高中数学必修五数列求和方法总结附经典例题和答案详解
高中数学数列的求和公式及相关题目解析

高中数学数列的求和公式及相关题目解析在高中数学中,数列是一个非常重要的概念,它是数学中的一种序列,由一系列按照一定规律排列的数所组成。
数列的求和是数学中常见的问题之一,本文将介绍数列的求和公式及相关题目解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、等差数列的求和公式及相关题目解析1. 等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来快速计算其前n项的和。
设等差数列的首项为a1,公差为d,前n项和为Sn,则等差数列的求和公式为:Sn = (n/2)[2a1 + (n-1)d]其中,n为项数,a1为首项,d为公差。
2. 题目解析例题1:已知等差数列的首项为3,公差为4,求前10项的和。
解析:根据等差数列的求和公式,代入a1=3,d=4,n=10,可以得到:S10 = (10/2)[2*3 + (10-1)*4] = 5[6 + 9*4] = 5[6 + 36] = 5*42 = 210因此,前10项的和为210。
例题2:已知等差数列的首项为-2,公差为5,前n项和为100,求n的值。
解析:根据等差数列的求和公式,代入a1=-2,d=5,Sn=100,可以得到:100 = (n/2)[2*(-2) + (n-1)*5] = (n/2)[-4 + 5n - 5] = (n/2)(5n - 9)化简得到5n^2 - 9n - 200 = 0,解这个二次方程可以得到n≈13.2或n≈-3.8。
由于n必须是正整数,所以n≈13.2不符合题意。
因此,n≈-3.8也不符合题意。
综上所述,n的值为13。
二、等比数列的求和公式及相关题目解析1. 等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来快速计算其前n项的和。
设等比数列的首项为a1,公比为r,前n项和为Sn,则等比数列的求和公式为:Sn = a1(1 - r^n)/(1 - r)其中,n为项数,a1为首项,r为公比。
(完整word版)(重要)高中数学数列十种求通项和七种求和方法_练习及答案.doc

高中数列知识点总结( 一) 等差数列的公式及性质1. 等差数列的定 : a n a n 1 d ( d 常数)( n 2 );2.等差数列通 公式: a n a 1(n 1)d dn a 1 d (n N *) ,首 : a 1 ,公差 :d ,末 : a n推广: a na m(n m) d .从而 da n a m ;n m3.等差数列的判定方法( 1)定 法:若 a n an 1d 或 a n 1 a n d ( 常数 nN ) a n 是等差数列. ( 2)等差中 法:数列 a n 是等差数列2a n an -1 a n 1 (n2)2a n 1 a n a n 2 .( 3)数列 a n 是等差数列 a n kn b (其中 k,b 是常数)。
( 4)数列a n 是等差数列SAn 2 Bn, (其中 、 是常数)。
nA B4. 等差数列的性 :( 1)当公差 d0 ,等差数列的通 公式a n a 1 ( n 1)d dn a 1 d 是关于 n 的一次函数,且斜率 公差 d ;前 n 和 S n na 1n(n 1) d d n 2 (a 1 d) n 是关于 n 的二次函数且常数 0.2 2 2( 2)若公差 d 0, 增等差数列,若公差 d0 , 减等差数列,若公差 d 0 , 常数列。
( 3)当 m n p q , 有 a ma na p a q ,特 地,当 mn 2 p , 有 a ma n 2a p .注: a 1a n a 2an 1a 3an 2。
( 4)若 a n 、 b n 等差数列, a n b , 1a n2bn都 等差数列。
( 5) 在等差数列中,等距离取出若干 也构成一个等差数列,即a n ,a n+m ,a n+2m , ⋯, 等差数列,公差 md 。
( 6) { a n } 是公差 d 的等差数列, S n 是前 n 和,那么数列 S k , S 2kS k , S 3k S 2k , ⋯成公差 k 2d的等差数列。
(完整版)高二数学必修5数列求通项、求和知识点+方法+练习题总结

数列求通项与求和常用方法归纳一、知能要点1、求通项公式的方法:(1)观察法:找项与项数的关系,然后猜想检验,即得通项公式a n ;(2)利用前n 项和与通项的关系a n =⎩⎪⎨⎪⎧ S 1S n -S n -1n =1,n ≥2;(3)公式法:利用等差(比)数列求通项公式;(4)累加法:如a n +1-a n =f (n ), 累积法,如a n +1a n =f (n );(5)转化法:a n +1=Aa n +B (A ≠0,且A ≠1).2、求和常用的方法:(1)公式法: ①d n n na a a n S n n 2)1(2)(11-+=+=②⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn(2)裂项求和:将数列的通项分成两个式子的代数差,即,然后累加时抵消中间的许多项. 应掌握以下常见的裂项: ①111(1)1n n n n =-++②1111()()n n k k n n k=-++③222111*********();12111(1)(1)1k k k k k k k k k k k k k<=--=<<=---+++-- ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++⑤1)1)11n n n n n n n n n +=<<=-+++-(3)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 项和公式的推导方法) .(4)倒序相加法:若和式中到首尾距离相等的两项和有其共性,则常可考虑选用倒序相加法,发挥其共性的作用求和(这是等差数列前n 项和公式的推导方法) .(5)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.二、知能运用典型例题考点1:求数列的通项 [题型1] )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
高中数学数列求和的五种方法

⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。
注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。
例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。
数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
高中数学必修五求数列通项公式方法总结和典型例题附详细答案[精品文档]
![高中数学必修五求数列通项公式方法总结和典型例题附详细答案[精品文档]](https://img.taocdn.com/s3/m/06c65eecc1c708a1284a44de.png)
数列专项-2 类型Ⅰ 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。
例1.写出下列数列的一个通项公式a n(1)-1,4,-9,16,-25,36,......;(2)2,3,5,9,17,33,......。
类型Ⅱ 公式法:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩构造两式作差求解。
用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即1a 和n a 合为一个表达,(要先分1n =和2≥n 两种情况分别进行运算,然后验证能否统一)。
例2.设数列{}a n 的前n 项和为()()*∈-=N n a S n n 131 (1)求21a a 、;(2)求数列n a 的通项公式。
例3.设数列{}a n 的前n 项和为()*∈+=N n a S nn 12,求证n a 为等比数列并求其通项公式。
类型Ⅲ 累加法:形如)(1n f a a n n +=+型的递推数列(其中)(n f 是关于n 的函数)可构造: 11221(1)(2)..(1.)n n n n a a f n a a f n a a f ----=⎧⎪⎪⎨--=--=⎪⎪⎩ 将上述1-n 个式子两边分别相加,可得:1(1)(2)...(2)(1),(2)n a f n f n f f a n =-+-+++≥适用于)(n f 是可求和的情况。
①若()f n 是关于n 的一次函数,累加后可转化为等差数列求和;例4.设数列{}a n 满足11=a ,121+=-+n a a n n ,求数列的通项公式。
② 若()f n 是关于n 的指数函数,累加后可转化为等比数列求和;例5.设数列{}a n 满足21=a ,n n n a a 21=-+,求数列的通项公式。
高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。
人教A版高中数学必修五讲义及题型归纳:数列求和

数列求和一:数列求和方法1.有些数列,直接求和不易进行,可以将便于求和的项放在一起进行分组求和. 如①有些数列可以对奇偶项分别求和,此时要注意项数分奇偶讨论; ②有些数列可以将每一项适当拆开,再进行分组; ③有些数列首尾项相加后为定值,可以用倒序相加的方法.2.如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②()1n n k =+ ;③()()12121n n =+- ;=3.这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{}n n a b ⋅ 的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列.考点1:分组求和例1.(1)已知等差数列{}n a 满足132a =,2340a a +=,则{||}n a 前12项之和为( ) A .144-B .80C .144D .304【解答】解:因为23123643408a a a d d d +=+=+=⇒=-,所以408n a n =-. 所以408,5|||408|840,5n n n a n n n -⎧=-=⎨->⎩…,所以前12项之和为5(320)7(856)8022430422⨯+⨯++=+=. 故选:D .(2)已知{a n }的前n 项和S n =n 2﹣9n ﹣1,则|a 1|+|a 2|+…+|a 30|的值为 . 【解答】解:{a n }的前n 项和S n =n 2﹣9n ﹣1, 可得n =1时,a 1=S 1=﹣9;n ≥2时,a n =S n ﹣S n ﹣1=n 2﹣9n ﹣1﹣(n ﹣1)2+9(n ﹣1)+1=2n ﹣10, 可得n ≤5,a n <0,n ≥6时,a n >0,可得|a 1|+|a 2|+…+|a 30|=S 30﹣S 5﹣S 5=900﹣270﹣1﹣2(25﹣45﹣1)=671. 故答案为:671.(3)已知数列{}n a 的前项和1159131721(1)(43)n n S n -=-+-+-+⋯+--,则51S 的值为( ) A .199-B .199C .101-D .101【解答】解:1159131721(1)(43)n n S n -=-+-+-+⋯+--, 可得51159131721193197201S =-+-+-+⋯+-+ 4(4)(4)201425201101=-+-+⋯+-+=-⨯+=.故选:D .例2.数列{a n }是首项为23,公差为整数的等差数列,且从第七项开始为负数. (1)求数列{a n }的公差;(2)求数列{a n }的前n 项和S n 的最大值;(3)记T n =|a 1|+|a 2|+…+|a n |(n ∈N ),求使T n >214成立的最小n . 【解答】解:(1)数列{a n }是首项为23,公差d 为整数的等差数列, 且从第七项开始为负数,可得a 7<0,a 6≥0, 即23+6d <0,23+5d ≥0,解得−235≤d <−236, 可得整数d =﹣4;(2)S n =12n (a 1+a n )=12n (23+23﹣4n +4)=﹣2n 2+25n =﹣2(n −254)2+6258, 可得n =6时,S n 取得最大值78; (3)T n =|a 1|+|a 2|+…+|a n |(n ∈N ), 当n ≤6时,T n =S n =﹣2n 2+25n ;当n ≥7时,T n =﹣(S n ﹣S 6)+S 6=2S 6﹣S n =156+2n 2﹣25n . T n >214,可得n ≥7,由156+2n 2﹣25n >214,解得n >14.5, 可得n 的最小值为15.例3.数列121231231,,,,,,,,,,,,22333nn n n n⋯⋯⋯的前25项和为( )A .20714B .20914C .21114D .1067【解答】解:数列121231231,,,,,,,,,,,,22333nn n n n⋯⋯⋯的前25项和为: 251212312345612341223336666667777T =++++++⋯++++++++++, 20914= 故选:B .考点2:裂项相消例4.(1)已知数列{}n a 满足:1(2)n a n n =+,则{}n a 的前10项和10S 为( )A .1112B .1124C .175132D .175264【解答】解:数列{}n a 满足:1(2)n a n n =+,可得111()22n a n n =-+,1011111111(1)23249111012S =-+-+⋯+-+-1111175(1)221112264=+--=. 故选:D .(2)已知数列{}n a 的通项公式*)n a n N =∈,n S 为数列{}n a 的前n 项和,满足9(*)n S n N >∈,则n 的最小值为( )A .98B .99C .100D .101【解答】解:n a ==可得121n S ++⋯+=,9n S >19>,解得99n >,可得n 的最小值为100. 故选:C .(3)设数列{}n a 的前n 项和为n S ,且*11,2(1)()nn S a a n n N n ==+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290B .920C .511D .1011【解答】解:2(1)nn S a n n=+-, 2(1)n n na S n n ∴=+-,当2n …时,11(1)2(1)(2)n n n a S n n ---=+--, 两式相减可得1(1)4(1)n n n na n a a n ---=+-, 即1(1)()4(1)n n n a a n ---=-, 14n n a a -∴-=,∴数列{}n a 是以1为首项,以4为公差的等差数列,2(1)422n n n S n n n -∴=+⨯=-, 23222(1)n S n n n n n ∴+=+=+,∴11111()32(1)21n S n n n n n ==-+++,∴数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是111111115(1)(1)2223101121111-+-+⋯+-=-=,故选:C .(4)已知{}n a 是公比不为1的等比数列,数列{}n b 满足:2a ,n b a ,2n a 成等比数列,2221n n n c b b +=,若数列{}n c 的前n 项和n T λ…对任意的*n N ∈恒成立,则λ的最大值为( )A .13B .16C .115D .215【解答】解:{}n a 是公比q 不为1的等比数列,数列{}n b 满足:2a ,n b a ,2n a 成等比数列,故222nb n a a a =,即为1221111()n b n a q a q a q --=g , 可得2(1)2n b n -=,即1n b n =+,22211111()(21)(23)22123n n n c b b n n n n +===-++++,即有1111111()235572123n T n n =-+-+⋯+-++111()2323n =-+, 由111()()2323f n n =-+随着n 的增大而增加,可得()f n 的最小值为f (1)115=,数列{}n c 的前n 项和n T λ…对任意的*n N ∈恒成立,可得115λ„, 则λ的最大值为115, 故选:C . (5)数列1,112+,1123++,⋯,112n++⋯+的前n 项和为( ) A .221n n + B .21nn + C .21n n ++ D .21nn + 【解答】解:112112()(1)12(1)12n n n n n n n ===-+++⋯+++.数列1,112+,1123++,⋯,112n++⋯+的前n 项和: 数列111111111112(1)1212312223341n n n +++⋯+=-+-+-+⋯+-+++++⋯++ 122(1)11nn n =-=++. 故选:B .考点3:错位相减例5.在数列{}n a 中,若112a =,且对任意的*n N ∈有112n n a n a n ++=,则数列{}n a 前10项的和为() A .509256B .511256C .756512D .755512【解答】解:Q112n n a n a n ++=,则324112312342122232(1)2n n n a a a a n na a a a n --⋯=⋯=⨯⨯⨯-g g g g . ∴112n n a n a -=,2n n na =. 231232222n n nS =+++⋯+,221111122222n n n n nS +-=++⋯++. ∴211111..22222n n n nS +=+++-, 222n n n S +∴=-,则10123509221024256256S =-=-=. 故选:A .例6.已知数列{a n }的前n 项和为S n ,且S n =12n 2+12n ,在等比数列{b n }中,b 1=a 1,b 4=a 8. (1)求{a n }和{b n }的通项公式; (2)求数列{a n b n }的前n 项和T n . 【解答】解:(1)S n =12n 2+12n ,可得a 1=S 1=1,n ≥2时,a n =S n ﹣S n ﹣1=12n 2+12n −12(n ﹣1)2+12(n ﹣1)=n , 上式对n =1也成立,则a n =n ,n ∈N *;等比数列{b n }的公比设为q ,b 1=a 1=1,b 4=a 8=8, 可得q 3=8,即q =2,可得b n =2n ﹣1;(2)a n b n =n •2n ﹣1,可得前n 项和T n =1•1+2•2+3•4+…+n •2n ﹣1,2T n =1•2+2•4+3•8+…+n •2n , 相减可得﹣T n =1+2+4+…+2n ﹣1﹣n •2n=1−2n1−2−n •2n ,化简可得T n =1+(n ﹣1)•2n .例7.已知数列{a n }满足a 1+3a 2+5a 3+…+(2n ﹣1)a n =2n . (1)求{a n }的通项公式; (2)设数列{a n 2n+3}的前n 项和为S n ,求证:S n <23. 【解答】解:(1)当n =1时,a 1=2,当n ≥2时,有a 1+3a 2+5a 3+…+(2n ﹣3)a n ﹣1=2n ﹣2, a 1+3a 2+5a 3+…+(2n ﹣1)a n =2n .相减得(2n ﹣1)a n =2,即a n =22n−1(n ≥2), 经检验:a 1=2满足a n =22n−1,所以a n =22n−1(n ∈N *); (2)证明:由(1)知,a n =22n−1, a n 2n+3=2(2n−1)(2n+3)=12(12n−1−12n+3),S n =12(1−15+13−17+15−19+⋯+12n−3−12n+1+12n−1−12n+3)=12(1+13−12n+1−12n+3)=23−12(12n+1+12n+3)<23.例8.已知正项数列{a n }的前n 和为S n ,且2a 1S n =a n 2+a n , (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =(13)n ⋅a n ,求数列{b n }的前n 项和T n .【解答】解:(Ⅰ)正项数列{a n }的前n 和为S n ,且2a 1S n =a n 2+a n , 可得n =1时,2a 1S 1=2a 12=a 12+a 1,解得a 1=1; n ≥2时,2S n ﹣1=a n ﹣12+a n ﹣1,又2S n =a n 2+a n , 相减可得2a n =a n 2+a n ﹣a n ﹣12﹣a n ﹣1, 化为(a n ﹣a n ﹣1﹣1)(a n +a n ﹣1)=0, 即为a n ﹣a n ﹣1=1,可得a n =1+n ﹣1=n ; (Ⅱ)b n =(13)n ⋅a n =n3n ,则前n 项和T n =13+29+327+⋯+n 3n , 则13T n =19+227+381+⋯+n3n+1, 相减可得23T n =13+19+127+⋯+13n −n3n+1 =13(1−13n )1−13−n3n+1, 化为T n =34−2n+34⋅3n . 例9.设各项为正的数列{a n }的前n 项和为S n ,已知S n =16a n 2+12a n ,(n ∈N *).(Ⅰ)求数列{a n }的通项公式; (Ⅱ)令b n =a n4n,求数列{b n }的前n 项和T n . 【解答】(Ⅰ)解:当n ≥2时,S n =16a n 2+12a n S n−1=16a n−12+12a n−1,由(1)(2)得:S n −S n−1=16a n 2+12a n −16a n−12−12a n−1 化简得:6a n =(a n 2−a n−12)+3a n −3a n−1即:3(a n +a n ﹣1)=(a n ﹣a n ﹣1)(a n +a n ﹣1) 又a n >0,所以a n ﹣a n ﹣1=3,数列{a n }是等差数列当n =1时,S 1=16a 12+12a 1=a 1,得a 1=3∴a n =3n(Ⅱ)解:∴b n =3n ⋅(14)n ∴T n =3⋅(14)+6⋅(14)2+9⋅(14)3+⋯+3n ⋅(14)n ①14T n =3⋅(14)2+6⋅(14)3+9⋅(14)4+⋯+(3n −3)⋅(14)n +3n ⋅(14)n+1②由①②得:34T n =3⋅(14)+3⋅(14)2+3⋅(14)3+⋯+3⋅(14)n −3n ⋅(14)n+1=34×1−(14)n 1−14−3n ⋅(14)n+1=1−(14)n −3n ⋅(14)n+1,T n =43−3n+43⋅(14)n .课后作业:1.已知等差数列{}n a 满足132a =,2340a a +=,则{||}n a 前12项之和为( ) A .144-B .80C .144D .304【解答】解:因为23123643408a a a d d d +=+=+=⇒=-,所以408n a n =-. 所以408,5|||408|840,5n n n a n n n -⎧=-=⎨->⎩…,所以前12项之和为5(320)7(856)8022430422⨯+⨯++=+=. 故选:D .2.已知数列{}n a 满足:1(2)n a n n =+,则{}n a 的前10项和10S 为( )A .1112B .1124C .175132D .175264【解答】解:数列{}n a 满足:1(2)n a n n =+,可得111()22n a n n =-+,1011111111(1)23249111012S =-+-+⋯+-+-1111175(1)221112264=+--=. 故选:D .3.设数列{a n }满足a 1=14,且a n+1=a n +a n 2,n ∈N ∗,设1a 1+1+1a 2+1+⋯+1a 2019+1的和为S n ,则S n 的取值在哪两个相邻整数之间( ) A .(1,2)B .(2,3)C .(3,4)D .(4,5)【解答】解:由a n +1=a n +a n 2=a n (a n +1), 可得1a n+1=1a n (a n +1)=1a n−1a n +1,即有1a n +1=1a n −1a n+1,则1a 1+1+1a 2+1+⋯+1a 2019+1=1a 1−1a 2+1a 2−1a 3+⋯+1a 2019−1a 2020=4−1a2020<4,由a 1=14,且a n+1=a n +a n 2,n ∈N ∗, 可得a n +1>a n , 又a 2=14+116=516,a 3=105256,a 4>12,a 5>34,a 6>1,…,a 2020>1, 可得3<4−1a 2020<4,故选:C .4.设各项为正的数列{a n }的前n 项和为S n ,已知S n =16a n 2+12a n ,(n ∈N *).(Ⅰ)求数列{a n }的通项公式; (Ⅱ)令b n =a n4n,求数列{b n }的前n 项和T n . 【解答】(Ⅰ)解:当n ≥2时,S n =16a n 2+12a n S n−1=16a n−12+12a n−1, 由(1)(2)得:S n −S n−1=16a n 2+12a n −16a n−12−12a n−1 化简得:6a n =(a n 2−a n−12)+3a n −3a n−1即:3(a n +a n ﹣1)=(a n ﹣a n ﹣1)(a n +a n ﹣1) 又a n >0,所以a n ﹣a n ﹣1=3,数列{a n }是等差数列当n =1时,S 1=16a 12+12a 1=a 1,得a 1=3∴a n =3n(Ⅱ)解:∴b n =3n ⋅(14)n ∴T n =3⋅(14)+6⋅(14)2+9⋅(14)3+⋯+3n ⋅(14)n ①14T n =3⋅(14)2+6⋅(14)3+9⋅(14)4+⋯+(3n −3)⋅(14)n +3n ⋅(14)n+1②由①②得:34T n =3⋅(14)+3⋅(14)2+3⋅(14)3+⋯+3⋅(14)n −3n ⋅(14)n+1=34×1−(14)n 1−14−3n ⋅(14)n+1=1−(14)n −3n ⋅(14)n+1,T n =43−3n+43⋅(14)n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列专项之求和-4
(一)等差等比数列前n 项求和
1、 等差数列求和公式:d n n na a a n S n n 2
)
1(2)(11-+=+=
2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)
1(11)1()1(111
q q q a a q
q a q na S n n
n
(二)非等差等比数列前n 项求和
② 数列n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法. ②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列
{}n n a b ⋅的前n 项和.
此法是在推导等比数列的前n 项和公式时所用的方法.
例23. 求和:1
32)12(7531--+⋅⋅⋅++++=n n x n x x x S )0(≠x
例24.求数列⋅⋅⋅⋅⋅⋅,2
2,,26,24,2232n n
前n 项的和.
一般地,当数列的通项12()()
n c
a an
b an b =
++ 12(,,,a b b c 为常数)时,往往可将n
a 变成两项的差,采用裂项相消法求和.
可用待定系数法进行裂项: 设1
2
n a an b an b λ
λ
=
-
++,通分整理后与原式相比较,根据对应项系数相等得
21
c
b b λ=
-,从而可得
122112
11
=().()()()c c an b an b b b an b an b -++-++
常见的拆项公式有: ①
111(1)1n n n n =-++; ②
1111
();(21)(21)22121
n n n n =--+-+ ③
1a b
=-- ④11;
m m m
n n n C C C -+=- ⑤!(1)!!.n n n n ⋅=+- ⑥])
2)(1(1
)1(1[21)2)(1(1++-+=+-n n n n n n n
……
例25. 求数列
⋅⋅⋅++⋅⋅⋅++,1
1,
,3
21,
2
11n n 的前n 项和.
例26. 在数列{a n }中,1
1211++
⋅⋅⋅++++=n n
n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.
例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28. 求数列的前n 项和:231
,,71,41,1112-+⋅⋅⋅+++-n a
a a n
如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。
特征:
121...n n a a a a -+=+=
例29.求证:n
n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++
例30. 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值
⑸记住常见数列的前n 项和: ①(1)
123...;2
n n n +++++=
②2
135...(21);n n ++++-= ③22221
123...(1)(21).6
n n n n ++++=
++ ④233
3
3
)]1(2
1[321+=+
+++n n n
答案详解
例23. 解:由题可知,{1
)12(--n x
n }的通项是等差数列{2n -1}的通项与等比
数列{1-n x } 的通项之积。
132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………. ①
设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相
减)
再利用等比数列的求和公式得:n n n x n x
x x S x )12(1121)1(1
----⋅
+=-- ∴ 2
1)1()
1()12()12(x x x n x n S n n n -+++--=+
例24. 解:由题可知,{
n n 22}的通项是等差数列{2n}的通项与等比数列{n 2
1}的通项之积。
设n n n
S 2226242232+⋅⋅⋅+++=
…………………………………① 14322
226242221++⋅⋅⋅+++=n n n
S ………………………………② (设制错位) ①-②得 14322
22222222222)211(+-+⋅⋅⋅++++=-n n n n
S (错位相
减)
1
1
2
2212+---
=n n n
∴ 1
22
4-+-
=n n n S 例25. 解:设n n n n a n -+=++=
111 (裂项) 则 1
13
21
2
11+++
⋅⋅⋅+++
+=
n n S n (裂项求和)
=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n
例26. 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=
∴ )11
1(82
122+-=+⋅=n n n n b n (裂项)
∴ 数列{b n }的前n 项和
)]11
1()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)
=)1
11(8+-n =
18+n n
例27. 解:设k k k k k k a k ++=++=2
332)12)(1(
∴ ∑=++=n k n k k k S 1
)12)(1(=)32(231
k k k n
k ++∑=
将其每一项拆开再重新组合得
S n =k k k n
k n
k n
k ∑∑∑===++1
2
1
3
1
32 (分组)
=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++
=2)
1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2
)
2()1(2++n n n
例28. 解:设)231
()71()41(
)11(12-++⋅⋅⋅++++++=-n a
a a S n n 将其每一项拆开再重新组合得
)23741()1
111(12-+⋅⋅⋅+++++⋅⋅⋅+++
=-n a
a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n
n + (分组求和)
当1≠a 时,2)13(1111n
n a a S n n -+--==2)13(11n n a a a n
-+---
例29. 证明: n
n n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………①
把①式右边倒转过来得
113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序) 又由m
n n m n C C -=可得
n
n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12( …………… ② ①+②得 n n
n n n n n
n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)
∴ n n n S 2)1(⋅+=
例30. 解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①
将①式右边反序得
1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②
(反序)
又因为 1cos sin ),90cos(sin 22=+-=x x x x
①+②得 (反序相加)
)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89
∴ S =44.5。