《同底数幂的乘法》导学案
同底数幂的乘法(导学案)

学习难点
正确理解和应用同底数幂的乘法法则
学习过程
学习感悟
温故知新:
1.乘方的意义:。
2.an表示,这种运算叫做,
这种运算的结果叫,其中a叫做,n是,an叫做
(观察右图,体会概念)
小试身手:
1、9×9×9×9×9×9 =2、87=
3、m·m泳池中,水的体积为100立方米,为了进行消毒,按规定比例加施消毒液,需要将这些水折合成升。那么游泳池的水大约有多少升?
自主学习:
1、填空,把结果写成“幂”的形式!(1立方分米=1升)
(1)100立方米=()立方米
(2)1立方米=( )升
2、观察102,103这两个幂,有何相同点?
相同点:
am·an=(m, n为正整数)
交流与合作:(请同学们观察下面各题左右两边,底数、指数有什么关系?你发现了什么?与同学分享交流。)
0.54×0.52=0.56=a5·a4=a9=
(-2)3×(-2)2=(-2)5=am·an=am+n=
归纳总结:(同底数幂乘法的运算性质)
符号语言:
文字语言:
技巧点拨:同底数幂的乘法转化成了
拓展延伸:
1、am+n可以写成哪两个因数的积?
2、如果xa=3, xb=2,那么xa+b=
学后反思:
这节课你学到了什么知识?还有什么疑惑?
结束寄语:
只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步。祝大家学有所得!
同底数幂的乘法(导学案)
设计:班级姓名
课题
同底数幂的乘法
课型
新授
学习目标
1、理解同底数幂的乘法法则;
2、运用同底数幂的乘法法则解决一些实际问题;
同底数幂的乘法导学案

同底数幂的乘法导学案姓名: 班级: 日期:一、复习回顾1.什么是整式?我们学习了整式的哪些运算?2. a n 表示什么含义?3.试试看:(1)下面请同学们根据乘方的意义做下面一组题:①34722(222)(2222)2⨯=⨯⨯⨯⨯⨯⨯=②3555⨯=_____________=()5③a 3.a 4=_____________=a ( )(2)根据上面的规律,请以幂的形式直接写出下列各题的结果:421010⨯= 4233⨯=n m 44⨯= =32.a a二、新知探究(一)法则探究1、猜一猜:当m,n为正整数时候,a m ·a n 等于什么?为什么?即a m ·a n = (m 、n 都是正整数)2. 同底数幂的乘法法则:同底数幂相乘, 运算形式:(同底、乘法) 运算方法:(底不变、指加法)(此处学生思考完之后,老师借助微课进一步讲解,加深记忆)3.当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为 a m ·a n ·a p = a m+n+p (m 、n 、p 都是正整数)4.公式的逆用:a m+n =a m ·a n(二)运用法则例1:计算(1)( -3 )7 × ( -3 )6; (2)(1111 )3 × (1111); (3)-x 3·x 5; (4)b 2m ·b 2m +1.(三)分层提高例2.计算(1)(x+y)3 · (x+y)4 (2)26()x x -⋅-(3)35()()a b b a -⋅- (4)123-⋅m m a a (m 是正整数)例3 :光在真空中的速度约为 3 × 108 m/s ,太阳光照射到地球上大约需要5 × 102 s .地球距离太阳大约有多远?三、巩固练习计算(1)52×57; (2)7×73×72;(3)-x 2·x 3; (4)(-c )3·(-c )m .(5) a 5·a 2·a四、总结归纳1.同底数幂的乘法法则是什么?应用法则时应该注意什么?2.同底数幂的乘法法则是幂的运算的第一个性质,也是整式乘法运算的重要依据之一.五、当堂检测1.下面的计算是否正确? 如果错,请在旁边改正(1).a 3·a 4=a 12 (2).m·m 4=m 4(3).a2·b3=ab5(4).x5+x5=2x10(5).3c4·2c2=5c6(6).x2·x n=x2n(7).2m·2n=2m·n(8).b4·b4·b4=3b4 2.填空:(1)x5·()= x 8(2)a.()= a6(3)x ·x3()= x7(4)x m·()=x3m(5)x5·x( )=x3·x7=x( )·x6=x·x( )(6)a n+1·a( )=a2n+1=a·a( )3.若a m=3,a n=4,则a m+n= .六、作业1.计算(1)c.c11 (2)104×102×10 (3)(-b)3×(-b)2 (4)-b3.b2(5)x m-1.x m+1(m〉1) (6)a.a3.a n2.已知 a m=2,a n=8,求a m+n.。
同底数幂的乘法(导学案)

《同底数幂的乘法》导学案一、基础练习1、应用《同底数幂的乘法》法则填空.(1)、2755⨯= = ;(2)、3172233⨯()()= = ; (3)、5b b ⋅= = ;(4)、26a a a ⋅⋅= = ;(5)、5333n n ⨯⨯= = ;解题反思(心得):2、选择(1)、下列各式能用“同底数幂的乘法法则”进行计算的式子是( )A. 23(5)(7)-⨯- B. 23()()x y x y +⋅- C. 53()()x y x y +-+ D. 32(2)(2)m m -⋅-3、计算下列各式,结果用幂的形式表示. (1)、43(5)5-⨯;(2)、73()()m m a b c a b c --+-⋅+-; (3)、2()()x y y x -⋅-解: 解: 解:解题反思(心得):4、辨析(1)、3222+= ; (2)、322-2= ; (3)、3222⨯= ; (4)、3222÷= ; 解题反思(心得):二、拓展提升5、填空(1)87777⨯⨯=( )( );(2)、若136n n xx x +-⋅=,则n = ; (3)、若8,5x y a a ==,则x y a += .题后反思:如何灵活应用法则解题?6、判断(1)、3332aa a ⨯=.( ) (2)、372162⨯=. ( )(3)、若62m x x x =⋅,则m =3.( )(4)、已知23,x a +=则39x a =.( ) 解题反思(心得):三、课堂小结(一) 知识:1、乘方(运算)是乘法(运算)的高级形式;2、对于na ,(1)表示运算时,读作“a 的n 次方”;(2)表示运算的结果时通常读作“a 的n 次幂”,其中a 叫做底数,n 叫作指数;3、“同底数幂的乘法”法则;……(二)思想方法:1、法则的得出过程是应用了“不完全归纳法”:2、转化思想:把底数不同的幂转化为底数相同的幂,再法则计算.3、整体思想:在应用“同底数幂的乘法法则”时,底数可以是单独的数字,也可以是单独的字母,还可以是一个式子(如单项式或多项式);4、同类项与合并同类项;5、公式可以正向用,也可以逆向用,应理解本质,灵活运用;……。
同底数幂的乘法教学案例(优秀9篇)

同底数幂的乘法教学案例(优秀9篇)《同底数幂的乘法》教案篇一一、素质教育目标1、理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质。
2、能够熟练运用性质进行计算。
3、通过推导运算性质训练学生的抽象思维能力。
4、通过用文字概括运算性质,提高学生数学语言的表达能力。
5、通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度。
二、学法引导1、教学方法:尝试指导法、探究法。
2、学生学法:运用归纳法由特殊性推导出公式所具有的一般性,在探究规律过程中增进时知识的理解。
三、重点难点及解决办法(一)重点幂的运算性质。
(二)难点有关字母的广泛含义及性质的正确使用。
(三)解决办法注意对前提条件的判别,合理应用性质解题。
四、课时安排一课时。
五、教具学具准备投影仪、自制胶片。
六、师生互动活动设计1、复习幂的意义,并由此引入同底数幂的乘法。
2、通过一组同底数幂的乘法的练习,努力探究其规律,在探究过程中理解公式的意义。
3、教师示范板书,学生进行巩固性练习,以强化学生对公式的掌握。
七、教学步骤(-)明确目标本节课主要学习同底数幂的乘法的性质。
(二)整体感知让学生在复习幂的意义的基础之上探究同底数幂的乘法的意义,只有在同底数幂相乘的前提条件之下,才能进行这样的运算方式即底数不变、指数相加。
(三)教学过程1.创设情境,复习导入表示的意义是什么?其中、、分别叫做什么?师生活动:学生回答(叫底数,叫指数,叫做幂),同时,教师板书。
个。
提问:表示什么?可以写成什么形式?______________答案:;【教法说明】此问题的提出,目的是通过回忆旧知识,为完成下面的尝试题和学习本节知识提供必要的知识准备。
2.尝试解题,探索规律(1)式子的意义是什么?(2)这个积中的两个因式有何特点?学生回答:(1) 与的积(2)底数相同引出本课内容:这节课我们就在复习乘方的意义的基础上,学习像这样的同底数幂的乘法运算。
请同学们先根据自己的理解,解答下面3个小题。
同底数幂的乘法导学案

第一章 整式的乘除第一节 同底数幂的乘法导学案姓名:一、预习:(认真看书第 1 页—第 3 页) (一)回顾旧知35= (-4)7= x11= (a+b )4=(二)公式的推导 23×25=2×2×2×2×2×2×2×2 = 2( )= 2( )(-2)4×(-2)6 a5×a7(m -n )7×(m -n )6公式:a m ∙a n= ;语言叙述为注意事项:1、a m和a n之间的运算是 ;2、底数a 可以是 ; 区别:(1)22a a +=⎽⎽⎽= ,这种运算是 ,法则是 (2)a 2∙a 4= ,这种运算是 ,法则是2、下面计算正确的是( ) A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m = (三)符号判定:1、思考下列运算中的符号怎么判定的?()4466-∙ ()5466-⨯- 55aa -⨯2、(1)填“+”或“-” ()x y y x -=⎽⎽⎽- ()()22x y y x -=⎽⎽⎽-推导:()()n n x y y x -=⎽⎽⎽-(n 为奇数), ()()n nx y y x -=⎽⎽⎽-(n 为偶数)。
(2)计算 ()()56x y y x -- ()()32a b b a --(四)公式的逆运用n m n m a a a +=∙ =∴+n m a 已知2a=3,2b =7,则2a+b=二、新课: (一)公式的运用1、531010⨯=⎽⎽⎽⎽, 5×56×53 231010100⨯⨯ 23x x x ⋅⋅ ()()3a a --=⎽⎽⎽⎽1nn y y +=⎽⎽⎽⎽ ()()()53222--- a 2n •a n+1()()410a b b a --=⎽⎽⎽⎽⎽⎽⎽⎽ 23()()()a b a b a b -⋅-⋅-()()()()2121m m m a b a b a b -++++=⎽⎽⎽⎽⎽⎽⎽⎽⎽ (x-y)5• (x-y)2 (-12)2×(-12)52、下列四个算式:①a 6•a 6=2a 6;②m 3+m 2=m 5;③x 2•x •x 8=x 10;④y 2+y 2=y 4.其中计算正确的有(• )A .0个B .1个C .2个D .3个 3、下列计算过程正确的是( )4、下列各式中,计算过程正确的是( )A .x 3+x 3=x 3+3=x 6B .x 3·x 3=2x 3C .x·x 3·x 5=x0+3+5=x 8 D .x 2·(-x )3=-x2+3=-x 5例1:81×27可记为( ) A.39 B.73 C.63 D.123练习;1、填空(1)8 = 2x ,则 x = ;(2) 8× 4 = 2x ,则 x = ;(3) 3×27×9 = 3x ,则 x = (4) 43981=⨯⨯ (5) 66251255=⨯⨯ 2、(1)62(0,1)xxp p p p p ⋅=≠≠,求x (2)如果,1112a a a n n =+-则n=例2:254242423a a a a a a a ⋅-⋅⋅+⋅ x 3·x 5+x ·x 3·x 4x m·x m+x 2·x 2m -2x •x 4+x 2•x 3 122333m m m x x x x x x ---⋅+⋅-⋅⋅4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5(二)符号的判定1、下列计算中,错误的是( )A .5a 3-a 3=4a 3B .2m •3n =6m+nC .(a-b )3•(b-a )2=(a-b )5D .-a 2•(-a )3=a 5 2、计算:(a-b+c)2(b-a-c)3=( )A .(a-b+c)5 B .(b-a+c)5 C .-(a-b+c)5 D .-(b-a-c)5 (x-y )3•(y-x )2•(y-x )5 (-x+y )(x-y )2(y-x )3 -22×(-2)20(a -b )2m -1·(b -a )2m ·(a -b )2m+1(a -2b )2·(2b -a )3·(2b -a )4(x -y )2·(y -x )3·(y -x )3 (-x )(-x 2)(-x 3)(-x )423324()2()x x x x x x -⋅+⋅--⋅(三)公式的逆运用1、已知24m=,216n=,求2m n+的值。
4.2同底数幂的乘法导学案

同底数幂的乘法【学习目标】理解同底数幂相乘的法则并会运用。
【重点】同底数幂的乘法运算【难点】同底数幂的乘法法则的推导及应用【学习过程】一、自学指导:请认真阅读教材P88—90页的内容,在阅读过程中注意下列问题:1.a3表示什么意义?a2表示什么意义?2.想一想:如何计算a3·a2=?3.a n表示的意义是什么?其中a、n、a n分别叫做什么?4.若把a3·a2推广到a m·a n,如何计算?5.把下列各式写成幂的形式①10×10×10 ②3×3×3×3③a·a·a·a·a ④a·a·a…an个a■自学探究:探究同底数幂乘法法则1、做一做:(完成下表)(1)以上四个算式有什么共同的特点?答案:共同特征是:同底数的幂相乘。
(2)上述计算式中的底数与计算结果中的底数有什么关系?(3)上述计算式中的指数与计算结果中的指数有什么关系?(4)根据以上发现,你能直接写出以下各算式的结果吗?1012·108 =_______ (13)10×(13)7 =______ a 5·a 12=______ (-15)m ·(-15)n =_________ (5)得出结论:一般地,如果字母m 、n 都是正整数,那么a m ·a n = (a ·a ·a ·…·a)·(a·a·a …·a) (______的意义)___个a ___个a= a·a·a ·…·a (乘法的 律) = a m+n_____个a幂的运算法则a m ·a n = (m 、n 是正整数)你能用语言描述这个性质吗?___________________________(4)议一议:①m 、n 、p 是正整数,你会计算a m ·a n ·a p 吗?②公式中的a 可以表示一个数吗?可以表示一个字母吗?可以表示一个式子吗?三、小组合作,课堂展示1、 计算:(1)(-3)2×(-3)7 (2)106·105·10 (3)x 3m+1·x m(4)(a+b)4·(a+b) (5)x 3·(-x)2 (6)x 2·(-x)5注意:(1) (-x)2n+1=-x 2n+1 ;(2) (-x)2n =-x 2n(3) (y -x)2n+1=-(x -y)2n+1(4) (y -x)2n =(x -y)2n课时训练:计算:①105×103②x3·x4③32·33·34 ④y·y2·y4⑤(–a)·(–a)3⑥y n·y n+1思维点拨:认真思考下面三个问题,一定会帮助聪明的你顺利解决这六个小题(1)上述6个小题中,是否都是同底数幂相乘?哪些是?哪些不是?(2)不是同底数幂的题,底数有何特点?能否利用乘方的性质变形为同底数的幂进行计算呢?(3)在第(2)(4)题中的最后一因数10与(a+b)是否没有指数?特别提醒:计算要有必要的过程2、辨析:下列运算是否正确?不正确的,请改为正确的答案。
同底数幂的乘法

《同底数幂的乘法》导学案一、学习目标1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.3.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊──一般──特殊的认知规律.二、学习重点:正确理解同底数幂的乘法法则.学习难点:正确理解和应用同底数幂的乘法法则.三、知识链接问题:a n的意义a n 表示有个相乘,我们把这种运算叫做.乘方的结果叫;a叫做,•n是练习:83= 274 =问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?所以计算机工作103秒可进行的运算次数为1012×103如何计算呢?根据乘方的意义可知1012×103=(10×10 ×10)×(10×10×10)=10×10 ×10 =1015.通过观察大家可以发现1012、103这两个因数是相同,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.四、学法指导1.做一做计根据乘方的意义计算下列各式:(1)25×22 =(2)a3·a2 =(3)5m·5n(m、n都是正整数)=你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.我们可以发现下列规律:1、这三个式子都是相同的幂相乘.2、相乘结果的底数与原来底数,指数是原来两个幂的指数的3.问题a m · a n等于什么(m、n都是正整数),为什么?用语言来描述此法则即为:同底数幂相乘,例1、计算:(1)x2·x5 = x 2+5 = x7(2)a · a6 =(3)2×24×23 =(4)x m · x3m+1 =受例1(3)的启发,接下来我们来看例2.能自己解决吗?•与同伴交流一下解题方法.能找到什么规律吗?[例2] 计算a m·a n·a p解、a m ·a n ·a p =那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,•就一定是不变,相加用符号表示五、巩固练习1.计算(1)b5·b =(2)10×102×103 =(3)-a2·a6 =(4)y2n·y n+1 =2、判断(正确的打“∨”,错误的打“×”)(1)x3·x5 = x15()(2)x·x3 = x3()(3)x3+x5 = x8()(4)x2·x2 = 2x4()(5)(-x)2·(-x)3 =(-x)5 = -x5 ()(6)a3·a2 –a2·a3 = 0 ()(7)a3·b5 =(a b)8()(8)y7+y7 = y14()3、拓展(1)(x+2y)2n(x+2y)n+1(2) (a-b)3(b-a)2六、学习反思:七、课堂检测:1.计算:(1)a3·a4 =(2)x3·x=(3)y5·y3 =(4)105·10·103 =(5)x7·x·x n =(6)y·y2·y3·y =(7)a n+2·a n+1·a n =2 计算(1)35·(-3)3·(-3)2 =(2)(2a+b)2·(2a+b)3·(2a+b)x =(3)(x-y)2·(y-x)5 =。
《同底数幂的乘法》的教案

《同底数幂的乘法》的教案一、教学目标:1. 让学生理解同底数幂的乘法概念和性质。
2. 培养学生运用同底数幂的乘法法则进行计算和解决问题的能力。
3. 提高学生对幂的运算规律的认识,为学习更高阶的数学知识奠定基础。
二、教学内容:1. 同底数幂的乘法定义及性质2. 同底数幂的乘法法则3. 幂的运算规律4. 应用举例5. 练习与巩固三、教学重点与难点:1. 重点:同底数幂的乘法概念、性质及运算规律。
2. 难点:运用同底数幂的乘法法则解决实际问题。
四、教学方法:1. 采用讲授法,讲解同底数幂的乘法概念、性质和运算规律。
2. 运用案例分析法,分析应用举例,让学生更好地理解知识点。
3. 设计练习题,让学生在实践中巩固所学知识。
4. 组织小组讨论,培养学生合作学习的能力。
五、教学过程:1. 导入新课:通过复习幂的基本概念,引导学生进入同底数幂的乘法学习。
2. 讲解同底数幂的乘法概念、性质和运算规律,让学生理解和掌握。
3. 分析应用举例,让学生学会将理论知识应用于实际问题解决。
4. 设计练习题,让学生进行课堂练习,巩固所学知识。
5. 组织小组讨论,培养学生合作学习的能力。
6. 总结本节课所学内容,布置课后作业,让学生进一步巩固和拓展知识。
六、教学评价:1. 通过课堂提问、练习题和小组讨论,评估学生对同底数幂的乘法概念、性质和运算规律的理解程度。
2. 关注学生在解决问题时的思维过程和方法,评价其运用所学知识解决实际问题的能力。
3. 结合课后作业和拓展练习,了解学生对课堂所学知识的巩固情况。
七、教学资源:1. 教案、PPT、教学视频等教学资料。
2. 练习题、课后作业及拓展练习题。
3. 数学软件或工具,如计算器、数学软件等。
八、教学进度安排:1. 第1-2课时:讲解同底数幂的乘法概念、性质和运算规律。
2. 第3课时:分析应用举例,让学生学会将理论知识应用于实际问题解决。
3. 第4课时:设计练习题,让学生进行课堂练习,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《同底数幂的乘法》导学案
学习目标:
1.熟记同底数幂的乘法的运算性质,了解法则的推导过程.
2.能熟练地进行同底数幂的乘法运算.会逆用公式a m a n =a m+n .
3.通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想. 学习重点:掌握并能熟练地运用同底数幂的乘法法则进行乘法运算.
学习难点:对法则推导过程的理解及逆用法则.
学习过程:
一、温故知新:
1.26表示 ?
2.什么叫作乘方?
3.a n 表示的意义是什么?其中a 、n 、a n 分别叫做什么? 二、观察猜想,归纳总结
用5分钟时间解答问题四9个问题,看谁做的快,思维敏捷!
1.根据乘方的意义填空:
(1)23×24 =(2×2×2)×(2×2×2×2)=
(2)53×54 =( )×( )=
342.猜想:a m ·a n = (m 、n 都是正整数)
3.验证:a m ·a n =( )×( )
=( )=
4.归纳:同底数幂的乘法法则:a m ×a n = (m 、n 都是正整数) 文字语言:
5.法则理解:①同底数幂是指底数相同的幂.如(-3)2与(-3)5,(ab 3)2与(ab 3)5,(x-y)2与(x-y)3 等.
②同底数幂的乘法法则的表达式中,左边:两个幂的底数相同,且是相乘的关系;右边:得到一个幂,且底数不变,指数相加.
6.法则的推广:a m ·a n ·a p = (m 、n 、p 都是正整数).
思考:三个以上同底数幂相乘,上述性质还成立吗?
同底数幂的乘法法则可推扩到三个或三个以上的同底数幂的相乘.
()a 共( )个
a m·a n·a p=a m+n+p,a m·a n·…·a p=a m+n+…+p(m、n、p都是正整数)
7.法则逆用可以写成
同底数幂的乘法法则也可逆用,可以把一个幂分解成两个同底数幂的积,其中它们的底数与原来幂的底数相同,它的指数之和等于原来幂的指数.如:25=23·22=2·24等.
8.应用法则注意的事项:
①底数不同的幂相乘,不能应用法则.如:32·23≠32+3;
②不要忽视指数为1的因数,如:a·a5≠a0+5.
③底数是和差或其它形式的幂相乘,应把它们看作一个整体.
三、理解运用,巩固提高(用3分钟自主解答例1-例2,看谁做的又快又正确!) 例1.计算:(1)103×104; (2)a ·a3 (3)a· a3·a5 (4) x m×x3m+1
例2.计算:(1)(-5)·(-5)2·(-5)3 (2)(a+b)3·(a+b)5 (3)-a·(-a)3 (4)-a3·(-a)2 (5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)5
四、深入探究、活学活用
例3. (1)已知a m=3,a m=8,求a m+n 的值.
(2)若3n+3=a,请用含a的式子表示3n的值.
(3)已知2a=3,2b=6,2c=18,试问a、b、c之间有怎样的关系?请说明理由.
五、实践运用,巩固提高(用5分钟时间解决下面5个问题,看谁做的快,方法灵活!)
1.下列计算中①b5+b5=2b5,②b5·b5=b10,③y3·y4=y12,④m·m3=m4 ,⑤m3·m4=2m7 ,其中正确的个数有( )
A.1个B.2个C.3个D.4个
2.x3m+2不等于( )
A.x3m·x2 B.x m·x2m+2 C.x3m+2 D.x m+2·x2m
3.计算5a·5b的结果是( )
A.25ab B.5ab C.5a+b D.25a+b
4.计算下列各题
(1)a12• a (2)y4y3y (3)x4x3x (4)x m-1x m+1
(5)(x+y)3(x+y)4(x+y)4(6)(x-y)2(x-y)5(x-y)6
5.解答题:
(1)x a+b+c=35;x a+b=5,求x c的值.
(2)若x x·x m·x n=x14求m+n.
(3)若a n+1•a m+n=a6,且m-2n=1,求m n的值.
(4)计算:x3•x5+x•x3•x4
六、总结反思,归纳升华
通过本节课的学习,你有哪些感悟和收获,与同学交流一下:
①学到了哪些知识?②获得了哪些学习方法和学习经验?③与同学的合作交流中,你对自己满意吗?④在学习中,你受到的启发是什么?你认为应该注意的问题是什么?。