第13章电介质

合集下载

大学物理第13章_真空中的静电场(场强)

大学物理第13章_真空中的静电场(场强)

dl

q dq dl 2R
1 dq 0 dE r 2 40 r
O
x
dE

dE
dE x x
由对称性有
R
E dE x dE cosi 1 q cos l dl i 2 40 2R r
r
P
cos x r r x R
实验规律 场的 性质 场与物质的相 互作用
静电场:相对于观察者静
止的电荷所产生的电场
§1-1电荷.库仑定律
一.两种电荷 1.自然界只存在两种 电荷,同种电荷相排 斥,异种电荷相吸引



2.美国物理学家富兰克林首先称其为正 电荷和负电荷
3.带电的物体叫带电体 4.质子和电子是自然界存在的最小正、负电 荷,其数值相等,常用+e和-e表示
1986年 e 的推荐值为
e 1.60217733 10
C(库仑)为电量的单位
19
C
二.电荷量子化 1.实验表明:任何带电体或其它微观粒 子所带的电量都是 e 的整数倍
----物体所带电荷量量值不连续
2.电荷量子化:电荷量不连续的性质
三.电荷守恒定律 常见的两种起电方式: 摩擦起电 摩擦起电的本质:电子从一个 物体转移到另一个物体
定义:电场强度
F E q0
单位:牛顿/库仑(N/C)或伏特/米(V/m) 三.场强叠加原理 设空间有点电荷q1、q2 、q3 … qn
P点处的试探电荷 q0 所受电场力为
n F F1 F2 Fn Fi
i 1
F F1 F2 Fn P点的场强为 E q0 q0 q0 q0

大学物理介质中的高斯定理

大学物理介质中的高斯定理

r1
r2
18
例:球形电容器由半径为R1的球体和内半径为R3的导 体球壳构成,带电 q,其间有两层均匀电介质,
分界面的半径为R2,相对介电常数分别为r1和r2 。 求:E, D 和C。
解:
D

dS

4
r
2

D

q
S
R2
R1 r2
D1

q 4r 2
D2

q 4r 2
R3
r1
在界面上电位移线会发生折射
tan1 1
tan2
2
2 1
若 2 > 1 2 > 1 ,电位移线将折离法线
*
上海交通大学 董占海
28
证明:
E1t E2t D1n D2n
E1sin1 E2sin2
D1 cos 1 D2 cos 2
D1 1E1 D2 2 E2
39
思考:带电金属球 (R、Q),半个球处在电介质εr 中,则球正下方r > R 处的 E、D。
r
同上
上海交通大学 董占海
40
例5:一点电荷Q放在半无限大电介质为εr和真空的 界面处,求E、D。
解:空间的场强 = 两个点
电荷Q和q′产生的
故空间各点的E、为
r
点电荷的场,具有球
对称性
xd 2
2 DS 0 0 S0d
D

i
0
d
2
上海交通大学 董占海
d


r
0
Ox
23
xd 2
E

D
0r

0 x

第十三章(2)电介质

第十三章(2)电介质

斜圆柱体元内的电偶极矩为
pi
P dl dS cosθ
i
介质的极化使两底面产生极
化电荷 dS
因此斜柱体元又可看成一个
电偶极子

pi

σ dSdl
i
所以

pi

dl dS
c osθ P
i

P dl dS cosθ σ dSdl
五、闭合曲面内的极化电荷
在已极化的介质内任意作一闭合面S(如图所示)
S 将把位于 S 附近的电介质分子分为两部分: 一部分在 S 内,一部分在 S 外。 电偶极矩穿过S 的分子对S内的极化电荷有贡献。
S
q0
q' q0
设在介质内闭合曲面
S附近极化强度矢量
如图示。
S
取一宏观上足够小
、微观上足够大的 斜圆柱体元。
r R sin θ x R cos θ
知该带电圆环在球心的场强为
-+
-R +
- -P
- -
θ++
o R+s+in
z
- +R d

en




P
dEz


σ(2πR sin θRdθ) 4πε0
R cosθ [(R cosθ)2 (R sin θ)2 ]3/2
知该带电圆环在球心的场强为
pi

0
有极分子在外场中同样有位i 移极化,但是取向极化
效应要比位移极化效应更强。
有极分子的极化
电介质的极化: ①位移极化 位移极化
主要是电子发生位移
E0
无极分子只有位移极化,感生电矩的方向沿外场方向。 ②取向极化

13-2 极化强度和极化电荷

13-2 极化强度和极化电荷
S
第章 11章 静电场 第13 电介质
库仑定律 13-2 11-2 极化强度和极化电荷
3 电介质表面极化电荷面密度 小面元dS对面内极化电荷的贡献 内
dS
P
dq P dS
穿出小面元dS形成面分布的电荷

l
dS
dq P dS P n dS
dq Pn P n dS n 介质外法线方向 Pn
库仑定律 13-2 11-2 极化强度和极化电荷
13.2.1 电极化强度
V
电偶极子排列的有序程度反映了 介质被极化的程度,排列愈有序 说明极化愈强烈
宏观上无限小微观上 无限大的体积元
第章 11章 静电场 第13 电介质
库仑定律 13-2 11-2 极化强度和极化电荷
定义
P lim
V 0
S
dS
第章 11章 静电场 第13 电介质
库仑定律 13-2 11-2 极化强度和极化电荷
1 小面元dS对面S内极化电荷的贡献
在dS附近薄层内认为介质均匀极化
dq qnl 子数 密度 n
dS
PdS cos
P
V l dS cos

P dS
第章 11章 静电场 第13 电介质
例一均匀介质球发生均匀极化,已知极化强度为 P ,求 极化电荷在中心产生的电场。 解:
P cos
dq dE 4π 0 R 2
P +
dE
+
dEz dE cos
dq cos 2 4π 0 R (2 RSin )( Rd ) dEz cos 2 4π 0 R
P Ez dEz 3 0

第13章 电介质

第13章 电介质

qr 4 0 r r
3
电介质的相对介电常数
r 1
二、电介质极化的微观图象
正电荷中心
+ + -
有极分子
负电荷中心
p ql
无极分子
+-
有极分子介质 无外场时:
热运动——紊乱
电中性 有电场时
E
极化电荷
取向极化 (orientation polarization) 演示
无极分子介质 无外场时:
D 0 d E 0 2 0
d x 2
D
0
2
d
P 0 r 1 E 0
[例13-4] 平行板电容器极板面积为S,间距为d。 中间有一厚度为 ,相对介电常数为 r 的介质板。 设极板带电 Q ,求: , E 及电容C 。 D S Q 解: D dS q0i
以两个点电荷系统为例
状态a
想象 q1 q 2 初始时相距无限远 第一步先把 q1 摆在某处外力不作功
第二步再把
q1 r
q2
q2 从无限远移过来
r
使系统处于状态a
外力克服 q1 的场作功
W Aq1 q2 E1 dl q2 E1 dl
q2
4 0 r
D 线分布由自由电荷和极化电荷共同决定
在没有自由电荷处不中断
三、应用
在具有某种对称性的情况下,可以首先由高 斯定理出发解出 D
D E P q D E P 0 r 1 E Pn q P dS
电介质:除导体外的所有物质。
电介质的特点:原子中的电子被原子核束缚的很 紧,介质内部没有可以自由移动的电荷。 在外电场中,物质分子中的正负电荷可以在分子 线度范围内移动——产生极化现象。 13.1 电介质及其极化 一、现象 真空中点电荷之电场:

传感检测技术

传感检测技术

微波:频率在3×108~3×1011 Hz之间的波
4/48
第13章传感检测技术
图13.1 声波的频率界限图
5/48
第13章传感检测技术
2. 超声波的波形及其转换
超声波的波型 超声波的传播速度 超声波的反射和折射 超声波的衰减
6/48
第13章传感检测技术
超声波的波型
纵波——质点振动方向与波的传播方向一致的 波,称为纵波。它能在固体、液体和气体中传播; 横波——质点振动方向垂直于传播方向的波,称为横波。 它只能在固体中传播; 表面波——质点的振动介于纵波与横波之间,沿着表面传 播,振幅随深度增加而迅速衰减的波,称为表面波。表面 波质点振动的轨迹是椭圆形(其长轴垂直于传播方向,短 轴平行于传播方向)。表面波只能沿着固体的表面传播。
若灰体辐射的总能量全部被黑体吸收,则它们的总能量相等,即:
es T 4 = e0s T0 4
式中:ε——被测物的比辐射率; ε0——黑体的比辐射率,ε0=1;
T——被测物温度;
T0——黑体温度;
σ——斯蒂芬—玻尔茨曼常数。
由此可得
T T 40

34/48
第13章传感检测技术
(2)红外测温
•辐射温度计多用于800℃以上的高温测量 •红外测温是指低温及红外光范围的测温
—— 声波与声源间的距离; —— 衰减系数。

和超声波的频率和材料的介质密度有关。
固体和液体的介质密度大,故衰减也大。频率高,衰减也大
10/48
第13章传感检测技术
13.1.2 超声波传感器的工作原理
压电式超声波传感器 磁致伸缩式超声波传感器
11/48
第13章传感检测技术
压电式超声波传感器

第13章电介质

第13章电介质

第十三章 电介质 一、 选择题 1、关于高斯定理,下列说法中哪一个是正确的(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面的D 通量仅与面内自由电荷有关. (C) 高斯面上处处D为零,则面内必不存在自由电荷.(D) 以上说法都不正确. [ B ]2、关于静电场中的电位移线,下列说法中,哪一个是正确的(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行. (C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ C ]3、一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r-0)E . [ B ]4、在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E = E 0,两者方向相同. (B) E > E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ C ]5、设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ A ]6、在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面:(A) 高斯定理成立,且可用它求出闭合面上各点的场强. (B) 高斯定理成立,但不能用它求出闭合面上各点的场强. (C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立.[ B ]E E 0q S7、一平行板电容器中充满相对介电常量为r 的各向同性均匀电介质.已知介质表面极化电荷面密度为±′,则极化电荷在电容器中产生的电场强度的大小为:(A)0εσ'. (B) rεεσ0'. (C) 02εσ'. (D) r εσ'. [ A ] 8、一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D ,而当两极板间充满相对介电常量为r 的各向同性均匀电介质时,电场强度为E ,电位移为D ,则 (A) r E E ε/0 =,0D D =. (B) 0E E =,0D D r ε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ] 9、在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D 为电位移矢量),则S 面内必定(A) 既无自由电荷,也无束缚电荷.(B) 没有自由电荷.(C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零. [ D ]10、一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 (A) 向下运动. (B) 向上运动. (C) 保持不动. (D) 是否运动不能确定.[ B ]11、C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则(A) C 1极板上电荷增加,C 2极板上电荷增加. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ A ]12、C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则 (A) C 1极板上电荷增加,C 2极板上电荷减少.(B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ C ]+q m+QC 1C 2C 1C 213、C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小. (B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小.(D) C 1的电容减小,电容器组总电容增大. [ B ]14、C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少. (D) C 1极板上电荷减少,C 2极板上电荷增大. [ C ]15、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ C ]16、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ C ]17、如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ C ]18、如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.[ B ]12C 1C 2q19、一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ B ]20、一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷Q 、电场强度的大小E 和电场能量W 将发生如下变化(A) Q 增大,E 增大,W 增大.(B) Q 减小,E 减小,W 减小.(C) Q 增大,E 减小,W 增大.(D) Q 增大,E 增大,W 减小. [ B ]21、真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ B ]22、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示, 则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关.(C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ A ]23、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示.金属板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关. (C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ C ]24、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关.(B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关. (D) 储能增加,且与介质板相对极板的位置有关.[ A ]25、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,把一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示.介质板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关.(C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ C ]二、填空题1、分子的正负电荷中心重合的电介质叫做_______________ 电介质。

均匀电介质

均匀电介质
20
§13-2 极化强度和极化电荷
极化强度: P
pei
体积V中分子 电矩的矢量和
i

V
体积V
(13-1)
实验证明: P o (r 1)E (13-2)
式中r称为相对介电常数,由介质特性确定。
在电介质表面上取一面元
dS, 并在电介质中沿极化强度 方向取一如图13-3所示的斜柱 体。
sd50例题132一空气平行板电容器充电后与电源断开然后在两板间充满各向同性均匀电介质则电容c电压u电场强度的大小e电场能量w四个量各自与充介质前比较增大或减小的情况为51例题133一电容器的电容c1000v的电源对其充电然后断开电源再与另一个未充电的电容器c50f两端相连求
第12章
导体电学
C(Conodnudcutcotroreleelcetcrtirciictiyty)
CA
B
E1

q1 os
E2

q2 os
q1 q2 -q1 -q2
q2
os
d2

q1
os
d1
(2)
解式(1)、(2)得:
d1 d2
q1=2.0×10-7C, q2=1.0×10-7C。
图12-8
A板电势:
VA VA VB

q2 os
d2

2.3 103V
13
例题12-3 如图12-9所示,一内外半径分别为R1、 R2的金属球壳,带有电量q2, 球心有一点电荷q1,设无 穷远为电势零点,求金属球壳的电势。
边缘效应)
解 设四个表面上的面电荷密
度分别为1、2 、3和4 ,如图12-
7所示,则
(1+ 2)S=QA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章 电介质一、选择题1、关于高斯定理,下列说法中哪一个是正确的(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面的D 通量仅与面内自由电荷有关.(C) 高斯面上处处D为零,则面内必不存在自由电荷.(D) 以上说法都不正确. [ B ]2、关于静电场中的电位移线,下列说法中,哪一个是正确的(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ C ]3、一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r -0)E . [ B ]4、在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E = E 0,两者方向相同. (B) E > E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ C ]5、设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ A ]6、在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面:(A) 高斯定理成立,且可用它求出闭合面上各点的场强. (B) 高斯定理成立,但不能用它求出闭合面上各点的场强. (C) 由于电介质不对称分布,高斯定理不成立. (D) 即使电介质对称分布,高斯定理也不成立.[ B ]7、一平行板电容器中充满相对介电常量为r 的各向同性均匀电介质.已知介质表面极化电荷面密度为±′,则极化电荷在电容器中产生的电场强度的大小为:E E 0 q S(A) 0 . (B) r 0 . (C) 02 . (D) r. [ A ] 8、一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D ,而当两极板间充满相对介电常量为r 的各向同性均匀电介质时,电场强度为E ,电位移为D ,则 (A) r E E /0 ,0D D . (B) 0E E ,0D D r . (C) r E E /0 ,r D D /0 . (D) 0E E ,0D D . [ B ] 9、在静电场中,作闭合曲面S ,若有0d SS D (式中D 为电位移矢量),则S 面内必定(A) 既无自由电荷,也无束缚电荷.(B) 没有自由电荷.(C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零. [ D ]10、一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 (A) 向下运动. (B) 向上运动. (C) 保持不动. (D) 是否运动不能确定.[ B ]11、C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则 (A) C 1极板上电荷增加,C 2极板上电荷增加. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ A ]12、C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少.(B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ C ]13、C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小. (B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小.+q m+QC 1C 2C 1 C 212(D) C 1的电容减小,电容器组总电容增大. [ B ]14、C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少. (D) C 1极板上电荷减少,C 2极板上电荷增大. [ C ]15、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ C ]16、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ C ]17、如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ C ]18、如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.[ B ]19、一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ B ]C 1C 2q20、一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷Q 、电场强度的大小E 和电场能量W 将发生如下变化(A) Q 增大,E 增大,W 增大.(B) Q 减小,E 减小,W 减小.(C) Q 增大,E 减小,W 增大.(D) Q 增大,E 增大,W 减小. [ B ]21、真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.[ B ]22、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示, 则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关.(C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ A ]23、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示.金属板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关. (C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ C ]24、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关.(B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关. (D) 储能增加,且与介质板相对极板的位置有关.[ A ]25、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,把一块与极板面积相同的各向同性均匀电介质板介质板平行地插入两极板之间,如图所示.介质板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与介质板相对极板的位置无关.(B) 储能减少,且与介质板相对极板的位置有关.(C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关.[ C ]二、填空题1、分子的正负电荷中心重合的电介质叫做_______________ 电介质。

答案:无极分子2、在外电场作用下,分子的正负电荷中心发生相对位移,形成___________________答案:电偶极子7、一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为r的各向同性均匀电介质,这时两极板上的电场强度是原来的_________倍。

答案:117、如图所示,平行板电容器中充有各向同性均匀电介质.图中两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线。

(1)(2)答案:电位移18、如图所示,平行板电容器中充有各向同性均匀电介质.图中两组带有箭头的线分别表示电场线、电位移线.则其中(2)为__________________线。

相关文档
最新文档