综合法与分析法的教学设计

合集下载

综合法与分析法教案

综合法与分析法教案

综合法与分析法教案教案标题:综合法与分析法的教学方法比较与应用教学目标:1. 了解综合法与分析法的定义、特点和适用范围;2. 掌握综合法与分析法的基本原理和操作步骤;3. 培养学生综合思考和分析问题的能力;4. 提高学生的学科知识应用能力。

教学重点:1. 理解综合法与分析法的概念及其在教学中的作用;2. 掌握综合法与分析法的基本原理和操作步骤;3. 运用综合法与分析法解决实际问题。

教学难点:1. 学生对综合法与分析法的理解和应用能力;2. 教师如何引导学生灵活运用综合法与分析法。

教学准备:1. 教师准备PPT、教学案例和相关教学资源;2. 学生准备笔记本和写作工具。

教学过程:Step 1:导入(5分钟)教师通过提问和引入相关教学案例,激发学生对综合法与分析法的兴趣,并引发学生对这两种教学方法的初步了解。

Step 2:讲解综合法与分析法的概念及特点(10分钟)教师通过PPT讲解综合法与分析法的定义、特点和适用范围,并与学生一起讨论这两种方法在实际教学中的应用。

Step 3:介绍综合法与分析法的基本原理和操作步骤(15分钟)教师详细介绍综合法与分析法的基本原理和操作步骤,包括综合法的整合思维和综合判断能力培养,以及分析法的问题分解和逻辑推理能力培养。

Step 4:分组讨论和实践(20分钟)教师将学生分成小组,每组选择一个教学案例,运用综合法或分析法进行讨论和实践。

教师在此过程中进行指导和辅导,引导学生理解和应用这两种方法。

Step 5:汇报和总结(10分钟)每个小组向全班汇报他们的讨论和实践成果,并进行总结。

教师对学生的表现进行评价和点评,强调综合法与分析法在解决问题中的重要性和实用性。

Step 6:拓展延伸(5分钟)教师提供一些拓展资源和阅读材料,鼓励学生进一步了解和应用综合法与分析法。

Step 7:作业布置(5分钟)教师布置相关作业,要求学生运用综合法或分析法解决一个实际问题,并在下节课进行展示和讨论。

《9综合法与分析法》优秀教案

《9综合法与分析法》优秀教案

主备人:郭佳佳 审核:使用时间:综合法与分析法【学习目标】1 理解综合法和分析法的概念及它们的区别,能熟练地运用综合法、分析法证题. 2.通过学习分析法与综合法,体会两种方法的相辅相成、辩证统一关系.3.通过综合法与分析法的学习,体会数学思维的严密性、抽象性、科学性,养成审慎思维的习惯. 【问题导学】明确概念: 1 直接证明2 综合法3 分析法4 分析法与综合法的区别与联系【合作探究】(集思广益、用心收获)1 求证:5321232log 19log 19log 19++<练:已知a ,b ,c 为不全相等的正数,求证:错误!+错误!+错误!>3练:已知a 、b 、c ∈R +且a +b +c =1,求证:错误!·错误!·错误!≥82+<练:已知a ,b ,c ∈R +,且ab +bc +ca =1,求证:a +b +c ≥错误!;练:已知a >0,b >0,求证:错误!+错误!≥错误!+错误!3 △ABC 的三个内角A 、B 、C 成等差数列.求证:a +b -1+b +c -1=3a +b +c -1 分析法:综合法:【归纳小结】(构建知识、为我所用)知识方面:。

数学思想与方法:。

【我要提问】【作业】一、选择题1.·错误!m、n、a、b、c、d均为正数,则、q的大小为A.≥q B.≤q C.>q D.不确定2.已知函数f=错误!,a、b∈R+,A=f错误!,B =f错误!,C=f错误!,则A、B、C的大小关系为A.A≤B≤C B.A≤C≤B C.B≤C≤A D.C≤B≤A3.若、∈R,且22+2=6,则2+2+2的最大值为A.14 B.15 C.16D.174.设a与b为正数,并且满足a+b=1,a2+b2≥,则的最大值为D.1 5.已知a>0,b>0,错误!+错误!=1,则a+2b的最小值为A.7+2错误!B.2错误!C.7+2错误!D.146.已知>>0,且+=1,那么A.2 C b2+c2D.a2≤b2+c29.已知实数a≥0,b≥0,且a+b=1,则a+12+b +12的范围为D.[0,5]10.已知∈-∞,1]时,不等式1+2+a-a2·4>0恒成立,则a的取值范围是D.-∞,6二、填空题11.设=24+1,q=23+2,∈R,则与q的大小关系是________.12.如果不等式|-a|0,b>0,a≠b,则错误!>错误!14.已知函数f=tan,∈错误!,若1、2∈错误!,且1≠2,求证:错误![f1+f2]>f错误!15.已知:a,b,c∈0,+∞,且a+b+c=1 求证:1a2+b2+c2≥错误!;2错误!+错误!+错误!≤错误!。

教学设计1:综合法和分析法

教学设计1:综合法和分析法

综合法和分析法【教学目标】加强不等式证明的训练,要求学生初步掌握用综合法和分析法证明不等式.【教学重点】综合法和分析法证明不等式.【教学难点】综合法和分析法证明不等式.【教学过程】一、复习引入1.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性.常见的直接证明方法有综合法与分析法.2.综合法和分析法,是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维模式。

二、讲解新课综合法1.综合法是从已知条件出发,经过逐步的推理,最后达到待证结论.2.综合法是从原因推导到结果的思维方法,综合法又叫做由因导果法.分析法 1.分析法是从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.2.分析法是一种从结果追溯到产生这一结果的原因的思维方法,分析法又叫做执果索因法.例题分析例1. 已知:c b a ,,是不全相等的正数,求证: ()()()abc b a c a c b c b a 6222222>+++++证明:综合法73+525273<+()()225273<+2021210<+10212<521<2521<证明:因为 和都是正数,所以为了证明 只需证明 展开得因为 成立,所以 成立2521<5273<+ ()abcc b a a bc c b 20,22222≥+∴>≥+同理:()()abc b a c abc c a b 222222≥+≥+因为c b a ,,是不全相等的正数,所以上述三个等号不会同时成立.()()()abc b a c a c b c b a 6222222>+++++∴ .3)2cot()2tan(4sin 22sin .2=-+= ααα,求证已知例证明:综合法 )]2()2sin[(2)]2()2sin[( --+=-++αααα由已知得)2cos()2sin()2sin()2cos(3 -+=-+αααα展开整理得3)2sin()2cos()2cos()2sin(=-+-+∴ αααα,即3)2cot()2tan(=-+ αα 小结: (结论)(已知)综合法证题步骤:n P P P P ⇒⇒⇒⇒ 210.5273.3<+例证明:分析法(略)小结.21(已知)(结论)分析法证题步骤:nB B B B ⇐⇐⇐⇐.11114cb ac b a abc c b a ++<++=求证:,为互不相等的正数且、、已知例 .222222.ab ac bc c b a ab ac bc c b a ++<++++<++也就是证明立,即证证明:要证原不等式成..2222222222221222所以,原不等式成立相加得;;;所以,为互不相等的正数且、、因为ab ac bc c b a b c ab bc ab a bc a ab ac c abc ac bc abc c b a ++<++=>+=>+=>+=三、课堂练习 .313tan )tan(0cos 5)2cos(8.1=+=++αβαββα求证,已知.3213.2---<--≥a a a a a ,求证:已知四、课堂小结综合法和分析法是直接证明中最基本的两种方法,也是解决数学问题时常用的思维方式,常把它们结合起来使用.即当遇到较难的新命题时,应当先用分析法来探求解法,然后将找到的解法用综合法叙述出来.五、作业。

【教学方案】《综合法与分析法》教学案3

【教学方案】《综合法与分析法》教学案3

《2.2.1综合法与分析法》教学案教学目标:1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.2.多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3.通过学生的参与,激发学生学习数学的兴趣.教学重难点:了解分析法和综合法的思考过程、特点教学过程:学生探究过程:证明的方法(1)、分析法和综合法是思维方向相反的两种思考方法.在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛.(2)、例题研讨5321231 2.log 19log 19log 19例求证: 证明:因为1log ,log a b b a所以 左边19191923191919231919log 52log 33log 2log 5log 3log 2log (532)log 360.因为1919log 360log 3612,所以532123 2.log 19log 19log 19例2 若实数1≠x ,求证:.)1()1(32242x x x x ++>++证明:采用差值比较法:2242)1()1(3x x x x ++-++=3242422221333x x x x x x x ------++=)1(234+--x x x =)1()1(222++-x x x =].43)21[()1(222++-x x ,043)21(,0)1(,122>++>-≠x x x 且从而 ∴ ,0]43)21[()1(222>++-x x ∴.)1()1(32242x x x x ++>++ 例3已知,,+∈R b a 求证.a b b a b a b a ≥本题可以尝试使用差值比较和商值比较两种方法进行.证明:1) 差值比较法:注意到要证的不等式关于b a ,对称,不妨设.0>≥b a 0)(0≥-=-∴≥---b a b a b b a b b a b a b a b a b a b a ,从而原不等式得证.2)商值比较法:设,0>≥b a ,0,1≥-≥b a b a .1)(≥=∴-b a a b b a b a ba b a 故原不等式得证. 注:比较法是证明不等式的一种最基本、最重要的方法.用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号.讨论:若题设中去掉1≠x 这一限制条件,要求证的结论如何变换?(3)、课堂回顾与反思。

综合法与分析法精品教案

综合法与分析法精品教案

综合法
(第二课时)
教学目标
1.掌握综合法证明不等式;
2.熟练掌握已学的重要不等式;
3.增强学生的逻辑推理能力.
教学重点 综合法
教学难点 不等式性质的综合运用
教学方法 启发引导式
教学活动
(-)导入新课
(教师活动)打出字幕(课前练习),引导学生回忆所学的知识,尽量用多种方法完成练习,投影学生不同解法,并点评.
(学生活动)完成练习.
[字幕]
1.证明().
x x 222>+R x ∈
2.比较与的大小,并证明你的结论.12+x x 2
1.证法一:由,所以011)1(2)2(22-≥+-=-+x x x x x 222>+
方法二:由,知,即,所以0)1(2≥-x 01)1(2>+-x 0222>+-x x .222x x >+
2.答:.212x x >+
证法一:由,所以0)1(122)1(222≥-=+-=-+x x x x x .212x x >+ 证法二:由知,所以0)1(2≥-x 0122≥+-x x .212
x x ≥+ [点评]两道题的证法一都是用的比较法,证法二我们已学过,这种方法是综合法,是本节课学习的内容.(板书课题)
设计意图:通过练习,复习比较法证明不等式,导入新课:综合法证明不等式.提出学习任务.
(二)新课讲授
【尝试探索,建立新知】
(教师活动)教师提出问题:用上述方法二证明,并点评证法的数学原ab b a 22
2≥+理,
(学生活动)学生研究证明不等式.
[问题]证明ab b a 222≥+ (证明:因为,所以,即.)0)(2≥-b a 0222≥+-b ab a ab b a 22
2≥+。

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)第一章:综合法的介绍1.1 教学目标:了解综合法的定义和应用范围。

掌握综合法的步骤和技巧。

1.2 教学内容:综合法的定义和意义。

综合法的应用领域,如科学研究、工程设计等。

综合法的步骤,包括问题定义、信息收集、方案设计等。

综合法的技巧,如图表制作、数据分析等。

1.3 教学方法:讲授法:介绍综合法的定义、应用领域和步骤。

案例分析法:分析实际案例中的应用实例。

小组讨论法:分组讨论综合法的技巧和难点。

1.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第二章:分析法的介绍2.1 教学目标:了解分析法的定义和应用范围。

掌握分析法的步骤和技巧。

2.2 教学内容:分析法的定义和意义。

分析法的应用领域,如企业管理、市场研究等。

分析法的步骤,包括问题定义、数据收集、因素分析等。

分析法的技巧,如数据可视化、假设验证等。

2.3 教学方法:讲授法:介绍分析法的定义、应用领域和步骤。

案例分析法:分析实际案例中的应用实例。

小组讨论法:分组讨论分析法的技巧和难点。

2.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第三章:综合法和分析法在科学研究中的应用3.1 教学目标:了解综合法和分析法在科学研究中的具体应用。

掌握相应的应用技巧和注意事项。

3.2 教学内容:综合法和分析法在科学研究中的常见应用场景。

具体的应用技巧,如数据整合、信息提炼等。

应用过程中的注意事项,如数据准确性、逻辑严密性等。

3.3 教学方法:讲授法:讲解综合法和分析法在科学研究中的应用。

案例分析法:分析具体案例中的应用实例。

小组讨论法:分组讨论应用过程中的技巧和难点。

3.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第四章:综合法和分析法在工程设计中的应用4.1 教学目标:了解综合法和分析法在工程设计中的具体应用。

2.2.综合法和分析法-人教A版选修1-2教案

2.2.综合法和分析法-人教A版选修1-2教案

2.2 综合法和分析法-人教A版选修1-2教案一、教学目标1.了解综合法和分析法的概念和特点2.掌握综合法和分析法的作用和应用场景3.认识和分析例题,运用综合法和分析法解决实际问题二、教学内容1.综合法和分析法概念及特点介绍2.综合法和分析法比较分析3.综合法和分析法的应用场景4.综合法和分析法例题解析三、教学重难点1.综合法和分析法的概念和特点2.综合法和分析法的应用场景3.综合法和分析法例题的解析四、教学过程第一步:导入教师引入本节课的主题内容,简单介绍综合法和分析法的概念,引导学生关注课程内容。

第二步:概念和特点1.给学生讲解综合法和分析法的概念和特点2.分组讨论,让学生思考两种方法的区别和联系,并用自己的话总结第三步:应用场景1.以文化建设为例,讲解综合法和分析法的应用场景2.让学生自主探究,寻找综合法和分析法在其他应用场景中的运用第四步:例题解析1.介绍例题的题目和要求,并引导学生分析问题2.针对例题,分别讲解综合法和分析法的运用和解题思路3.让学生自主思考、回答问题,并讲述自己的解题过程第五步:练习1.发放有关综合法和分析法的练习题,让学生进行巩固和练习2.鼓励学生自主思考和调试第六步:总结1.教师进行课堂总结,强调综合法和分析法的运用和重要性,并回顾本节课程内容2.学生进行自我总结,思考如何更好地运用综合法和分析法五、教学评价1.学生能够准确区分综合法和分析法,并理解两种方法的应用场景2.学生能够运用综合法和分析法解决实际问题3.学生能够迅速掌握例题所涉及的知识点,并能够独立解决类似问题的能力六、教学资源1.选修1-2教材2.综合法和分析法课件3.有关综合法和分析法的练习题七、教学反思本节课教学面面俱到,能够帮助学生迅速掌握综合法和分析法的解题思路和应用场景,但现场学生参与度不够,因此需要进一步引导学生独立思考和探究。

综合法与分析法.-教案

综合法与分析法.-教案

综合法与分析法一、教材分析:《综合法与分析法》是在学习了推理方法的基础上学习的,研究的是如何正确利用演绎推理来证明问题.本节课是《直接证明与间接证明》的第一节,主要介绍了两种证明方法的定义和逻辑特点,并引导学生比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤.本节课的学习需要学生具有一定的认知基础,应尽量选择学生熟悉的例子.二、教学目标:1、知识与技能:(1)了解直接证明的两种基本方法:综合法和分析法.(2)了解综合法和分析法的思维过程和特点.2、过程与方法:(1)通过对实例的分析、归纳与总结,增强学生的理性思维能力.(2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题、解决问题的能力.3、情感、态度与价值观: 通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生 活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力.三、教学重点: 综合法、分析法解决数学问题的思路及步骤。

四、教学难点: 综合运用综合法、分析法解决较复杂的数学问题。

五、教学准备1、课时安排:1课时2、学情分析:本节知识点数学是证明中的一种特别方法,它需要学生具备一定的方向思维,执果索因,具备一定的逻辑推理能力,由于逻辑的转换存在困难,大部分学生对于本节课要学习的证明方法还存在一定逻辑推理上的欠缺,还需要老师逐步讲解和引导。

3、教具选择:多媒体六、教学方法:启发引导、合作探究、讲练结合法七、教学过程一, 1、自主导学: 复习引入回顾不等式:⑴(),02a a b b ≥>+的证明过程;证明:因为222a b a b ab +=+≥=所以2a b +≥=a b =等号成立⑵222a b ab +≥,(,)a b R ∈的证明过程;因为2222()0a b ab a b +-=-≥所以 222a b ab +≥当且仅当a b =时,等号成立。

2、合作探究(1)分组探究: 例1.已知 ,,0,a b c >且不全相等,求证:222222()()()6a b c b c a c a b abc +++++>证明:222,0b c bc a +≥>,所以22()2a b c abc +≥ ①因为222,0c a ac b +≥>,所以 22()2b c a abc +≥ ②因为222,0a b ab c +≥>,所以 22()2c a b abc +≥ ③由于,,,a b c 不全相等,所以上述①②③式中至少有一个不取等号,把它们相加得 222222()()()6a b c b c a c a b abc +++++>(2)教师点拨:观察上述证明方法我们可以得到综合法的概念:所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证明的不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.课堂练习
4.课堂小结
总结以老师在知识与过程方面搭建线路,学生进行主要回答。
5.布置作业
6.6.板书设计
【设计意图】从学生熟悉的定理2的证明过程中总结得到综合法的定义,这样建立起脚手架,让学生的知识结构得到完善。
2.讲授新课
教师:综合法是从已知条件出发,最后得到结论。因此又叫顺推证法或由因导果法。
教师:例1
留三分钟思考时间
教师:有没有同学证明出来啊?和大家分享一下吧。
学生2:
由于a,b,c不全相等,所以上述 式中至少有一个不取等号,把它们相加得
3.能用综合法、分析法证明数学问题,培养发散思维、培养分析问题和逆向思维的能力.
四.教学重、难点
重点:让学生了解综合法和分析法的思考过程,并会用综合法和分析法证明
问题.
难点:根据问题的特点,结合综合法和分析法的思考过程特点,选择适当的
证明方法.
五.教学过程
1.温故知新
教师:同学们好,今天我们主要学习证明不等式的基本方法—综合法与分析法。既然是证明不等式,那首先请大家一起回顾前段时间学习的基本不等式。师:对,他用的是综合法,从已知条件出发,充分利用已知定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立。
【设计意图】通过例1让学生对综合法有更加全面的认识。
教师:前面我们对综合法有了全面认识,那下面我们再看例题2:求证
留3分钟的思考时间
综合法与分析法的教学设计
授课教师
贺毅
教学题目
综合法与分析法
课程类别
新课
总学时
1
教案内容与设计
综合法与分析法
1.教学内容分析
由于不等式的形式多种多样,所以不等式的证明方法也各有不同。在之前已经深入学习了比较法。综合法和分析法注重已知条件和结论的关系,从已知条件出发逐步结论叫做综合法;也可以寻找结论成立的充分条件,从而证明不等式,这种方法就是分析法。一般情况下,分析法有利于我们找到证明的思路,综合法则有利于我们简洁地表述证明过程。由此主要通过例题教学,引导学生注意观察要证明的不等式与已知的重要不等式之间的关系,从而寻找证明不等式的途径。
2.学生学情分析
高二的学生且是普通文科班的学生,整体基础较差。全班已经学习了关于实数大小的基本事实、不等式的基本性质、基本不等式、含有绝对值的不等式的性质等内容。由此,采用精讲精练的教学方法,既传授新知识也巩固学生已有的知识。
三.教学目标
1.了解综合法和分析法的定义、原理.
2.掌握综合法和分析法的过程和特点.
学生集体回答:
【设计意图】从学生已有的认知出发,激起学生的学习兴趣。
教师(追问):定理1是用的什么证明方法?
学生集体回答:主要用的是比较法
【设计意图】通过定理1的证明,让学生回忆起证明不等式的第一种方法:比较法,让学生建立整体框架。
教师:嗯,不错呦,还记得之前学习的证明不等式的第一种方法:比较法。那我再追问一下:定理2的证明方法呢?请大家独立思考。
留2分钟的思考时间
教师:观察定理2,想直接利用比较法是行不通的,但是我们观察一下它的形式与我们之前定理1是不是有点类似啊?通过观察,定理2在形式上与定理1相似,所以将定理2进行变形与定理1相靠近。
教师:非常好。刚才我们从已知条件出发,利用基本不等式的定理1进行变形,经过一系列的推理、论证而得出命题成立。其实这种证明方法就是综合法。
教师:此求证没有告诉我们任何条件,那我们只能从要求证结论的入手。
教师:大家一起来梳理一下我刚才的这个证明过程。当没有充分的已知条件,我们是从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(包括定义、公理或已证明的定理、性质等)从而得出要证的命题成立。其实这种证明方法就是分析法。
教师:前面我们学习的综合法是由因导果,那分析法就是执果索因。
教师:大家现在说说综合法和分析法的思考过程和特点啥。
教师:综合法是由因导果,分析法就是执果索因,因此,综合过程与分析过程是相反的。在证明命题时,以分析法寻找证明的思路,而综合法叙述、表达整个证明过程。
教师:大家思考一下例题3求证:若
【设计意图】例题3是既可以用综合法也可以分析法证明的。所以可以请两位学生在黑板上展示两种证明方法,让学生形象的感知一下两种方法的联系与区别。
相关文档
最新文档