ ⎭ ⎝ ⎭= Φ(2.50) + Φ(0.28) - 1 = 0.9938 + 0.6103 - 1 = 0.6041.(1 分)4. 注意到X - X =1(- X in1 - X2 + (n -1) X i - - X n )E ( X i - X ) = 0 , ⎛D ( X n - 1 - X ) = n - 1σ2i n2 ⎫(2分) X i - X ~ N 0, σ ⎪ ⎝ n ⎭ - z 2 n -1 2(1分)E (| X - X |) = ⎰ 2 σn dz -∞= 2⎰ - z 2 2 n -1σ2e n dz (3分)⎛ n⎫ ⎛ n ⎫ 令E k ∑| X i - X |⎪ = k ∑E | X i - X |⎪σ⎝ i =1 ⎭ ⎝ i =1 ⎭+∞ i +∞σ/ nX 0 1 PqpX + Y 0 1 2Pq 22 pqp 20 0 1 1σ 22 0 0 5. (1) 要检验的假设为检验用的统计量 H 0 : μ= 570 , U =X - μ0H 1 : μ≠ 570~ N ( 0,1) , (1 分)拒绝域为U ≥ z α(n -1) = z 0.025 = 1.96 .(2 分)2U 0 = 0.65= 2.06 > 1.96 ,落在拒绝域内,故拒绝原假设 H 0 ,即不能认为平均折断力为 570 kg .571 - 569.2[ U 0 == 0.2 = 0.632 < 1.96 , 落在拒绝域外,故接受原假设 H 0 ,即可以认为平均折断力为 571 kg . ] (1 分)(2) 要检验的假设为H :σ2 = 0.0482 , [ H :σ2 = 0.792 , H :σ2 ≠ 0.0482H :σ2 ≠ 0.792] (1 分)5∑( X i -X ) 2检验用的统计量 χ2= i =1~ χ2 (n - 1) ,拒绝域为χ2 > χ2 (n - 1) = χ2(4) = 9.488 或α0.05χ2 < χ2 (n -1) = χ2(4) = 0.711(2 分)x = 1.41 1-α[ x = 1.49 ]0.95χ2 = 0.0362 / 0.0023 = 15.739 > 9.488 ,落在拒绝域内,[ χ2= 0.0538 / 0.6241 = 0.086 < 0.711 ,落在拒绝域内,]故拒绝原假设 H 0 ,即认为该天的纤度的总体方差不正常 .(1 分)五、证明题 (7 分)由题设知(2 分)P ( X + Y = 0 , Z = 0) = q 3 = P ( X + Y = 0)P (Z = 0) ; P ( X + Y = 0 , Z = 1) = pq 2 = P ( X + Y = 0)P (Z = 1) ; P ( X + Y = 1, Z = 0) = 2 pq 2 = P ( X + Y = 1)P (Z = 0) ;10 10P( X +Y = 1, Z = 1) = 2 pq 2 =P( X +Y = 1)P(Z = 1) ;P( X +Y = 2 , Z = 0) =pq 2 =P( X +Y = 2)P(Z = 0) ;P( X +Y = 2 , Z = 1) =p 3 =P( X +Y = 2)P(Z = 1) .所以X +Y 与Z 相互独立. (5 分)。

南昌大学概率论2010-2011学年第一学期期中考试试卷

南昌大学概率论2010-2011学年第一学期期中考试试卷

南昌大学 2010~2011学年第一学期期中考试试卷
考试科目:概率论与数理统计
姓名:学号:班级:
计算题(每题20分,共100分)
1、对一个三人学习小组考虑生日问题:
(1) 求三个人中恰有二人的生日在星期天的概率;
(2) 求三个人中至多有一人的生日在星期天的概率;
(3) 求三个人的生日不都在星期天的概率。

2、r个人互相传球,每传一次时,传球者等可能地传给其余1
r个人中之一,
试求第n次传球时,此球由最初发球者传出的概率
p(发球那一次算作第0次)。

n
3、两台机床加工同样的零件 ,第一台出现废品的概率为 0.05 ,第二台出现废品的概率为0.02 ,加工的零件混放在一起 ,若第一台车床与第二台车床加工的零件数为5 : 4,求
( 1 ) 任意地从这些零件中取出一个为合格品的概率 ;
( 2 ) 若已知取出的一个零件为合格品 ,那么,它是由哪台机床生产的可能性较大?
.)3()2
1,21()2()1(,01,1)(42的分布函数内的概率;落在区间;系数求:其他
的密度函数为连续型随机变量、X X A x x A x f X -⎪⎩⎪⎨⎧<-=)(e ,0,
00e )(5y f Y x x x f X Y X x X 的概率密度求随机变量,概率密度为、设随机变量=⎩⎨⎧<≥=-。

2020年大学必修课概率论与数理统计必考题及答案(完整版)

2020年大学必修课概率论与数理统计必考题及答案(完整版)

2020年大学必修课概率论与数理统计必考题及答案(完整版)一、单选题1、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 (A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭(B){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ (C ){}(1),k k n k n kP X C p p n-==-0,1,2,,k n =⋅⋅⋅ (D ){}(1),1k kn k i nP X k C p p i n -==-≤≤ 【答案】B2、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A3、1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ++=++= ,则YZ~( ) )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F【答案】D4、在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 【答案】C5、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验im(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D6、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

南昌大学大二公共课专业概率论与数理统计试卷及答案 (2)

南昌大学大二公共课专业概率论与数理统计试卷及答案 (2)

南昌大学2021 学年概率论与数理统计第一学期期末试卷一、单项选择题〔每题3分,总分值24分〕1、设随机变量X 的概率密度为1||,22()40,x x f x ⎧-<<⎪=⎨⎪⎩其它 ,则 =≤<-}11{X P ( )。

(A) 0.75 , (B) 0.5 , (C) 0.25 , (D) 0 。

2、随机变量X 的分布函数为x b a x F arctan )(+=,+∞<<∞-x , 假设实数c 满足1{}6P X c >=,则c =〔 〕。

〔A3; 〔B〔C 〕1; 〔D 〕3π。

3、设随机变量),(~2σμN X ,则4(||)E X μ-=〔 〕。

(A) 43σ; (B) 44σ; (C) 45σ; (D) 46σ。

4、设B A ,为任意两事件,则以下关系成立的是( ).(A) A B B A =+-)(; (B) ()A B A B A +-= ;(C) A B B A =-+)(; (D) ()()A B A B B A A B -++-=+ 。

5、一盒内装有5个红球和15个白球,从中不放回取10次,每次取一个球, 则第5次取球时得到的是红球的概率是〔 〕。

〔A 〕15; 〔B 〕14; 〔C 〕13;〔D 〕12。

6、设每次试验成功的概率为p )10(<<p ,则在5次重复试验中至少失败 一次的概率为〔 〕。

(A) 51p -, (B) 4(1)p p -, (C) 5(1)p -, (D) 145(1)C p p -。

7、设二维随机变量221(,)~(1,2;2,3;)2X Y N -,则=+-)12(Y X D ( )。

(A) 13, (B) 14 , (C) 19 , (D) 37 .8、甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6和0.5,现目标被命中,则它是甲射中的概率为〔 〕。

(A)0.6, (B)116, (C)0.75 , (D)115 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
1、 已知()0.4P A =,()0.3P B =,()0.6P A B =,则()P AB =_0.3_.
2、设随机变量X 与Y 相互独立,且均服从区间[]0,3上的均匀分布,则
{}{}1
max ,1.9
P X Y ≤=
3、 设两个相互独立的随机变量X 与Y 的方差分别为4和2,则随机变量32X Y -的方差是
44.
4、设随机变量X 服从参数为λ的泊松分布,且()()121E X X ⎡--⎤=⎣⎦,则λ=_1__.
5、设,ζη是两个相互独立且均服从正态分布10,2N ⎛

⎪⎝

的随机变量,则随机变量ζη-的数 学期望E ζη-=
2
π
.
三、计算题:(每题12分,共60分)
得 分
评阅人
1、在区间(0,1)中随机地取两个数,求这两个数之差的绝对值小于
1
2
的概率. 解 在单位正方形中六边形OAGBCDE 的面积为 1113
12,2224
-⨯⨯⨯
= 9分
故所求概率为3
4。

12分
2、某工厂甲、乙、丙三个车间生产同一种产品, 各个车间的产量分别
占全厂总产量的25%、35%和40%,各车间产品的次品率分别是5%、4%和2%. 如果从全厂产品中抽取一种产品,恰好是次品,问这件次品是甲车间生产的概率是多少? 解: Ω:“全厂的产品”;A 、B 、C 分别为:“甲、乙、丙各车间的产品”,S :“次品”,则 由全概率公式得 P (S )=P (A )P (S |A )+P (B )P (S |B )+P (C )P (S |C )
=25%×5%+35%×4%+40%×2%=3.45% 6分
由贝叶斯公式,得
%23.3669
25
345125%45.3%5%25)()|()()|(≈==⨯==
S P A S P A P S A P 12分
3、设随机变量X 在[,
22ππ
-
]上服从均匀分布,求随机变量cos Y X =的概率密度.
解:X 的概率密度为⎩⎨⎧-∈=其它
,0]
2/ ,2/[ ,/1)(πππx x f X
易知Y 的取值区间为[0,1];以下分三段求Y 的分布函数)()(y Y P y F Y ≤= (1)当y <0时,0)()(=Φ=P y F Y ; (2)当0y ≤<1,如图所示,
=(arccos arccos )2
2
P X y y X π
π
-
≤≤-≤≤

=arccos 2
arccos 2
1
1
y
y
dx dx π
ππ
π
--
+⎰

=2arccos 1y
π
-
; 9分
(3)当1y ≥时,()()()1Y F y P Y y P =≤=Ω= 对()Y F y 分段求导得Y 的概率密度为
2
2,0 1()10,Y y f y y π⎧
≤⎪=-⎨⎪⎩
其它 12分
4、设二维随机变量(),X Y 的概率密度为 求2Z X Y =-的概率密度()z f z . 解 当0z ≤时,()F 0Z z =; 当2z ≥时,()F 1Z z =; 当02z <<时,
(){}()2
22,4
Z x y z
z F z P X Y z f x y dxdy z -≤=-≤=
=-⎰⎰
9分。

相关文档
最新文档