八年级下册数学期末压轴题专辑(含解析-Word版)

合集下载

【勾股定理 期末压轴题训练】2022-2023学年八年级数学下册(人教版)含解析

【勾股定理 期末压轴题训练】2022-2023学年八年级数学下册(人教版)含解析

,在ABC 中,BAC ∠(1)求证:ABE CAD ∠=∠;(2)过点C 作CF BE ∥交AD 的延长线于点F ,试探索AE 与CF (3)如图2,若6AD BD AB ==,,求CE 的长.2.【阅读材料】如图①,四边形ABCD 中,AB AD B =∠+∠,3.【知识感知】我们把对角线互相垂直的四边形叫做垂美四边形.Rt ACB的直角边,,,BG GE,在ABC中,在整个运动过程中,当BCP是等腰三角形时,求,在平面直角坐标系中,点AQ CP交于点M,则在P、Q运动的过程中,(1)如图1,连接,(填“会”或“不会”);(2)如图1,当PBQ是直角三角形时,求点P的坐标;在ABC中,.在等腰直角ABC中,,延长BC∠=∠;(1)求证:MQB PAC(2)若22,,求DQ DH==(3)用等式表示线段MB与CP.在ABC中,(2)如图2,若点D在线段AB上,取.在ABC 中,(1)如图1,当ABC 为锐角三角形时,①依题意补全图形,猜想BAE ∠与BCD ∠之间的数量关系并证明;②用等式表示线段AE ,CE ,DE 的数量关系,并证明.(2)如图2,当ABC ∠为钝角时,直接写出线段问题解决:(1)先考虑特殊情况:①如果点E刚好和点A重合,或者点B刚好和点F重合时,AE “>”,“<”或“=”);形ABC和△⊥BC AD正方形的三个顶点,可得ABC ,则,在ABC 中,是BC .如图,ABC 是等腰直角三角形,上一点.时,求DEF 的面.和CDE 中,AC 上,连接(1)如图1,若30EDC ∠=︒,6EF =,求AEF △的面积;(2)如图2,若BD AE =,求AF 、AE 、BC 之间的数量关系;(3)如图3,移动点D ,使得点F 是线段AB 的中点时,3DB =,4AB =别是线段AC ,BC 上的动点,且AP CQ =,连接DP ,FQ ,求DP FQ +(1)如图1,若45CBD ∠=︒①求BCG ∠的度数;②求证:CE DG =;(2)如图2,若60CBD ∠=︒,当6AC DE −=时,求CE 的值(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点E ,交BC 于点D .求证:AD 是ABC ∆的一条双腰分割线;(3)如图3,已知ABC ∆中,AD 是三角形ABC 的双腰分割线,且AB AD =.①若64B ∠=︒,求C ∠的度数;②若3AB =,5AC =,求BC 的长.参考答案:1.(1)见解析(2)AE CF =【分析】(1)利用三角形外角的性质以及角的和差定义解决问题即可.(2)如图1中,在AF 上截取AJ ,使得AJ BE =.证明SAS ABE CAJ ≌(),推出AE CJ =,再证明CF CJ =即可解决问题.(3)如图2中,过点B 作BK AD ⊥于K ,作CF BE ∥交AD 的延长线于F ,过点C 作CQ DF⊥于Q .首先证明BE BD =, CD DF =,再证明EK DK =,DQ FQ =,2DK DQ =,2BK CQ =,AE DE CD CF ===,利用参数构建方程解决问题即可.【解析】(1)证明:∵BED ABE BAE BAC BAE CAD ∠=∠+∠∠=∠+∠,,又∵BED BAC ∠=∠,∴ABE BAE BAE CAD ∠+∠=∠+∠,∴ABE CAD ∠=∠.(2)解:结论:AE CF =.理由:如图1中,在AF 上截取AJ ,使得AJ BE =.∵BA AC ABE CAJ BE AJ =∠=∠=,,,∴SAS ABE CAJ ≌(),∴AE CJ AEB AJC =∠=∠,,∴BED CJF ∠=∠,∵BE CF ∥,∴BEJ F ∠=∠,∴CJF F ∠=∠,∴CJ CF =,∴AE CF =.(3)如图2中,过点B 作BK AD ⊥于K ,作CF BE ∥交AD 的延长线于F ,过点C 作CQ DF ⊥于Q .设ABE CAD x CBE y ∠=∠=∠=,,∵AB AC DB DA ==,,∴DBA DAB ACB x y ∠=∠=∠=+,∴22BED ABE DAB x y BDE ACB CAD x y ∠=∠+∠=+∠=∠+∠=+,,∴BED BDE ∠=∠,∴BE BD =,∵AB CA ABE CAD =∠=∠,,∴AAS ABE CAD ≌(),∴AE CD BE AD ==,,∵CF BE ∥,∴F BED ∠=∠,∴F CDF ∠=∠,∴CD CF =,∵BE BD BK DE CD CF CQ DF =⊥=⊥,,,,∴EK KD DQ QF ==,,∵CQ BK ∥,∴:::1:2DQ DK CD BD CQ BK ===,∴可以假设2DQ m DK m ==,,∵222BD BE AD CD CF AE =====,∴48AE DE m AD BD m ====,,∴BK ==,∴CQ =,在Rt ABK △中,∵222AB AK BK=+,∴()()22266m =+,∴m, ∴DQ =,CQ ,5EQ m ==,∵90CQE ∠=︒,∴CE =.【点评】本题属于三角形综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.阅读材料:见解析;解决问题:少370m【分析】阅读材料:延长CB 到点M ,使BM DF =,连接AM ,如图,利用已知条件可得D ABM ∠=∠,进而可证明ABM ADF ≅,可得,AM AF MAB DAF =∠=∠,再证明AEM AEF ≅,可得=ME EF ,进而可得结论;解决问题:如图,作辅助线,构建阅读材料的图形,先根据四边形的内角和定理证明90G ∠=︒ ,分别计算,,,CG DG AD AG 的长,由线段的和与差可得,AM AN 的长,最后由阅读材料的结论可得MN 的长,计算AM AN MN +−可得答案.【解析】阅读材料:证明:延长CB 到点M ,使BM DF =,连接AM ,如图,∵180ABC D ∠+∠=︒,180ABC ABM ∠+∠=︒,∴D ABM ∠=∠,∵,,AB AD ABM D BM DF =∠=∠=,∴ABM ADF ≅,∴,AM AF MAB DAF =∠=∠,∵2BAD EAF ∠∠=,∴BAE DAF BAE BAM EAM EAF ∠+∠=∠+∠=∠=∠,又∵,AM AF AE AE ==,∴AEM AEF ≅,∴=ME EF ,∴EF MB BE BE DF =+=+;解决问题:解:如图,延长DC AB ,交于点G ,连接CN CM ,,∵60120150D ABC BCD ∠=︒∠=︒∠=︒,,,∴3606012015030A ∠=︒−︒−︒−︒=︒,∴90G ∠=︒,∴2AD DG =,在Rt CGB △中,18015030BCG ∠=︒−︒=︒,∴1502BG BC CG ===,∴100DG CD CG =+=+∴2200150AD DG AG ==+==+∵100DM =,∴200100100AM AD DM =−=+=+∵)50501BG BN ==,,∴)150********AN AG BG BN =−−=+−=+GN BG BN =+= ∵60CD DM D =∠=︒,,∴DCM △ 是等边三角形,∴60DCM ∠=︒,∵GC GN ==∴CGN 是等腰直角三角形,∴45GCN ∠=︒,∴453015BCN ∠=︒−︒=︒, ∴11506015752MCN BCD ∠=︒−︒−︒=︒=∠,由【阅读材料】的结论得:)10050150MN DM BN =+=+=+∵()10015050200370AM AN MN +−=++=+≈(m ). ∴路线M→N 的长比路线M→A→N 的长少370m .【点评】此题主要考查了含30︒的直角三角形的性质,勾股定理,等腰直角三角形的判定与性质、等边三角形的判定与性质、全等三角形的判定和性质,二次根式的混合运算等知识与方法,解题的关键是作出所需要的辅助线,构造含30︒的直角三角形,再利用线段的和与差进行计算.3.(1)是,见解析(2)2222AD BC AB CD ++=,见解析【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解析】(1)如图2,四边形ABCD 是垂美四边形.证明:连接AC BD 、交于点E ,∵AB AD =,∴点A 在线段BD 的垂直平分线上,∵CB CD =,∴点C 在线段BD 的垂直平分线上,∴直线AC 是线段BD 的垂直平分线,∴AC BD ⊥,即四边形ABCD 是垂美四边形;(2)猜想结论2222AD BC AB CD ++=.如图1,已知四边形ABCD 中,∵AC BD ⊥,∴90AOD AOB BOC COD ∠=∠=∠=∠=︒,由勾股定理得,222222AD BC AO DO BO CO +=+++,222222AB CD AO BO DO CO +=+++,∴2222AD BC AB CD ++=;(3)如图3,连接CG BE 、,∵90CAG BAE ∠=∠=︒,∴CAG BAC BAE BAC ∠+∠=∠+∠,即GAB CAE ∠∠=,在GA B 和CAE V 中,AG AC GAB CAEAB AE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS GAB CAE V V ≌, ∴ABG AEC ∠=∠,又90AEC AME ∠+∠=︒,∴90ABG BMN ∠+∠=︒,∴90BNC ∠=︒,即CE BG ⊥,∴四边形CGEB 是垂美四边形,由(2)得,2222CG BE CB GE +=+,∵810AC AB ==,,∴6BC CG ==,BE =∴((22222226292GE CG BE CB =+−=+−=,∴GE ==【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.4.(1)4,4t − (2)52t = (3)1或535或9.5或10【分析】(1)利用勾股定理求出AC ,利用CP AC AP =−,求出CP ;(2)过点P 作PD AB ⊥,交AB 于点D ,利用勾股定理列式求解即可;(3)分,,BC CP BP CP BC BP ===,三种情况进行讨论求解即可.【解析】(1)解:∵90,5,3ACB AB BC ∠=︒==,∴4AC =;∵点P 从点A 出发,以每秒1个单位长度的速度沿路线A C B A →→→运动,∴当点P 在AC 上时,AP t =,∴4CP AC AP t =−=−;故答案为:4,4t −;(2)解:点P 作PD AB ⊥,交AB 于点D ,则:90PDA PDB ∠=∠=︒,∵点P 在ABC ∠的角平分线上,90ACB ∠=︒,∴90ACB PDB ∠=∠=︒,PD PC =,又∵BP BP =,∴()HL PBD PBC ≌,∴3BD BC ==,∴2AD AB BD =−=,由(1)知,4AP t CP t ==−,∴4PD PC t ==−,在Rt ADP 中,222AP PD AD =+,即:()22242t t =−+, 解得:52t =; (3)解:P 点运动的总时间为:()543112++÷=秒,当BCP 是等腰三角形时: ①当BC CP =,点P 在AC 上时:如图,此时:43t −=,解得:1t =;当BC CP =,点P 在AB 上时:如图,过点C 作CE AB ⊥,交AB 于点E ,则:72BP t AC BC t BE =−−=−=, ∵1122ABC S AC BC AB CE =⋅=⋅,即:435CE ⨯=, ∴125CE =,∴95BE ==, ∴1875BP t =−=, ∴535t =; ②当BP CP =时,如图:由①可知:912,7,55BE BP t CE ==−=, ∴97,75PE t CP t =−−=−,在Rt PEC 中,222CP PE CE =+,即:()2224412755t t ⎛⎫⎛⎫−=−+ ⎪ ⎪⎝⎭⎝⎭, 解得:9.5t =;③当BC BP =时,如图:此时:73BP t =−=,解得10t =;综上:当BCP 是等腰三角形时,t 的值为:1或535或9.5或10.【点评】本题考查三角形上的动点问题.熟练掌握勾股定理,以及等腰三角形的定义是解题的关键.注意,分类讨论.5.(1)不会(2)当PBQ 是直角三角形时,点P的坐标为43⎛ ⎝⎭或23⎛ ⎝⎭(3)(1,P −,120CMQ ∠=︒【分析】(1)先利用SAS 证明ABQ CAP ≌,得BAQ ACP ∠=∠,利用外角的性质并进行等量代换可得60CMQ ACP CAM BAQ CAM BAC ∠=∠+∠=∠+∠=∠=︒(2)分90,90PQB BPQ ︒∠=︒∠=两种情况, 利用直角三角形中30度角所对直角边等于斜边的一半列式求解(3)作PM x ⊥轴,先根据30度角的性质和勾股定理求出1MB =cm和MP =cm ,进而求出(1,P −,再根据SAS 证明ACQ CBP ≌,最后根据外角的性质并进行等量代换作答即可【解析】(1)解:在等边三角形ABC 中,60AB AC CBA CAP ︒=∠=∠=且点A 、点Q 同时出发,且它们的速度都为1cm/s AP =BQ ∴(SAS)ABQ CAP ∴≌BAQ ACP ∴∠=∠60CMQ ACP CAM BAQ CAM BAC ∴∠=∠+∠=∠+∠=∠=︒故答案为:不会(2)解:设运动时间为t 秒,则,4AP BQ t PB t ===−①当90PQB ∠=︒时60ABC ∠=︒30BPQ ∠=︒∴12BQ PB ∴=,即1(4)2t t =− 解得43t = 即48433BP =−= 60ABC ∠=︒∴43P ⎛ ⎝⎭ ②当90BPQ ∠=︒时60ABC ∠=︒30PQB ∴∠=︒12PB BQ ∴=,即142t t −= 解得83t = 即84433BP =−=60ABC ∠=︒∴23P ⎛ ⎝⎭ ∴当PBQ 是直角三角形时,点P的坐标为43⎛ ⎝⎭或23⎛ ⎝⎭ (3)∵12BP BC =∴2BP =cm作PM x ⊥轴∵60ABC ∠=︒∴60PBM ∠=︒∴60PBM ∠=︒∴30MPB ∠=︒∴1MB =cm由勾股定理得MP =cm∴(1,P −在等边三角形ABC 中,60BC AC ABC ACB ︒=∠=∠=∵点A 、点Q 同时出发,且它们的速度都为1cm/sBP CQ ∴=,120PBC ACQ ∠=∠=︒(SAS)ACQ CBP ∴≌CMQ APM PAM APM PAC CAQ AQB PAC CAQ ∴∠=∠+∠=∠+∠+∠=∠+∠+∠180AQB PAC CAQ ABC ∠+∠+∠+∠=︒,60ABC ∠=︒18060120CMQ ∴∠=︒−︒=︒【点评】本题考查了全等三角形的判定和性质,外角的性质,直角三角形30度角的性质,勾股定理,熟练掌握各知识点是解题的关键.6.(1)见解析(2)(1)是,证明见解析;(2)存在,66013CP =.【分析】(1)根据阅读材料给出的定义结合已经学过的三角形的知识点,推到即可得出结论;(2)根据已知条件利用相似三角形即可得出①中的作法是符合条件的;第②小题根据已知条件画出图形,再根据图形得出结论.【解析】(1)解:①∵BD 为△ABC 的角平分线,∠ABC =2∠C∴∠=∠DBC C∴BD CD =∴图中相等的线段有BD CD =∵A A ∠=∠,2ADB ABC C ∠=∠=∠∴ADB ABC ∽∴图中相似的三角形有:ADB 和ABC②∵AC 的中垂线交边BC 于点E∴AE EC =∴AEC △是等腰三角形∵2AEB C ∠=∠,2ABC C ∠∠=∴AB AE =∴ABE 是等腰三角形(2)解:①符合要求,延长EF 交AD 于N ,则四边形ABEN 为矩形∴48AB EN ==,1662AN BE EC BC ====∵33EF =∴483315NF EN EF =−=−=∵PN BC ∥∴PFN CFE ∽ ∴PN NF PF EC EF FC == ∴153366PN = ∴1553311PF FC == ∴663036AP AN PN =−=−=∵90A ∠=︒∴60BP = ∴60513211BP FC == ∴BP PF BC FC = 作FK BP ⊥于K ∴BPF BCF SPF S FC =∴1212FK BP PF FCEF BC ⋅=⋅∴FK EF =∵FK BP ⊥,FE BC ⊥ ∴BF 平分PBC ∠∴1FBE PBC 2∠=∠∵F 在BC 的垂直平分线上∴FB FC =∴FBC FCB ∠=∠∴2PBC PCB ∠=∠∴符合要求②存在, 66013CP =.I.若P 在AD 上时,连接BD ,如图所示,∴PBC DBC ∠>∠,PCB DCB ∠<∠取BD 的中垂线交BC 与G ,作DH BC ⊥于H∴四边形ABHD 为矩形∴48HD AB ==,68BH AD ==,DG GB =,1326864CH BC BH =−=−=,∴80DC =,设GH x =,则68BG DG x ==−∵90DHG ∠=︒∴由勾股定理222GH DH DG +=∴()2226848x x −=+∴22136684811620x =−=⨯ ∴2906417x =<在CH 上取点M ,使29017HM GH ==,连接DM∴DMB DCB PCB ∠>∠>∠∵DG BG =∴DBC GDB ∠=∠∴22DGC GDB DBC DBC PBC ∠=∠+∠=∠<∠∴HM GH =,DH MG ⊥∴DG DM =∴DMB DGC ∠=∠∴2PBC PCB ∠>∠∴在AD 上所有点都满足2PBC PCB ∠>∠∴不存在;II. 若P 在AB 上时,如图所示,∵BP AB BC <<,∴45BCP ∠<︒,∴2PBC BCP ∠≠∠,∴在AB 上不存在其它满足要求的△BCP ;III. 若P 在AB 上时,如图所示,作BC 的垂直平分线交AD 于点L 、交BC 于点R ,作BCD ∠的平分线交RL 于点O ,连结BO 并延长交DC 于点P ,此时有22BCD BCO PBC ∠=∠=∠, ∴△BCP 是以BC 为底边的倍角三角形,作OU DC ⊥于点U ,连结OA 、OD ,∵CO 平分BCD ∠,OR BC ⊥,OU DC ⊥,∴OR OU =,设OR x =,则OU x =,48OL x =−,由AOB BOC COD AOD ABCD S S S S S =+++梯形得11111(68132)4848661328068(48)22222x x x ⨯+⨯=⨯⨯+⨯+⨯+⨯⨯−,解得:22x =在Rt BOR 中,OB =∴OC OB ==∵OCP OCB PBC ∠=∠=∠,2POC PBC OCB PBC PCB ∠=∠+∠=∠=∠,∴PBC PCO ~,∴CP BP BC OP CP OC ==∴OP =,BP =, 由BP OP OB −=得= 解得,66013CP =【点评】本题考查了角的倍数关系,角平分线的性质,相似三角形的判定等相关知识,明确题意根据已知条件画出图形是解题的关键.7.(1)45,=(2)(3)【分析】(1)根据等腰直角三角形的三线合一即可得到90,ADC AD CD BD ∠=︒==,由此推出,45BC BA AD D C ⊥∠=︒=∠,证明ADE CDF △△≌,得到,DE DF ADE CDF =∠=∠,求出DEF 是等腰直角三角形,勾股定理得到EF =DE ;(2)证明(SAS)ADE CDF ≌V V ,得到DE DF =,ADE CDF ∠=∠,推出DE DF ⊥,再由勾股定理得到答案;(3)分两种情况,①当H 在线段AC 上时,②当H 在线段AC 的延长线上时,连接MC ,过点M 作MF AC ⊥于F ,由等腰三角形的性质及等腰直角三角形的性质可得出答案.【解析】(1)解:在ABC 中,90BAC ∠=︒,AB AC =,45B BCA ∠=∠=︒,D 是BC 的中点,∴,45BC BA AD D C ⊥∠=︒=∠,∴90,ADC AD CD BD ∠=︒==,∵AE CF =,∴ADE CDF △△≌(SAS ),∴,DE DF ADE CDF =∠=∠,∵90CDF ADF ADC ∠+∠=∠=︒,∴90ADE ADF ∠+∠=︒,∴DEF 是等腰直角三角形,∴EF ==,故答案为:45,=(2)解:∵AB AC =,90BAC ∠=︒,∴45B ACD ∠=∠=︒,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,45BAD CAD ∠=∠=︒∴AD CD =,90ADC ∠=︒,∴BAD ACD ∠=∠,∴180180BAD ACD ︒−∠=︒−∠,即EAD FCD ∠=∠,∵45ACD CAD ∠=∠=︒,∴AD CD =,在ADE V 和CDF 中,AD CD EAD FCD AE CF =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ADE CDF ≌V V ,∴DE DF =,ADE CDF ∠=∠,∴90EDF CDF EDC ADE EDC ADC ∠=∠+∠=∠+∠=∠=︒,∴DE DF ⊥,在Rt EDF 中,DE DF =,4EF =,∴DE EF ==(3)解:①当H 在线段AC 上时,如图,连接MC ,过点M 作MF AC ⊥于F ,∵,AD BC BD CD ⊥=,∴AM 是线段BC 的中垂线,∴MB MC =,∴MBC MCB ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∴ABM ACM ∠=∠,又∵90BAC BMH ∠=∠=︒,360BAH ABM BMH AHM ∠+∠+∠+∠=︒,∴180ABM AHM ∠+∠=︒,∵180AHM MHC ∠+∠=︒,∴ABM MHC ∠=∠,∴MCH MHC ∠=∠,∴MH MC =,∵2CH =, ∴112HF CF CH ===, ∵6AC =,∴615AF AC CF =−=−=,∵45DAC ∠=︒,∴5AF MF ==,∴AM =∵6AB AC ==,90BAC ∠=︒,D 是BC 的中点,∴12AD BC ==∴DM AM AD =−=②当H 在线段AC 的延长线上时,如图,连接MC ,过点M 作MF AC ⊥于F , 同理可得1CF HF ==,∴617AF AC CF =+=+=,∴AM =∴DM AM AD =−=综上,DM 的长为【点评】此题是三角形的综合题,主要考查了直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质及等腰直角三角形的判定和性质,根据已知得出ADE CDF V V ≌是解题的关键.8.(1)见解析(2)HM =(3)MB ,证明见解析【分析】(1)由直角三角形两个锐角互余即可得出90APC PAC ∠+∠=︒,90MQB APC ∠+∠=︒,从而得出MQB PAC ∠=∠;(2)连接AQ ,DP .由题意易得出AC 为线段QP 的垂直平分线,即得出2DP DQ ==,QAC PAC ∠=∠,AP AQ =,从而由勾股定理可求出PH DH .进而易证(AAS)DAH PQH ≌,得出2AH QH DQ DH ==+=,再根据勾股定理可求出2AQ ==.又易证QAM QMA ∠=∠,即得出2QM QA ==,从而由HM QM DH =−求解即可;(3)作ME QB ⊥于点E ,易证(AAS)APC QME ≌,即得出PC ME =.再根据MEB 是等腰直角三角形,即得出MB =,从而得出MB .【解析】(1)∵90ACB ∠=︒,QH AP ⊥,∴90APC PAC ∠+∠=︒,90MQB APC ∠+∠=︒,∴MQB PAC ∠=∠;(2)如图,连接AQ ,DP .∵CQ CP =,90ACB ∠=︒,∴AC 为线段QP 的垂直平分线,∴2DP DQ ==,QAC PAC ∠=∠,AP AQ =,∴PH DH =.又∵DAH PQH ∠=∠,90AHD QHP ∠=∠=︒,∴(AAS)DAH PQH ≌,∴2AH QH DQ DH ==+=∴2AQ ==.∵45QAM QAC CAB QAC ∠=∠+∠=∠+︒,45QMA MQB B BQM ∠=∠+∠=∠+︒, ∴QAM QMA ∠=∠,∴2QM QA ==,∴2(2HM QM DH =−=−=(3)MB .证明如下,如图,作ME QB ⊥于点E ,由(2)可知AP AQ QM ==,又∵90MQE PAC ACP QEM ∠=∠∠=∠=︒,,∴(AAS)APC QME ≌,∴PC ME =.∵MEB 是等腰直角三角形,∴BE ME =.∵222BE ME MB +=,∴MB ,∴MB =.【点评】本题考查等腰三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理.正确作出辅助线是解题的关键.9.(1)见解析(2)①见解析;②2AE CF =;证明见解析【分析】(1)根据“SAS ”证明≌ACD BCE V V ,得出AD BE =,DAC CBE ∠=∠,证明ABE为直角三角形,根据勾股定理得出222AB BE AE +=,即可得出答案;(2)①根据题意补全图形即可;②延长CF ,截取FG CF =,连接BG ,证明CFD GFB ≌,得出CD BG =,GBF CDF ∠=∠,证明()SAS ACE CBG ≌即可得出结论.【解析】(1)证明:∵90ACB ∠=︒,AC BC =,∴190452CAB CBA ∠=∠=⨯︒=︒,∵90DCE ∠=︒,∴90DCA ACE ACE ECB ∠+∠=∠+∠=︒,∴DCA ECB ∠=∠,∵AC BC =,CE CD =,∴()SAS ACD BCE △≌△,∴AD BE =,DAC CBE ∠=∠,∵180135DAC CAB ∠=︒−∠=︒,∴135CBE ∠=︒,∴90ABE CBE CBA ∠=∠−∠=︒,∴ABE 为直角三角形,∴222AB BE AE +=,∴222AB AD AE +=.(2)解:①依题意补全图2如图所示:②2AE CF =;理由如下:如图,延长CF ,截取FG CF =,连接BG ,∵F 为BD 的中点,∴BF DF =,∵CFD GFB ∠=∠,CF FG =,∴()SAS CFD GFB ≌,∴CD BG =,GBF CDF ∠=∠,∵CD CE =,∴BG CE =,∵45CDF DCA CAD DCA ∠=∠+∠=∠+︒,∴45GBF CDF DCA ∠=∠=∠+︒,∴454590CBG FBG CBA DCA DCA ∠=∠+∠=∠+︒+︒=∠+︒,∵90ACE DCA DCE DCA ∠=∠+∠=∠+︒,∴ACE CBG ∠=∠,∵AC BC =,CE BG =,∴()SAS ACE CBG ≌,∴2AE CG CF FG CF ==+=.【点评】本题主要考查了三角形全等的判定和性质,勾股定理,等腰三角形的性质,三角形外角的性质,余角的性质,解题的关键是作出辅助线,构造全等三角形.10.(1)见解析(2)见解析(3)22AD =,20AB =【分析】(1)由“SAS ”可证AOB ≌COD △,可得OB OD =;(2)由AOB ≌COD △得OAB OCD ∠=∠,AOB COD ∠=∠,从而得出AOC BOD ∠=∠,AOC APC ∠=∠,根据180APC APD ∠+∠=︒和1902APD COB ∠=︒+∠进一步得出结论;(3)作BF OD ⊥于F ,作CG OA ⊥于G ,设2BD OE a ==,根据1122BOD S OD BF BD OE =⋅=⋅,BF =,从而45BF OB ,设4BF k =,5OD OB k ==,则3OF k =,根据B F O C G O ,表示各边,并求出OG 和CG ,根据AB CD =列出方程,从而求得k ,进一步求得结果.【解析】(1)证明:在AOB 和COD △中,OA OC BAO DCOAB CD =⎧⎪∠=∠⎨⎪=⎩,∴AOB ≌COD △,∴OB OD =;(2)证明:由(1)知:AOB ≌COD △,∴OAB OCD ∠=∠,AOB COD ∠=∠,∴AOB BOC COD BOC ∠−∠=∠−∠,即:AOC BOD ∠=∠.∵180A P C O C D C E P ∠=︒−∠−∠,180A O C B A O A E O ∠=︒−∠−∠,∴AOC APC ∠=∠.∵180APC APD ∠+∠=︒,∴180A O C A P D ∠+∠=︒. ∵1902APD COB ∠=︒+∠, ∴1(90)1802AOC COB ∠+︒+∠=︒,∴2180A O C B O C ∠+∠=︒,∴180A O C B O D B O C ∠+∠+∠=︒,∴A ,O ,D 三点共线;(3)解:如图,作BF OD ⊥于F ,作CG OA ⊥于G ,设2BD OE a ==,∵OB OD =,∴BE DE a ==.∵90BEO ∠=︒,∴OD OB ===. ∵1122BOD S OD BF BD OE =⋅=⋅,22BF a a ⋅=⋅,∴BF =,∴45BF OB=, ∴设4BF k =,5OD OB k ==,则3OF k =,∵AOC BOD ∠=∠,90B F O C G O ∠=∠=︒,∴B F O C G O ,∴::::3:4:5O G C G O C O F B F O B ==,设3OG x =,4CG x =,5OC x =,∴57x =, 解得75x =, ∴2135OG x ==,2845CG x ==,在Rt CDG △和Rt AFB 中,由勾股定理得,222D C C G D G =+,222AB AF BF =+,且AB CD =, ∴22222821()(5)(37)(4)55k k k ++=++,解得3k =,∴412BF k ==,15OB OD ==,39OF k ==,33716A F =⨯+=,∴71522AD OA OD =+=+=.∵222221216400A B B F A F =+=+=,∴20AB =.【点评】本题主要考查了等腰三角形性质,勾股定理,全等三角形判定和性质等知识,解决问题的关键是作辅助线,根据面积法求得线段间关系.11.(1)①图形见解析;猜想:BAE BCD ∠=∠, 理由见解析;②见解析;(2)线段AE ,CE ,DE 的数量关系:CE AE =.【分析】(1)①依题意补全图形,由直角三角形的性质得出90BAE B ∠+∠=︒,90BCD B ∠+∠=︒,即可得出BAE BCD ∠=∠;②在AE 上截取AF CE =,可证出ACD 是等腰直角三角形,得出AD CD =,可证明()ADF CDE SAS ≌△△,得出DF DE =,ADF CDE ∠=∠,可推出90CDE FDC EDF ∠︒+∠=∠=,证出EDF 是等腰直角三角形,即可得出结论CE AE =;(2) 在CE 上截取CF AE =,连接DF ,由CD AD ⊥,AE BC ⊥,可得EAD DCF ∠=∠,由45BAC ∠=︒可得AD CD =,可证()ADE CDF SAS △≌△,可得ED DF =,ADE CDF ∠=∠,可推出90EDF ∠=︒,可得EDF 是等腰直角三角形故EF ,即可得线段AE ,CE ,DE 的数量关系.【解析】(1)解:①依题意,补全图形,如图1所示.猜想:BAE BCD ∠=∠,理由如下:∵CD AB ⊥,AE BC ⊥,∴90BAE B ∠+∠=︒,90BCD B ∠+∠=︒,∴BAE BCD ∠=∠,②证明:如图2,在AE 上截取AF CE =,连接DF∵45BAC ∠=︒,CD AB ⊥,∴ACD 是等腰直角三角形,∴AD CD =,在ADF △和CDE 中,DA CD BAE BCDAF CE =⎧⎪∠=∠⎨⎪=⎩∴()ADF CDE SAS ≌△△,∴DF DE =,ADF CDE ∠=∠,∵AB CD ⊥,∴90ADF FDC ∠+∠=︒,∴90CDE FDC EDF ∠︒+∠=∠=,∴EDF 是等腰直角三角形,∴EF =,∵AF EF AE +=,∴CE AE =.(2)解:依题意补全图形,如图3所示,在CE 上截取CF AE =,连接DF ,∵CD AD ⊥,AE BC ⊥,∴90ADC AEC ∠=∠=︒,∴90EAB ABE ∠+∠=︒,90DBC DCF ∠+∠=︒,ABE CBD ∠=∠,∴EAD DCF ∠=∠,∵45BAC ∠=︒,∴45DCA ∠=︒,∴AD CD =,在ADE V 和CDF 中,AD CD EAD DCFCF AE =⎧⎪∠=∠⎨⎪=⎩∴()ADE CDF SAS △≌△,∴ED DF =,ADE CDF ∠=∠,∵90CDF ADF ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴EDF 是等腰直角三角形,∴EF =,∵CE CF EF =+,∴CE AE =,∴线段AE ,CE ,DE 的数量关系:CE AE =.【点评】本题考查了全等三角形的判定与性质等腰直角三角形的判定与性质、直角三角形的性质等知,证明三角形全等是解题的关键.12.(1)①=,②>(2)>(3)【分析】(1)①连接BD ,先证明CDB △是等边三角形,即60ACB CBD BDC ∠=︒=∠=∠,当F 点与B 点重合时,即0BF =,根据“三线合一”可得AE EF =,即有AE BF EF +=,同理:如果点E 刚好和点A 重合,同样有AE BF EF +=;问题得解;②先证明DEF 是等边三角形,根据等腰三角形的性质可得AE EF =,再结合含30︒角的直角三角形的性质可以求出BF AC =,即问题得解; (2)将DF 绕D 点逆时针旋转120°至DM ,连接AM ME ,,先证明DEM DEF ≌V V ,再证明ADM BDF ≌△△,问题即可得解;(3)将DF 绕D 点逆时针旋转120︒至DN ,连接AN NE ,,根据(2)中的方法,同理可证明:DEN DEF ≌V V ,ADN BDF ≌V V ,再证明ANE 是直角三角形,90ANE ∠=︒,结合含30︒角的直角三角形的性质即可求解.【解析】(1)①如图,连接BD ,根据题意有90ABC ∠=︒,60ACB ∠=︒,即30CAB ∠=︒,∵点D 为AC 中点, ∴12AD DC BD AC ===,∴CDB △是等边三角形,(此结论也适用于第(2)和(3)问)∴60ACB CBD BDC ∠=︒=∠=∠,∵30CAB ∠=︒,∴在Rt ABC △中,12BC AC =,∴AB AC ,当F 点与B 点重合时,如上图左图,即0BF =,∵60EDF DBC ∠=︒=∠,∴DE BC ∥,∴90AED ABC ∠=∠=︒,∴DE AF ⊥,∵AD BD =,∴AE EF =,∵0BF =,∴AE BF EF +=,同理:如果点E 刚好和点A 重合,同样有AE BF EF +=,故答案为:=;②当30ADE ∠=︒时,如图,∵30ADE ∠=︒,30DAE ∠=︒,∴60DEF ∠=︒,AE DE =,∵60EDF ∠=︒,∴DEF 是等边三角形,90ADF Ð=°,∴DE EF =,∴AE EF =,∵90ADF Ð=°,30DAE ∠=︒,∴在Rt ADF 中,12DF AF =,∴AF AB =,∴AF AC =,∴BF AB AF AC AC AC =−==,∵AE EF =,BF AC ,∴AE BF EF +>,故答案为:>;(2)AE BF EF +>,理由如下:将DF 绕D 点逆时针旋转120︒至DM ,连接AM ME ,,如图,根据旋转的性质有:120MDF ∠=︒,DF DM =,∵60FDE ∠=︒,∴60MDE ∠=︒,∵DE DE =,∴DEM DEF ≌V V ,∴EM EF =,∵60CDB ∠=︒,∴120ADB ∠=︒,即:ADB MDF ∠=∠,∵ADB ADF FDB ∠=∠+∠,MDF ADF ADM ∠=∠+∠,∴BDF ADM ∠=∠,∵AD BD =,MD DF =,∴ADM BDF ≌△△, ∴AM BF =,∴在AME △中,AM AE ME +>,∴BF AE EF +>,故答案为:>;(3)将DF 绕D 点逆时针旋转120︒至DN ,连接AN NE ,,如图,根据(2)中的方法,同理可证明:DEN DEF ≌V V ,ADN BDF ≌V V ,∴AN BF =,NE EF =,DBF DAN ∠=∠,∵222BF EF AE +=,∴222AN NE AE +=,∴ANE 是直角三角形,90ANE ∠=︒,∵在(1)中已证明60CBD ∠=︒,∴30DAN DBF ∠=∠=︒,∴60NAE DAN CAB ∠=∠+∠=︒,∴30AEN ∠=︒, ∴12AN AE =,∴NE AE ,∴EF NE AE AE=. 【点评】本题主要考查了全等三角形的判定与性质,含30︒角直角三角形的性质,等腰三角形的判定与性质,勾股定理及其逆定理等知识,合理构筑辅助线,证明三角形全等是解答本题的关键.13.(1)见解析(2) (3)94x =【分析】(1)表示出三个图形的面积进行加减计算可证222+=a b c ;(2)计算出ABC 的面积,再根据三角形的面积公式即可求得AB 边上的高;(3)运用勾股定理在Rt ABD 和Rt ADC 中求出2AD ,列出方程求解即可;【解析】(1)证明:∵2 12ABCD S c =四边形,() 12AEDC S b a b =+梯形,()12BED S a b a =−△, BED ABCD AEDC S S S =+△四边形梯形 ∴()()2111222c b a b a b a =++− ∴2221111122222c b ab a ab =++− ∴222+=a b c(2)111442424226222ABC S =⨯−⨯⨯−⨯⨯−⨯⨯=,AB =11622ABC S AB h =⨯=⨯=, 655h =即AB 边上的高是(3)解:在Rt △ABD 中,由勾股定理得222222416AD AB BD x x =-=-=-∵6BD CD BC +==,∴6CD BC BD x =−=−在Rt ACD △中,由勾股定理得()222222561112AD AC CD x x x =−=−−=−+−∴22161112x x x -=-+-, ∴94x =【点评】此题主要考查了梯形,证明勾股定理,勾股定理的应用,证明勾股定理常用的方法是利用面积证明,是解本题的关键.构造出直角三角形DEF 是解本题的难点.14.(1)见解析(2)(3)【分析】(1)证明ACE BCF △△≌,即可解决问题; (2)先由全等三角形的性质和三角形的外角性质,证出90ACD DFB ∠=∠=︒,再由勾股定理即可解决问题;(3)作FH BC ⊥于H .先证明BCF △是底角为30°的等腰三角形,再求出CF FB FH ,,的长,然后根据DEF ECD CDF ECF S S S S =+−计算即可.【解析】(1)证明:∵ABC ECF ,都是等腰直角三角形,∴90CA CB CE CF ACB ECF ==∠=∠=︒,,,∴ACE BCF ∠=∠,∴()SAS ACE BCF ≌,∴CAE CBF ∠=∠;(2)解:∵90AC BC ACB ==∠=︒,∴AB ==由(1)得:CAD DBF ∠=∠,∵ADB CAD ACD DBF DFB ∠=∠+∠=∠+∠,∴90DFB ACD ∠=∠=︒,∴AF == (3)解:过点F 作FH BC ⊥于H ,如图3所示:∵ABC 是等腰直角三角形,90ACB AC BC ∠=︒=,,∴45BAC ABC ∠=∠=︒,∵15BAD ∠=︒,∴451530CAE ∠=︒−︒=︒,∴30ACE CAE ∠=∠=︒,∴==AE CE CF ,同(1)得:()SAS ACE BCF ≌,∴30BF AE ACE BCF =∠=∠=︒,,∴CF BF =,∴30BCF CBF ∠=∠=︒,∵FC FB FH BC =⊥,,∴12CH BH BC ===,32FH ==,23CF BF FH ===,∵60903060CED CAE ACE ECD ∠=∠+∠=︒∠=︒−︒=︒,,∴ECD 是等边三角形,∴3EC CF CD ===,∴DEF ECD CDF ECF S S S S =+−21313333222=+⨯⨯−⨯⨯=.【点评】本题属于三角形综合题,考查了等腰直角三角形的性质,等边三角形的判定和性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.15.(1)AEFS =;AC BD =+,证明见解析;(3)DP FQ +【分析】(1)过点F 作FG AC ^于点G ,在Rt EFG △中利用勾股定理求得GF 的长,在等腰直角三角形AFG 中即可求得AG 的长,从而可得答案;(2)过点E 作EH AC ⊥交AB 于点H ,过点H 作HM BC ⊥于点M ,通过证明HEF DBF ≌,利用全等三角形的性质与等腰直角三角形的性质即可得出结论;(3)过点F 作FM AC ⊥于点M ,延长FM 至F '使F M FM '=,则F '与F 关于AC 对称,过点F '作F N BC '⊥,交BC 的延长线于点N ,证明APF CQF ≌,利用轴对称解决路径最短问题即可求得结论.【解析】(1)解:过点F 作FG AC ^于点G ,如图,∵90,ACB AC BC ∠=︒=,∴45A ABC ∠=∠=︒,∵90,30ECD EDC ∠=︒∠=︒,∴60DEG ∠=︒.∵,6FG AC EF ⊥=, ∴132EG EF ==,∴FG ==∵,45FG AC A ⊥∠=︒,∴AG FG ==∴3AE AG EG =−=.∴)11322AEF S AE FG ==⨯=. (2)解:过点E 作EH AC ⊥交AB 于点H ,过点H 作HM BC ⊥于点M ,如图,∵,45EH AC A ⊥∠=︒,∴,AE EH AH ==.∵BD AE =,∴EH BD =.∵,EH AC DC AC ⊥⊥,∴HE CD ∥,∴HEF D ∠=∠.在HEF 和DBF 中,HEF D HFE BFD EH DB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS HEF DBF ≌. ∴12HF BF BH ==.∵90HEC ACB HMC ∠=∠=∠=︒,则90EHM ∠=︒,∴HM AC ∥,而HE CD ∥,∴由平行线间的距离处处相等可得:,CM HE HM CE ==,∵,45HM BC ABC ⊥∠=︒,∴EC HM ==,∴12AF AH HF BH =++. ∴2AE BH =,即:AE AE CE AE AC =++=+. ∴AC BD =+.(3)解:∵AB = F 是线段AB 的中点,90ACB ∠=︒,∴4,45,AF FB FC AC BC A ABC CF AB =====∠=∠=︒⊥.∴45FCQ A ∠=∠=︒.在APF 和CQF △中,AP CQ A FCQ AF FC =⎧⎪∠=∠⎨⎪=⎩,∴APF CQF ≌.∴PF FQ =. ∴DP FQ DP PF +=+.过点F 作FN AC ⊥于点M ,延长FM 至F '使F M FM '=,则F '与F 关于AC 对称, 连接DF '交AC 于点P ,如图,则此时DP FP DF '+=,取得最小值, 过点F '作F N BC '⊥,交BC 的延长线于点N ,∵90,,45AFC FM AC A ∠=︒⊥∠=︒, ∴112,222AM MC AC FM AC =====. ∴2F M FM '==.。

【常考压轴题】勾股定理常考压轴题汇总—2023-2024学年八年级数学下册(人教版)(解析版)

【常考压轴题】勾股定理常考压轴题汇总—2023-2024学年八年级数学下册(人教版)(解析版)

勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.18【答案】B【解答】解:由图可得:a2+b2=c2,∴且a、b均大于0,解得,∴a+b=6+8=14,故选:B.2.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【答案】B【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是5和4,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【答案】B【解答】解:∵四边形ABGF是正方形,∴∠F AB=∠AFG=∠ACB=90°,∴∠F AC+∠BAC=∠F AC+∠ABC=90°,∴∠F AC=∠ABC,在△F AM与△ABN中,,∴△F AM≌△ABN(ASA),∴S△F AM=S△ABN,∴S△ABC=S四边形FNCM,∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,∵AB2﹣2S△ABC=10.5,∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.6.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.5【答案】B【解答】解:以AC为直径的半圆的面积=×π×=π,同理:以BC为直径的半圆的面积=π,以AB为直径的半圆的面积=π,∴S1+S2=π+π+△ABC的面积﹣π,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=△ABC的面积=AC•BC=7,∵AC=3,∴BC=.故选:B.7.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【答案】A【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【答案】B【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【答案】D【解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.6【答案】B【解答】解:∵∠ACB=90°,AB=9,BC=6,∴,∵,∴AC•BC=AB•CD,,,∵CD⊥AB,∴∠CDB=90°,∴,故选:B.11路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m【答案】D【解答】解:根据勾股定理求得:AB==10(m),∴AC+BC﹣AB=6+8﹣10=4(m),故选:D.12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【答案】A【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.13.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.【答案】C【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:C.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm【答案】A【解答】解:∵点C为线段AB的中点,∴AC=AB=4cm,在Rt△ACD中,CD=3cm;根据勾股定理,得:AD==5(cm);∵CD⊥AB,∴∠DCA=∠DCB=90°,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴AD=BD=5cm,∴AD+BD﹣AB=2AD﹣AB=10﹣8=2(cm);∴橡皮筋被拉长了2cm.故选:A.15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.【答案】A【解答】解:由题意可得∠90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.【答案】D【解答】解:如下图,设图中直角三角形的两条直角边长分别为a、b,斜边为c,∵图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,∴可有,解得c2=18,解得或(不合题意,舍去),∴大正方形的边长是.故选:D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米【答案】C【解答】解:∵△ABC是直角三角形,BC=3m,AB=5m∴AC==4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AC+BC=7米,故选:C.18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.10【答案】D【解答】解:过点C作CM⊥EF于点M,交AB于点N,∵正方形ABFE面积为5,正方形BCIH面积为1,∴CN⊥AB,BC=1,AB=MN=,BN=FN,∵△ABC是直角三角形,∠ACB=90°,∴AC===2,∴,即=CN,∴CN=,∴BN=FM===,∴CM=CN+MN==,∴CF=10,∴以CF为边长的正方形面积为10.故选:D.19.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【答案】C【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.20.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.41【答案】A【解答】解:在Rt△ABC中,∠C=90°,∴AB2=AC2+BC2.∵S1=(AB)2π=AB2=25,∴AB2=25×.同理BC2=16×.∴AC2=AB2﹣BC2=25×﹣16×=9×.∴S1=(AC)2π=AC2=×9×=9.故选:A.21.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC=S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【答案】A【解答】解:由题意有Rt△EBD≌Rt△ABC,∴S4=S;故①正确;过F作AM的垂线交AM于N,由题意,得Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S,故②正确;连接FP,FQ,由题意,可得△AQF≌△ACB,则F,P,Q三点共线,由Rt△NFK≌Rt△CAT可得Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S,故③正确;S1+S2+S3+S4=(S1+S3)+S2+S4=S Rt△ABC+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=3S,故④不正确.故选:A.22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【答案】C【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.23.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.【答案】B【解答】解:∵将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFCH.正方形ABCD和正方形EFGH的边长比为1:5.∴设正方形ABCD的边长为a,则正方形EFGH的边长为5a,设AE=BF=CG=DH=x,在△BEF中,BE2+BF2=EF2,即(x+a)2+x2=(5a)2,x2+ax﹣12a2=0,(x+4a)(x﹣3a)=0,x=﹣4a(舍去)或x=3a,∴BE=4a,BF=3a,EF=5a,∵FM平分∠BFE,∴△EMF边EF上的高为BM,则S△BMF+S△MBF=S△BEF,即,∴,∴BM=,∵A'E=ME=BE﹣BM=4a﹣a,若”新型数学风车”的四个叶片面积和是m,∴S△EMF=S△EF A'=m,∴,∴a m,∴a=∴EF=5a=,∴S正方形EFCH=EF=,故选:B.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接P A,当△ABP为等腰三角形时,t的值为.【答案】16或10或.【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当P A=PB时,如图:设BP=P A=x cm,则PC=(8﹣x)cm,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.【答案】.【解答】解:当BN∵点M,N是线段AB的勾股分割点,∴BN===,故答案为:.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.【答案】136.【解答】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,∴BO2+CO2=CB2,OB2+OA2=AB2=36,OA2+OD2=AD2,OC2+OD2=CD2=100,∴BO2+CO2+OA2+OB2=36+100,∴AD2+CB2=BO2+CO2+OA2+OB2=136;故答案为:136.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.【答案】101.【解答】解:设OA=OB=AD=BC=r寸,如图,过D作DE⊥AB于点E,则DE=10寸,OE=CD=1(寸),AE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101,即门槛AB长为101寸,故答案为:101.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.【答案】80.【解答】解:延长AE、BF相交于点C,∵∠AOB=30°+90°+30°=150°,∠EOF=75°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(60°+60°)=180°,延长FB至D,使BD=AE,连接OD,∵∠OBD=∠OBC,∴.∠OBD=∠A,∴△OBD≌△OAE(SAS),∴OD=OE,∠BOD=∠AOE,∵∠EOF=∠AOB=∠EOD,∴.∠EOF=∠DOF,又∵OF=OF,∴△EOF≌△DOF(SAS),∴EF=AE+BF,即EF=1.5×(60+m)=210.解得m=80.故答案为:80.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.【答案】.【解答】解:由图可知∠AED=90°,AB=5,EF=1,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设DE=x,则在Rt△AED中,AD=AB=5,AE=1+x,根据勾股定理,得AD2=DE2+AE2,即52=x2+(1+x)2,解得:x1=3,x2=﹣4(舍去).过点M作MN⊥FB于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NB=GB﹣GN=3﹣a,∵MN∥AF,∴△BMN∽△BAF,∴=,将MN=a,AF=3,BN=3﹣a,BF=4代入,得=,解得a=,∴MN=GN=,在Rt△MGN中,由勾股定理,得GM===.故答案为:.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.【答案】10.【解答】解:设AP=x千米,则DP=(25﹣x)千米,∵B、C两村到P站的距离相等,∴BP=PC.在Rt△APB中,由勾股定理得BP2=AB2+AP2,在Rt△DPC中,由勾股定理得PC2=CD2+PD2,∴AB2+AP2=CD2+PD2,又∵AB=15km,CD=10km,∴152+x2=102+(25﹣x)2,∴x=10.故答案为:10.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【答案】见试题解答内容【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【答案】.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.【答案】2.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.【答案】.【解答】解:∵在△ABC中,AB=9cm,AC=12cm,BC=15cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB•AC=BC•AM,∴9×12=15AM,AM=,即DE的最小值是cm.故答案为:.37.如图,Rt△ABC中,.点P为△ABC内一点,P A2+PC2=AC2.当PB的长度最小时,△ACP的面积是.【答案】.【解答】解:如图所示,取AC中点O,连接PO,BO,∵P A2+PC2=AC2,∴∠APC=90°,∴,∵BP+OP≥OB,∴当B、P、O三点共线时BP+OP有最小值,即此时BP有最小值,∵∠ACB=90°,∴,∴BP=BO﹣OP=2,∴BP=PO,又∠ACB=90°,∴PC=BO=2,∴PC=PO=CO,∴△OPC是等边三角形,∴∠PCO=60°,∠P AC=30°∴AP==2,∴,故答案为:.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】见试题解答内容【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【答案】或10或16.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】见试题解答内容【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠F AE=∠F AD+∠DAE=∠F AD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠F AE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.。

填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案八年级下册数学期末压轴题1.在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.1) 证明四边形ABCD是平行四边形;2) 若AB=3cm,BC=5cm,AE=1/3 AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,使△BEP为等腰三角形?2.△XXX的XXX在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与XXX重合,且DF=EF.1) 观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;2) 将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△XXX能否通过旋转重合?请证明你的猜想.3.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.1) 观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;2) 当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;3) 当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)4.图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.1) 操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连结AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;2) 操作:若将图1中的△C′DE绕点C按顺时针方向任意旋转一个角度,连结AD,BE,如图3;在图3中,线段BE 与AD之间具有怎样的大小关系?证明你的结论;3) 根据上面的操作过程,请你猜想当为多少度时,线段AD的长度最大?是多少?当为多少度时,线段AD的长度最小?是多少?(不要求证明)之间的数量关系,并说明理由;2)证明你所得到的猜想;3)若平行四边形ABCD的周长为20且a+b+c+d=10求平行四边形ABCD的面积.5、在△ACB和△AED中,已知AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE。

中学数学八年级下册 期末压轴题(含答案)

中学数学八年级下册  期末压轴题(含答案)

八年级下册期末压轴题一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是;②在图1中利用“等积变形”可得S正方形ADEC=;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=,则有S正方形ADEC=;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△≌△,则有=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.3.(2020春•海淀区校级期末)∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围.(要写过程)4.(2019•都江堰市模拟)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M 向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M 始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.5.(2020春•海淀区校级期末)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD 的数量关系.6.(2019春•朝阳区期末)对于平面直角坐标系xOy中的图形M和点P(点P在M内部或M上),给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M 的和谐点.已知点A(﹣4,3),B(﹣4,﹣3),C(4,﹣3),D(4,3).(1)在点P₁(﹣2,1),P2(﹣1,0),P3(3,3)中,矩形ABCD的和谐点是;(2)如果直线y=上存在矩形ABCD的和谐点P,直接写出点P的横坐标t的取值范围;(3)如果直线y=上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点(含端点)都是矩形ABCD的和谐点,且EF,直接写出b的取值范围.7.(2017春•昌平区期末)(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.①如果AD=4,BD=9,那么CD=;②如果以CD的长为边长作一个正方形,其面积为S1,以BD,AD的长为邻边长作一个矩形,其面积为S2,则S1S2(填“>”、“=”或“<”).(2)基于上述思考,小泽进行了如下探究:①如图2,点C在线段AB上,正方形FGBC,ACDE和EDMN,其面积比为1:4:4,连接AF,AM,求证AF⊥AM;②如图3,点C在线段AB上,点D是线段CF的黄金分割点,正方形ACDE和矩形CBGF的面积相等,连接AF交ED于点M,连接BF交ED延长线于点N,当CF=a时,直接写出线段MN的长为.8.(2018春•浉河区期末)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,﹣2),N(,﹣1)中,是“垂点”的点为;(2)点M(﹣4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG 的边上存在“垂点”时,GE的最小值为.9.(2018春•丰台区期末)如图,菱形ABCD中,∠BAD=60°,过点D作DE⊥AD交对角线AC于点E,连接BE,取BE的中点F,连接DF.(1)请你根据题意补全图形;(2)请用等式表示线段DF、AE、BC之间的数量关系,并证明.10.(2018春•丰台区期末)在平面直角坐标系xOy中,M为直线l:x=a上一点,N是直线l外一点,且直线MN与x轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l的“伴随矩形”.如图为直线l的“伴随矩形”的示意图.(1)已知点A在直线l:x=2上,点B的坐标为(3,﹣2)①若点A的纵坐标为0,则以AB为对角线的直线l的“伴随矩形”的面积是;②若以AB为对角线的直线l的“伴随矩形”是正方形,求直线AB的表达;(2)点P在直线l:x=m上,且点P的纵坐标为4,若在以点(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l的“伴随矩形”为正方形,直接写出m的取值范围.11.(2019春•海淀区期末)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.12.(2019春•海淀区期末)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.13.(2017春•西城区期末)如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为B(4,0),C(4,4),CD⊥y轴于点D,直线l经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出∠CFB=45°,从而证明结论.思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN 为矩形,从而证明结论.…请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为,(2)①补全图形,②直线BF与直线l的位置关系是,③证明:14.(2017春•西城区期末)如图,在由边长都为1个单位长度的小正方形组成的6×6正方形网格中,点A,B,P都在格点上请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:条件1:点P到四边形的两个顶点的距离相等;条件2:点P在四边形的内部或其边上;条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个▱ABCD,使点P在所画四边形的内部;(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.15.(2017春•西城区期末)如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m,n)在第一象限内(m<2≤a),在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点,作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由≌△,及B(m,n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.16.(2019春•西城区期末)四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC,过点C作FC⊥CE,且CF=CE.连接AE、AF,M是AF的中点,作射线DM 交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求∠EAC与∠ADN 的和的度数.17.(2019春•西城区期末)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP =xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数y1的图象①按表中自变量的值进行取点、画图、测量,得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在图2所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y2的图象,在同一坐标系中,画出函数y2的图象;(3)根据画出的函数y1的图象、函数y2的图象,解决问题①函数y1的最小值是;②函数y1的图象与函数y2的图象的交点表示的含义是;③若PE=PC,AP的长约为cm18.(2019春•西城区期末)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K (﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN 与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.19.(2019春•大兴区期末)有这样一个问题:探究函数y=+1的图象与性质.小东根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣112345…y…393m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.20.(2019春•大兴区期末)如图1,四边形ABCD是平行四边形,A,B是直线l上的两点,点B关于AD的对称点为M,连接CM交AD于F点.(1)若∠ABC=90°,如图1,①依题意补全图形;②判断MF与FC的数量关系是;(2)如图2,当∠ABC=135°时,AM,CD的延长线相交于点E,取ME的中点H,连结HF.用等式表示线段CE与AF的数量关系,并证明.21.(2019春•大兴区期末)在平面直角坐标系xOy中,记y与x的函数y=a(x﹣m)2+n (m≠0,n≠0)的图象为图形G,已知图形G与y轴交于点A,当x=m时,函数y=a (x﹣m)2+n有最小(或最大)值n,点B的坐标为(m,n),点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,且对角线AC,BD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.(1)如图1,若函数y=(x﹣2)2+1的图象记为图形G,求图形G的伴随直线的表达式;(2)如图2,若图形G的伴随直线的表达式是y=x﹣3,且伴随四边形的面积为12,求y与x的函数y=a(x﹣m)2+n(m>0,n<0)的表达式;(3)如图3,若图形G的伴随直线是y=﹣2x+4,且伴随四边形ABCD是矩形,求点B 的坐标.22.(2019春•石景山区期末)正方形ABCD中,点P是直线AC上的一个动点,连接BP,将线段BP绕点B顺时针旋转90°得到线段BE,连接CE.(1)如图1,若点P在线段AC上,①直接写出∠ACE的度数为°;②求证:P A2+PC2=2PB2;(2)如图2,若点P在CA的延长线上,P A=1,PB=,①依题意补全图2;②直接写出线段AC的长度为.23.(2020春•浦东新区期末)在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.24.(2016春•无锡期末)已知:如图1,在平面直角坐标中,A(12,0),B(6,6),点C 为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A 时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.25.(2019春•东城区期末)有这样一个问题:探究函数y=﹣3的图象与性质.小亮根据学习函数的经验,对y=﹣3的图象与性质进行了探究下面是小亮的探究过程,请补充完整:(1)函数y=3中自变量x的取值范围是(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣4﹣5﹣7m﹣1﹣2﹣﹣…求m的值;(1)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.26.(2019春•东城区期末)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD 外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)27.(2019春•东城区期末)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形.当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(﹣1,1),P3(3,2)中,原点正方形的友好点是;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)一次函数y=﹣x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.28.(2019春•昌平区期末)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.0 1.0 2.0 3.0 4.0 4.5 4.14 4.5 5.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为时,BP=CP.29.(2019春•昌平区期末)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为.30.(2019春•昌平区期末)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(﹣4,﹣4),E(5,﹣),其中是平面直角坐标系中的巧点的是;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.31.(2019春•延庆区期末)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.32.(2019春•延庆区期末)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=﹣3x﹣2.(1)如果y=x+1的﹣1分函数为y[﹣1],①当x=4时,y[﹣1];当y[﹣1]=﹣3时,x=.②求双曲线y=与y[﹣1]的图象的交点坐标;(2)如果y=﹣x+2的0分函数为y[0],正比例函数y=kx(k≠0)与y=﹣x+2的0分函数y[0]的图象无交点时,直接写出k的取值范围.33.(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.34.(2017春•西城区校级期末)某学习小组有a个男生,b个女生,其中a和b同时满足以下三个条件:①男生人数不少于女生人数;②a,b是一元二次方程mx2﹣(3m+8)x+24=0的两个实数根;③男生和女生的总人数不超过10人.请根据以上信息,回答下面两个问题:(1)求整数m的值?(2)若T=ma+b,求T的所有可能的值?35.(2017春•西城区校级期末)设p,q都是实数,且p<q.我们规定:如果变量x的取值范围为p≤x≤q,则把实数L=q﹣p叫做变量x的取值宽度.如果反比例函数y=在p ≤x≤q的函数值y的取值宽度与自变量x的取值宽度相等,则称此函数在p≤x≤q上具有“等宽性”.例如:函数y=的函数值y的取值范围为≤y≤2,故而函数y=具有“等宽性”.(1)下列函数哪些函数具有“等宽性”:(填序号)①y=(1≤x≤2);②y=﹣(﹣2≤x≤﹣1);③y=﹣(1≤x≤6);④y=﹣(﹣4≤x≤﹣1);(2)已知函数y=﹣在a≤x≤﹣1上具有“等宽性”,求a的值;(3)已知直线y=kx+b与函数y=﹣交于A(x1,y1)、B(x2,y2)两点,且函数y=﹣在x1≤x≤x2上具有“等宽性”,则k=.36.(2018春•海淀区期末)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1﹣1所示,∠APE=°,用等式表示线段DE与CP之间的数量关系:;②当BP=BC时,如图1﹣2所示,①中的结论是否发生变化?直接写出你的结论:;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图2﹣1,2﹣2,通过观察、测量,发现:(1)中①的结论在一般情况下(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图2﹣1和图2﹣2中任选一个进行证明;若不成立,请说明理由.37.(2018春•海淀区期末)在平面直角坐标系xOy中,A(O,2),B(4,2),C(4,0).P 为矩形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分矩形ABCO为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA,则称P 为矩形ABCO的矩宽点.例如:下图中的为矩形ABCO的一个矩宽点.(1)在点D(,),E(2,1),F(,)中,矩形ABCO的矩宽点是;(2)若G(m,)为矩形ABCO的矩宽点,求m的值;(3)若一次函数y=k(x﹣2)﹣1(k≠0)的图象上存在矩形ABCO的矩宽点,则k的取值范围是.38.(2019春•曲阜市期末)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.39.(2018春•朝阳区期末)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(﹣,0),B(0,2),C(﹣2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.40.(2018春•昌平区期末)如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)OP=,OQ=;(用含t的代数式表示)(2)当t=1时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.①求点D的坐标;②如果直线y=kx+b与直线AD平行,那么当直线y=kx+b与四边形P ABD有交点时,求b的取值范围.41.(2018春•昌平区期末)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.42.(2018春•西城区期末)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.43.(2018春•西城区期末)在△ABC中,M是BC边的中点.(1)如图1,BD,CE分别是△ABC的两条高,连接MD,ME,则MD与ME的数量关系是;若∠A=70°,则∠DME=°;(2)如图2,点D,E在∠BAC的外部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=30°,连接MD,ME.①判断(1)中MD与ME的数量关系是否仍然成立,并证明你的结论;②求∠DME的度数;(3)如图3,点D,E在∠BAC的内部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=α,连接MD,ME.直接写出∠DME的度数(用含α的式子表示).八年级下册期末压轴题参考答案与试题解析一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是平行四边形;②在图1中利用“等积变形”可得S正方形ADEC=S四边形AMNC;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=S四边形QATH,则有S正方形ADEC=S四边形QATH;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△ADM≌△ABC,则有AM=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.【分析】根据平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型即可解决问题;【解答】解:(1)∵四边形ACED是正方形,∴AC∥MN,∵AM∥CN,∴四边形AMNC是平行四边形,∴S正方形ADEC=S平行四边形AMNC,∵AD=AC,∠D=∠ACB,∠DAC=∠MAB,∴∠DAM=∠CAB,∴△ADM≌△ACB,∴AM=AB=AQ,∴图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′,∴S四边形QACC′=S四边形QATH,则有S正方形ADEC=S四边形QATH,∴同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ;故答案为平行四边形,S四边形AMNC,S四边形QATH,S四边形QATH;(2)由(1)可知:△ADM≌△ACB,∴AM=AB=AQ,故答案为ADM,ACB,AM;【点评】本题考查平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考创新题目.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN 逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证。

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。

浙教版初二下册数学期末压轴题及答案

浙教版初二下册数学期末压轴题及答案

浙教版八下数学期末压轴题1 如图,梯形ABCD 中,AD // BC,/ B=Rt Z, AD=21cm , BC=24cm,动点P 从点A 出发沿AD 边向D以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/sP运动时间为t.的速度运动(运动到点B时,P、Q同时停止运动).设点(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?2、如图,在直角梯形ABCD 中,AB // CD , / BCD=Rt /, AB=AD=10cm , BC=8cm .点P 从点A 出发,以每秒2cm的速度沿线段AB方向向点B运动,点Q从点D出发,以每秒3cm的速度沿线段DC 方向向点C运动.已知动点P、Q同时发,当点P运动到点B时,P、Q运动停止,设运动时间为t.(1 )求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.3、如图,在梯形ABCD 中,AD // BC,/ B= 90 ° ,AD = 16cm, AB = 12cm, BC = 21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD 上以每秒1cm的速度向点D运动,点P, Q分别从点B, A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1 )当t为何值时,四边形PQDC是平行四边形•(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点卩,使厶PQD是等腰三角形?若存在,请求出所有满足要求的t的值,若不存在,请说明理由•4、如图,四边形ABCD 中,AD // BC , AD=15 , BC=25, AB=DC=10,动点P从点D 出发,以每秒1个单位长的速度沿线段DA的方向向点A运动,动点Q从点C出发,以每秒2个单位长的速度沿射线CB的方向运动,点P、Q分别从点D、C同时出发,当点P运动到点A时,点Q随之停止运动。

上海(沪)八年级第二学期期末数学压轴题及答案(可转为word)

上海(沪)八年级第二学期期末数学压轴题及答案(可转为word)

0 8k b, ∴ „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) 4 5k b,
4 k , 3 „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) ∴ 32 b . 3
4 32 .„„„„„„„„„„„„(1 分) x 3 3 26.解: (1)BF +AG= AE.„„„„„„„„„„„„„„„„„„„„„„(1 分) 证明如下:过点 F 作 FH⊥DA,垂足为 H, ∵在正方形 ABCD 中,∠DAE=∠B=90°,∴四边形 ABFH 是矩形.„(1 分) ∴FH=AB=DA.∵BD⊥FG,∴∠G=90°–∠ADE=∠DEA. 又∴∠DAE=∠FHG=90°,∴△FHG≌△DAE. „„„„„„„„„„(1 分) ∴GH=AE,即 HA+AG=AE.∵BF=HA,∴BF+AG=AE.„„„„„„(1 分)
本题满分12分其中第1小题5分第2小题3分第3小题4bcaebcdfdfaeefad四边形aefd是平行四边形efad5aedf?????????????????????????1abcd5rtabertdcfbecfefbccfbecf3在rtabeabaeaebqapaepdcqqcdpabqp当四边形abqp与四边形qcdp的面积相等时3当四边形abqp是平行四边形时pqab当四边形qcdp是平行四边形时可得pqcdcdabpqab此时cqpd11时pqab
FB 3 ,且 AC 10 ,求 FC 的值. BD 5
A
D
F
E
B
C
26. 在梯形 ABCD 中, ∠ABC= 90 , AD∥BC, BC>AD, AB=8cm, BC=18cm, CD=10 cm,点 P 从点 B 开始沿 BC 边向终点 C 以每秒 3cm 的速度移动,点 Q 从点 D 开始沿 DA 边向终点 A 以每秒 2cm 的速度移动,设运动时间为 t 秒. (1)求四边形 ABPQ 为矩形时 t 的值; (2)若题设中的“BC=18cm”改变为“BC= k cm” ,其它条件都不变,要 使四边形 PCDQ 是等腰梯形,求 t 与 k 的函数关系式,并写出 k 的取值范围; (3)在移动的过程中,是否存在 t 使 P、Q 两点 的距离为 10cm ,若存在求 t 的值. 若不存在请说明 理由?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学期末压轴题专辑(含解析)1.如图,ON 为∠AOB 中的一条射线,点 P 在边 OA 上,PH⊥OB 于 H,交 ON 于点 Q,PM∥OB 交 ON 于点 M, MD⊥OB 于点 D,QR∥OB 交 MD 于点 R,连结 PR 交 QM 于点 S。

(1)求证:四边形 PQRM 为矩形;(2)若 OP= 1 PR,试探究∠AOB 与∠BON 的数量关系,并说明理由。

2(1)证明:∵PH⊥OB,MD⊥OB,∴PH∥MD, ∵PM∥OB,QR∥OB,∴PM∥QR,∴四边形 PQRM 是平行四边形, ∵PH⊥OB,∴∠PHO=90°, ∵PM∥OB,∴∠MPQ=∠PHO=90°,∴四边形 PQRM 为矩形; (2)∠AOB=3∠BON.理由如下:∵四边形 PQRM 为矩形,∴PS=SR=SQ= 1 PR,∴∠SQR=∠SRQ, 2又∵OP= 1 PR,∴OP=PS,∴∠POS=∠PSO, 2∵QR∥OB,∴∠SQR=∠BON, 在△SQR 中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,∴∠POS=2∠BON, ∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,即∠AOB=3∠BON.2.如图,矩形 OABC 在平面直角坐标系内(O 为坐标原点),点 A 在 x 轴上,点 C 在 y 轴上,点 B 的坐标分别为(-2,2 3 ) ,点 E 是 BC 的中点,点 H 在 OA 上,且 AH= 1 ,过点 H 且平行于 y 轴的 HG 与 EB 2交于点 G,现将矩形折叠,使顶点 C 落在 HG 上,并与 HG 上的点 D 重合,折痕为 EF,点 F 为折痕与 y 轴 的交点。

(1)求∠CEF 的度数和点 D 的坐标; (2)求折痕 EF 所在直线的函数表达式; (3)若点 P 在直线 EF 上,当△PFD 为等腰三角形时,试问满足条件的点 P 有几个?请求出点 P 的坐标, 并写出解答过程。

(本题部分过程用了三角函数,可以用初二知识点沟通)(备用图)解 : ( 1 ) ∵ E 是 BC 的 中 点 , ∴ EC=EB==1 .∵ △ FCE 与 △ FDE 关 于 直 线 EF 对 称 , ∴ △ FCE ≌ △ FDE ,∴ED=EC=1,∠FCE=∠FDE=90°,DF=CF.∵AH=1,∴EG=EB-AH=1-1=1.222∵ cos ∠ GED== 1 , ∴ ∠ GED=60 ° . ∴ ∠ DEC=180 ° -60 ° =120 ° . 2∵∠DEF=∠CEF∴∠CEF==60°.在 Rt △ GED 中 , 由 勾 股 定 理 得 : DG2=ED2-EG2=1-=∴ DG=DH=AB-DG=2-=OH=OA-AH=2- 1 = 2故 D(- ,)- 1 - / 12( 2 ) ∵ ∠ CEF ═ 60 ° ∴ CF=ECtan60 ° =∴ OF=OC-CF=2-=∴F(0,) , E ( -1 , 2)设 EF 所 在 直 线 的 函 数 表 达 式 为 y=kx+b , 由 图 象 , 得,解得:故 EF 所在直线的函数表达式为:y=- x+ ;( 3 ) ∵ DF=CF= 点 P 在 直 线 EF 上 , ∴ 当 △ PFD 为 等 腰 三 角 形 时 , 有 以 下 三 种 情 况 :( a ) P1F=DF=,可 令 P1 ( t , -t+) , 则 : P1F2=3∴ 由 两 点 间 的 距 离 公 式 为 : ( t-0 ) 2+ ( -t+-) 2=3 ∴ t2+3t2=3 ∴ t2=,∴ t1=-, t2=∴ P1 ( -,+) ; P3 (,- + )( b ) PD=DF= 时 , 仍 令 P ( t , - t+ ) , 注 意 D ( - ,) , 则 : PD2=3∴ ( t+ ) 2+ ( - t+ -) 2=3 ∴ t2+3t+ +3t2+3t+ =3 ∴ 4t2+6t=0∴ t1=0, t2=-∵ t1=0 对 应 F 点 , 此 时 不 构 成 三 角 形 , 故 舍 去 . ∴ P4 ( -,)( c ) 当 PD=PF 仍 令 P ( t , - t+ ) , 注 意 D ( - ,),F(0, ),则:PD2=PF2 ∴ ( t+) 2+ ( -t+-) 2= ( t-0 ) 2+ ( -t+-∴ t2+3t++3t2+3t+=t2+3t2 ∴ 6t+3=0 ∴ t=- 1 ∴ P4 ( - 1 ,22)2, ).故满足条件的点 P 有 4 个.分别是:(().)、()、(yy11BP AC Oy2xy3.如图,在平面直角坐标系xOy中,已知直线y1=-2 3x+2与x轴、y轴分别交于点A和点B,直线y 2 =kx+b(k≠0) 经过点 C(1,0)且与线段 AB 交于点 P,并把△ABO 分成两部分.(1)求△ABO 的面积. (2)若△ABO 被直线 CP 分成的两部分的面积相等,求点 P 的坐标及直线 CP 的函数表达式.- 2 - / 12解:(1)在直线令,得中,令,得. ∴A(3,0).、∴.(2).∵点 P 在第一象限,∴. ∴B(0,2). .解得.而点 P 又在直线 上,∴.解得.∴P( ). 将点 C(1,0)、P( ),代入 ∴直线 CP 的函数表达式为中,有.∴.4.如图①,在 Rt△ABC 中,已知∠A=90º,AB=AC,G、F 分别是 AB、AC 上两点,且 GF∥BC,AF=2,BG=4. (1)求梯形 BCFG 的面积. (2)有一梯形 DEFG 与梯形 BCFG 重合,固定△ABC,将梯形 DEFG 向右运动,直到点 D 与点 C 重合为止, 如图②.①若某时段运动后形成的四边形 BDG / G 中,DG⊥BG / ,求运动路程 BD 的长,并求此时 G / B 2 的值.②设运动中 BD 的长度为 x,试用含 x 的代数式表示出梯形 DEFG 与 Rt△ABC 重合部分的面积.AGFAG G F FB(D) 图①C(E) BD图②CE备用图解:(1)在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°.又∵GF∥BC,∴∠AGF=∠AFG=45°.∴AG=AF=2,AB=AC=6.∴S梯形GBCF=S△ABC-S△AGF=.( 2 ) ① ∵ 在 运 动 过 程 中 有 DG ′ ∥ BG 且 DG ′ =BG , ∴ BDG ′ G 是 平 行 四 边 形 .当DG ⊥ BG ′ 时 , BDG ′ G是菱形.∴BD=BG=4.如 图 ③ , 当 BDG ′ G 为 菱 形 时 , 过 点 G ′ 作 G ′ M ⊥ BC 于 点 M .- 3 - / 12在 Rt △ G ′ DM 中 , ∠ G ′ DM=45 ° , DG ′ =4 ,∴DM=G′M且DM2+G'M2=DG'2.∴DM=G′M=,∴BM=.连接G′B.在 Rt △ G ′ BM 中 ,.②当 0≤x≤时,其重合部分为梯形,如图②.在 Rt △ AGF 与 Rt △ ABC 中 ,,.过 G 点 作 GH 垂 直 BC 于 点 H , 得 GH=.由 ① , 知 BD=GG ′ =x , DC=,.∴S梯形=.当≤x≤时,其重合部分为等腰直角三角形,如图③.∵ 斜 边 DC=,斜边上的高为,∴.5.如图,在平面直角坐标系 xoy 中,已知直线 PA 是一次函数 y=x+m(m>0)的图象,直线 PB 是一次函数y=-3x+n(n>m) 的图象,点 P 是两直线的交点,点 A、B、C、Q 分别是两条直线与坐标轴的交点。

(1)用 m、n 分别表示点 A、B、P 的坐标及∠PAB 的度数;(2)若四边形 PQOB 的面积是 11 ,且 CQ:AO=1:2,试求点 P 的坐标,并求出直线 PA 与 PB 的函数表达 2式;(3)在(2)的条件下,是否存在一点 D,使以 A、B、P、D 为顶点的四边形是平行四边形?若存在,求出点 D 的坐标;若不存在,请说明理由。

解 : ( 1 ) 在 直 线 y=x+m 中 , 令 y=0 , 得 x=-m .∴点A(-m,0).在 直 线 y=-3x+n 中 , 令 y=0 , 得.CQP∴点B(,0).AOB由,得,∴点 P(,).在 直 线 y=x+m 中 , 令 x=0 , 得 y=m , ∴ |-m|=|m| , 即 有 AO=QO . 又 ∠ AOQ=90 ° , ∴ △ AOQ 是 等 腰 直 角 三 角 形 , ∴ ∠ PAB=45 度 .( 2 ) ∵ CQ : AO=1 : 2 , ∴ ( n-m ) : m=1 : 2 , 整 理 得 3m=2n ,- 4 - / 12∴ n=m,∴=而S四边形PQOB=S △ PAB-S △ AOQ=1 2(+m ) × (m)-1 2× m × m==m,m2=,解得 m=±4,∵ m > 0 , ∴ m=4 , ∴ n=m=6 , ∴ P ().∴PA 的函数表达式为 y=x+4,PB 的函数表达式为 y=-3x+6.(3)存在.过点 P 作直线 PM 平行于 x 轴,过点 B 作 AP 的平行线交 PM 于点 D1,过点 A 作 BP 的平行线交 PM 于点D2 , 过 点 A 、 B 分 别 作 BP 、 AP 的 平 行 线 交 于 点 D3 .①∵PD1∥AB且BD1∥AP,∴ PABD1 是 平 行 四 边 形 . 此 时 PD1=AB , 易 得;②∵PD2∥AB且AD2∥BP,∴ PBAD2 是 平 行 四 边 形 . 此 时 PD2=AB , 易 得;③ ∵ BD3 ∥ AP 且 AD3 ∥ BP , 此 时 BPAD3 是 平 行 四 边 形 .∵ BD3 ∥ AP 且 B ( 2 , O ) , ∴ yBD3=x-2 . 同 理 可 得 yAD3=-3x-12,得,∴.6.如图,在平面直角坐标系中,直线 l1 :y4 3x 与直线 l2:ykxb相交于点A,点A的横坐标为3,直线 l2交y轴于点B,且∣OA∣=1 2∣OB∣。

(1)试求直线 l2 的函数表达式;(2)若将直线 l1 沿着 x 轴向左平移 3 个单位,交 y 轴于点 C,交直线 l2 于点 D。

试求△BCD 的面积。

解 : ( 1 ) 根 据 题 意 , 点 A 的 横 坐 标 为 3 , 代 入 直 线 l1 :中,得点 A 的纵坐标为 4,即点A(3,4);即OA=5,又 |OA|= 1 |OB| . 即 OB=10 , 且 点 B 位 于 y 轴 上 , 即 得 B ( 0 , -10 ) ; 2将 A 、 B 两 点 坐 标 代 入 直 线 l2 中 , 得 4=3k+b ; -10=b ; 解 之 得 , k=, b=-10 ;- 5 - / 12即直线l2的解析式为y=x-10 ;(2)根据题意,设 平 移 后 的 直 线 l1 的 解 析 式 为 y= x+m , 代 入 ( -3 , 0 ) , 可 得 : -4+m=0 , 解 得 : m=4 ,平 移 后 的 直 线 l1 的 直 线 方 程 为;即点 C 的坐标为(0,4);联 立 线 l2 的 直 线 方 程 , 解 得 x=, y=,即点 D(又点 B(0,-10),如图所示:故△BCD 的面积 S= 1 ××14=.2);7.正方形 ABCD 的边长为 4,将此正方形置于平面直角坐标系中,使 AB 边落在 X 轴的正半轴上,且 A 点的坐标是(1,0)。

相关文档
最新文档