第三章 蒙特卡罗方法概述

合集下载

Monte Carlo方法简介

Monte Carlo方法简介

Monte Carlo方法
Modelling water adsorption on Au(210) surfaces: II. Monte Carlo simulations
Monte Carlo方法
高分子构象的Monte Carlo模拟
Monte Carlo方法
Adsorption Mechanism and Dynamic Behavior of Water and Ethanol Molecules Inside Au Nanotubes
统计系统的热力学性质及其他物理量
No
统计性 质不变?
打印结果,结束
Monte Carlo方法
微正则系综蒙特卡罗方法 巨正则系综蒙特卡罗方法 正则系综蒙特卡罗方法 等温等压蒙特卡罗方法
MC 就是一种通过重要性抽样的方法计算统计平均值的 一种随机方法。 它基于统计力学,通过 微观可观测量的系 综平均来求算其宏观性质,
1、数学:本身已形成计算数学的一个分支; 2、粒子物理:输运问题、屏蔽问题、核武器试验分析等; 3、统计物理、化学,材料、工程各领域; 4、其它:疾病传播与免疫、系统工程与管理优化等等。
Monte Carlo方法
1% 49 %
Nicholas Metropolis (1915-1999)
49 % 1%
•分子模拟的两种主要方法:
⑴ ⑵ 分子动力学法 (MD,Molecular Dynamics) 基于粒子运动的经典轨迹 Monte Carlo法 (MC) 基于概率和统计力学
Monte Carlo方法
1.2 Monte Carlo方法的发展历史
Monte Carlo 原为地中海沿岸Monaco(摩纳哥)的一个城市 的地名, 是世界闻名的大赌场,Monte Carlo方法的随机抽样特 征在它的命名上得到了反映。

蒙特卡罗方法简介

蒙特卡罗方法简介

第三章蒙特卡罗方法简介3.1 Monte Carlo方法简介Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。

Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。

自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。

Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。

Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。

在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。

在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。

3.2 Monte Carlo发展历程MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。

Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。

1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。

自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。

已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。

计算材料学概述之蒙特卡洛方法详解课件

计算材料学概述之蒙特卡洛方法详解课件

组合优化方法
针对组合优化问题,通过随机搜索和迭代优 化求解。
分子动力学模拟中的蒙特卡洛方法
01
分子动力学模拟是一种基于物理 模型的模拟方法,通过蒙特卡洛 方法可以模拟分子间的相互作用 和运动轨迹。
02
蒙特卡洛方法在分子动力学模拟 中主要用于求解势能面和分子运 动轨迹,通过随机抽样和迭代优 化实现分子运动状态的模拟。
重要性
随着科技的发展,计算材料学已成为 材料科学研究中不可或缺的工具,有 助于加速新材料的发现和优化现有材 料的性能。
计算材料学的主要研究方法
分子动力学模拟
01
基于原子或分子的动力学行为,模拟材料的微观结构和动态性
质。
蒙特卡洛方法
02
通过随机抽样和概率统计方法研究材料的宏观性质和相变行为

密度泛函理论
蒙特卡洛方法可以与分子动力学模拟结合,实现更精确的原子尺 度模拟。
元胞自动机
蒙特卡洛方法可以与元胞自动机结合,模拟复杂系统的演化过程。
有限元分析
蒙特卡洛方法可以与有限元分析结合,实现更高效的数值计算。
蒙特卡洛方法在材料设计中的应用前景
新材料发现
蒙特卡洛方法可用于预测新材料性能,加速新材料发现和开发进 程。
总结词
通过蒙特卡洛方法模拟复合材料的界面行为,包括界面润湿性、粘附力和传质过程等。
详细描述
利用蒙特卡洛方法模拟复合材料的界面行为,分析不同组分间的相互作用和界面结构, 预测材料的界面润湿性、粘附力和传质过程等性能,为复合材料的制备和应用提供理论
依据和技术支持。
蒙特卡洛方法的发
05
展趋势与展望
蒙特卡洛方法的未来发展方向
计算统计量
根据模型和抽样结 果,计算所需的统 计量或系统参数。

蒙特卡洛方法及应用

蒙特卡洛方法及应用

蒙特卡洛方法及应用蒙特卡洛方法是一种基于随机采样的数值计算方法,它在各种科学和工程领域中都有着广泛的应用。

本文将介绍蒙特卡洛方法的基本原理、算法和在各个领域中的应用,以帮助读者更好地理解和应用这种方法。

蒙特卡洛方法是一种基于概率的统计方法,它通过随机采样来模拟复杂系统的行为。

这种方法最早起源于20世纪中叶,当时科学家们在使用计算机进行数值计算时遇到了很多困难,而蒙特卡洛方法提供了一种有效的解决方案。

蒙特卡洛方法的基本原理是,通过随机采样来模拟系统的行为,并通过对采样结果进行统计分析来得到系统的近似结果。

这种方法的关键在于,采样越充分,结果越接近真实值。

蒙特卡洛方法的算法主要包括以下步骤:1、定义系统的概率模型;2、使用随机数生成器进行随机采样;3、对采样结果进行统计分析,得到系统的近似结果。

蒙特卡洛方法在各个领域中都有着广泛的应用。

例如,在金融领域中,蒙特卡洛方法被用来模拟股票价格的变化,从而帮助投资者进行风险评估和投资策略的制定。

在物理领域中,蒙特卡洛方法被用来模拟物质的性质和行为,例如固体的密度、液体的表面张力等。

在工程领域中,蒙特卡洛方法被用来进行结构分析和优化设计等。

总之,蒙特卡洛方法是一种非常有用的数值计算方法,它通过随机采样和统计分析来得到系统的近似结果。

这种方法在各个领域中都有着广泛的应用,并为很多实际问题的解决提供了一种有效的解决方案。

随着金融市场的不断发展,期权作为一种重要的金融衍生品,其定价问题越来越受到。

而蒙特卡洛方法和拟蒙特卡洛方法作为两种广泛应用的定价方法,具有各自的特点和优势。

本文将对这两种方法在期权定价中的应用进行比较研究,旨在为实际操作提供理论支持和指导。

一、蒙特卡洛方法蒙特卡洛方法是一种基于随机模拟的数学方法,其基本原理是通过重复抽样模拟金融市场的各种可能情况,从而得到期权的预期收益。

该方法具有以下优点:1、可以处理复杂的金融市场情况,包括非线性、随机性和不确定性的问题。

物理问题的计算机模拟方法(2)—蒙特卡罗方法

物理问题的计算机模拟方法(2)—蒙特卡罗方法

第三章 随机性模拟方法—蒙特卡罗方法(MC )§ 3.1 预备知识例:一个粒子在一个二维正方格点上跳跃运动随机行走:每一时间步上,粒子可选择跳到四个最近邻格点上的任何一个,而记不得自己来自何方;自回避行走:粒子记得自己来自什么地方,而回避同它自己的路径交叉。

随机行走的每一步的结果就是系统的一个状态,从一个状态到另一个状态的跃迁只依赖于出发的状态,这些状态形成一个序列,这就是一个马尔可夫链。

状态序列:x 0, x 1, …, x n , …已给出状态x 0, x 1, …, x n+1 的确定值,x n 出现的概率叫做条件概率 ()01,x x x -n n P 马尔可夫链的定义:如果序列x 0, x 1, …, x n , …对任何n 都有 ()()101,--=n n n n P P x x x x x 则此序列为一个马尔可夫链(或过程)。

§ 3.2 布朗动力学(BD ) 1.郎之万方程 v t R dtdvmβ-=)( 方程右边第一项为随机力,对粒子起加热作用;第二项为摩擦力,避免粒子过热。

将方程变形为:dt mvt R dt m v dv )(+-=β 于是,解可写为:])0()(11[)0( )0()(0)()(10⎰+≈⎰=---tt mt md v R m tm d ev R m ev eev t v tττββτττβ⎰+≈---t m t t md Re m ev 0)()(1)0( ττβτβ当随机力R(t)服从高斯分布时,上述方程的解描述的即为布朗运动,于是,布朗运动问题就化为在一些补充条件下求解郎之万方程,即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧><=>=<>=<=+><--)( 2)()(2)0()(,0)()(222/2/12高斯分布R R B e R R P t T k R t R t R m t R m v dt dv πδββ 注:)()()(t t q t R t R '->='<δ 表示随机力R 在t 和t ’时刻没有关联, q 为噪声强度。

蒙特卡洛方法

蒙特卡洛方法

蒙特卡洛方法蒙特卡洛方法求助编辑百科名片蒙特卡罗模拟是一种计算机化的数学方法,允许人们评估定量分析和决策制定过程中的风险。

此方法首先被科学家用于研究原子弹;它以因赌场而闻名遐迩的摩纳哥旅游城市蒙特卡罗命名。

自从在二战中推出以来,蒙特卡罗模拟一直用于为不同的物理和概念系统建立模型。

专业人员将此方法广泛应用于不同领域,如金融、项目管理、能源、制造、工程、研发、保险、运输和环境。

蒙特卡罗模拟向决策者提供了采取任何措施可能产生的一系列可能结果和概率。

它说明了最大可能性,即全力以赴和最保守决策的结果,以及折衷决策的所有可能后果。

目录梗概基本思想工作原理工作过程优势分子领域数学领域1.积分2.圆周率3.应用题电脑领域展开梗概基本思想工作原理工作过程优势分子领域数学领域1.积分2.圆周率3.应用题电脑领域展开编辑本段梗概蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

蒙特卡罗模拟是一种计算机化的数学方法,允许人们评估定量分析和决策制定过程中的风险。

[1]20世纪40年代,在John von Neumann,Stanislaw Ulam和Nicholas Metropolis在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡洛方法。

此方法首先被科学家用于研究原子弹;它以因赌场而闻名遐迩的摩纳哥旅游城市蒙特卡罗命名。

自从在二战中推出以来,蒙特卡罗模拟一直用于为不同的物理和概念系统建立模型。

[1]蒙特卡罗模拟向决策者提供了采取任何措施可能产生的一系列可能结果和概率。

它说明了最大可能性,即全力以赴和最保守决策的结果,以及折衷决策的所有可能后果。

[1]与它对应的是确定性算法。

蒙特卡洛方法在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

蒙特卡罗方法

蒙特卡罗方法

蒙特卡罗方法一、蒙特卡罗方法概述蒙特·卡罗方法(Monte Carlo method ),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

与它对应的是确定性算法这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。

蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。

它是以概率统计理论为基础的一种方法。

由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。

蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

1.历史起源蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。

数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo —来命名这种方法,为它蒙上了一层神秘色彩。

在这之前,蒙特卡罗方法就已经存在。

1777年,法国Buffon 提出用投针实验的方法求圆周率∏。

这被认为是蒙特卡罗方法的起源。

2. 蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。

但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。

当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。

这就是蒙特卡罗方法的基本思想。

当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。

(完整版)蒙特卡洛算法详讲

(完整版)蒙特卡洛算法详讲

Monte Carlo 法§8.1 概述Monte Carlo 法不同于前面几章所介绍的确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。

Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。

它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。

运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。

普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。

MCM 的发展归功于核武器早期工作期间LosAlamos (美国国家实验室中子散射研究中心)的一批科学家。

Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。

“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。

Monte Carlo 方法的应用有两种途径:仿真和取样。

仿真是指提供实际随机现象的数学上的模仿的方法。

一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。

取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。

例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。

这就是数值积分的Monte Carlo 方法。

MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。

任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。

这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随 机 过 程
马尔可夫过程:保留因果影响而又最简单的关联。即某一时刻的随机 变量分布是与它紧邻时刻的变量取值有关,而与经历的历史无关,即 过程失去了对紧邻时刻以前过程的历史的记忆。
P( xn , t n | xn −1 , t n −1 ;L; x1 , t1 ) = P ( xn , t n | xn −1 , t n −1 ).
∑ x ,当N → ∞时,
n =1 n
N
( x − µ )2 . 随机序列x 服从分布 x服从分布 exp − 2 2 2σ 2πσ
进一步地,对任意实数λ > 0, 1 2 λ λσ 有 lim P ∑ xn − µ ≤ = ∫0 e N →∞ π N N n =1 α称置信度,− α称置信水平。 1
ρ n ( xn , t n )
.
完全随机过程:跃迁几率与 tn 以前的随机变量取值完全无关,即随机 变量在不同时刻的取值完全没有关联,在物理上不存在任何因果联系 (例如连续抛掷骰子) :
P( xn , t n | xn −1 , t n −1 ;L; x1 , t1 ) = P( xn , t n ).
蒙特卡罗方法概述
《蒙特卡罗方法》讲义 第三部分
预备知识
随机变量与密度函数 大数定理与中心极限定理、 大数定理与中心极限定理、正态分布 马尔科夫链 分子动力学与随机动力学 蒙特卡罗方法
MC方法的起源与特点 方法的起源与特点 MC方法求定积分的思想 方法求定积分的思想
随机变量与密度函数
随机变量:变量的每次取值无法实现预言,但是它的取值分 布是已知的,即它取某一个值的概率是确定的。 假设x是在[A,B]间连续分布的随机变量,它在[a,b]间取值的 概率为: b
非马尔可夫过程:在某时刻随机变量的分布函数,与以往各时刻随机 变量的取值历史都有关,对历史存在记忆。
P( xn , t n | xn −1 , t n −1 ;L; x1 , t1 ).
思考题: 在我们已经讲过的内容中,有没 有马尔科夫过程或非马尔科夫过 程的例子?若有,请举例。
分子动力学:计算一组分子的相空间轨迹,其中每 个分子各自服从经典牛顿定律。 随机动力学:模拟构建一个统计系统的N个粒子的 轨道,其中每一个粒子都遵守朗之万方程。 蒙特卡罗方法:构建一个统计模型,使问题的解等 于该模型的某个参数,然后用随机数序列建立该统 计模型的样本,从而得出该参数的估计值。
1 = ∫ ρ n ( xn , t n ; xn −1 , tn −1 ;L; x1 , t1 )dxn dxn −1 L dx1.
跃迁几率P: P( xn , t n | xn −1 , tn −1 ;L; x1 , t1 ) =
ρ n −1 ( xn −1 , t n −1 ; xn − 2 , t n − 2 ;L; x1 , t1 )
N t2 − 2
dt = 1 − α .
大数定理和中心极限定理可做进一步推广: 若随机变量x1 , x2 ,..., xn ,...相互独立且服从相同的分布f ( x), 设I = ∫ g ( x) f ( x)dx,则 : 1 lim P N →∞ N 并且对任意λ > 0,有: 1 P N ∑ g ( xn ) = I = 1; n =1
n
∑ xn − µ < ε = 1 n =1
N
∑ x 依概率收敛于µ.
n =1
抽取的样本数越多,计算结果就越接近理想值; 如何确定有限样本数的条件下,计算结果的收敛速度、误差水平 和置信度?这需要知道x 的极限分布。
中心极限定理
设随机变量x1 , x2 ,..., xn ,...相互独立且服从相同的分布f ( x),并且: E ( xn ) = µ , D ( xn ) = σ 2 1 做前N个随机变量的算术平均x = N 1
N
∑ g(x ) − I
n =1 n
N

λσ
= ∫e π0 N
2
λ
t2 − 2
dt = 1 − α .
其中,σ 2 ( g | f ) = ∫ g 2 ( x) f ( x)dx − I 2 . 也就是说,在一定的置信水平下,随机模拟的误差为: = ε
λσ
N
.
思考题: 1、为什么现实世界中普遍存在 正态分布或者近似正态分布? 2、能不能举几个中心极限定理 的简单例证?
随机过程
在非平衡条件下,随机变量的几率密度函数应该随时间变化, 即分布密度是关于时间t的函数:ρ ( x, t ).
对各时刻引入含时间的n阶联合几率密度:
ρ n ( xn , t n ; xn −1 , t n −1 ;L; x1 , t1 ) ρ n −1 ( xn −1 , t n −1 ;L; x1 , t1 ) = ∫ ρ n ( xn , t n ; xn −1 , t n −1 ;L; x1 , t1 )dxn ;
随机模拟方法的起源:投针法求 随机模拟方法的起源:投针法求π
针与平行线相交的条件 : x ≤ l sin θ
蒙特卡罗求定积分的思想
然后求和:
若g ( x)在[a, b]有界,可采取数学手段 (教材P5 ~ 6)将积分区间 转换为[0,1] ,即∫ g ( s )ds → ∫ g ( x)dx.
b 1 a 0
蒙特卡罗求方法的特点
大数定理
设随机变量x1 , x2 ,..., xn ,...相互独立且服从相同的分布f ( x),并且: E ( xn ) = µ , D ( xn ) = σ 2 1 做前N个随机变量的算术平均x = N 当N → ∞时有 : 1 即序列x = N
N
∑ x ,则对任意ε > 0,
n =1 n
N
1 lim P{ x − µ < ε } = lim P N →∞ n →∞ N
p( x ∈ [a, b]) = ∫ f ( x)dx
a
则f(x)是随机变量x的概率密度函数。 分布函数定义为
F ( x) = ∫ f ( s)ds ∈ [0,1]
x A
二者的关系是
dF ( x ) f ( x) = dx
伽顿板实验
教科书中的解释: 教科书中的解释: 结果(小球落入哪个槽)的偶然性起源于原因( 结果(小球落入哪个槽)的偶然性起源于原因(小球 的初始位置、速度、小球质量及其均匀性、环境等) 的初始位置、速度、小球质量及其均匀性、环境等)的不 确定性。 大量地重复这些偶然事件, 确定性。……大量地重复这些偶然事件,将以不同的概率 大量地重复这些偶然事件 给出小球按槽的分布,这就是统计规律性。 给出小球按槽的分布,这就是统计规律性。……只要小球 只要小球 分布的数目足够多,则这种分布将十分接近最概然分布。 分布的数目足够多,则这种分布将十分接近最概然分布。
相关文档
最新文档