《近世代数》模拟试卷

合集下载

《近世代数》模拟试题及答案

《近世代数》模拟试题及答案

近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。

G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。

A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕg a是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪-⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解: e 是R 的单位元。

《近世代数》模拟试题1及答案.pdf

《近世代数》模拟试题1及答案.pdf

近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。

G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。

A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪−⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕ是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪−⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解:e 是R 的单位元。

近世代数模拟试题及答案

近世代数模拟试题及答案

近世代数模拟试题一、单项选择题每题5分,共25分1、在整数加群Z,+中,下列那个是单位元;A 0B 1C -1D 1/n,n是整数2、下列说法不正确的是;A G只包含一个元g,乘法是gg=g;G对这个乘法来说作成一个群B G是全体整数的集合,G对普通加法来说作成一个群C G是全体有理数的集合,G对普通加法来说作成一个群D G是全体自然数的集合,G对普通加法来说作成一个群3、下列叙述正确的是;A 群G是指一个集合B 环R是指一个集合C 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在D 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在4、如果集合M的一个关系是等价关系,则不一定具备的是;A 反身性B 对称性C 传递性D 封闭性S的共轭类;5、下列哪个不是3A 1B 123,132,23C 123,132D 12,13,23二、计算题每题10分,共30分S的正规化子和中心化子;1.求S={12,13}在三次对称群32.设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶;3.设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,求出其右零因子;三、证明题每小题15分,共45分1、设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,证明⎪⎪⎭⎫ ⎝⎛0,00,0是其零因子;2、设Z 是整数集,规定a ·b =a +b -3;证明:Z 对此代数运算作成一个群,并指出其单位元;3、证明由整数集Z和普通加法构成的Z,+是无限阶循环群;近世代数模拟试题答案一、单项选择题每题5分,共25分1. A2. D3. C4. D5. B二、计算题每题10分,共30分1. 解:正规化子NS ={1,23};;;;;;;;;;;;6分中心化子CS ={1};;;;;;;;;;;;;;;;;;4分2. 解:群G 中的单位元是1;;;;;;;;;;;;;;;;;;;;;;;;2分1的阶是1,-1的阶是2,i 和-i 的阶是4;;;;4×2分3. 解:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,xb xa =0;;;;;;;;;;;;;;;3分因为x 任意,所以a =b =0;;;;;;;;;;;;;;;;;;;;3分因此右零因子为⎪⎪⎭⎫⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;2分三、证明题每小题15分共45分 1.证明:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;5分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;8分同理设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;10分 所以⎪⎪⎭⎫ ⎝⎛0,0,b a ⎪⎪⎭⎫ ⎝⎛0,0,y x =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;12分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;14分因此零因子为⎪⎪⎭⎫ ⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;15分2.明:首先该代数运算封闭;;;;;;;;;;;;;;;;;;;;3分其次我们有:a ·b ·c =a +b -3·c =a +b -3+c -3=a +b +c -3-3=a ·b ·c,结合律成立;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;6分令e =3,验证a ·e =a +e -3=a,有单位元;;;;7分对任意元素a,6-a 是其逆元,因为a ·6-a =3;;;8分因此,Z 对该运算作成一个群;显然,单位元是e =3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分3.证明:首先证明Z,+是群,+满足结合律,对任意的Z x ∈,x x x =+=+00,0是运算+的单位元又由于: ()()0=+-=-+x x x x所以 ,1x x -=-从而Z,+为群;;;;;;;;;2分由于+满足交换律,所以Z,+是交换群;;;;4分Z,+的单位元为0,对于1Z ∈,由于 1+-1=0,所以111-=-,;;;5分于是对任意Z k ∈,若0=k ,则:010=;若0>k ,则k k =+++=1111 ;;;;;;;;;;;8分若0<k ,则()()()k k k k ------===111111)1()1()1(---++-+-=个k))(1(k --= k = ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分综上,有k k =1,对任意的Z k ∈. 因而,{}Z k Z k ∈=1,从而Z,+是无限阶循环群;;;;;;;;;;;;;;;;;;15分。

近世代数期末考试题库

近世代数期末考试题库

世代数模拟试题一一、单项选择题(本大题共5小题,每一小题3分,共15分)在每一小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多项选择或未选均无分。

1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,如此ϕ是从A 到B 的〔 c 〕 A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有〔 d 〕个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是〔b 〕乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、一样的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数〔c 〕A 、不相等B 、0C 、相等D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的〔d 〕A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每一小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,如此有=⨯A B 。

2、假如有元素e ∈R 使每a ∈A ,都有ae=ea=a ,如此e 称为环R 的单位元。

3、环的乘法一般不交换。

如果环R 的乘法交换,如此称R 是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A 的假如干个--变换的乘法作成的群叫做A 的一个变换全。

6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,如此这个群的单位元是1,元a 的逆元是a-1。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最某某想,那么---------。

9、一个除环的中心是一个-域-----。

近世代数期末考试模拟试卷及答案

近世代数期末考试模拟试卷及答案

近世代数期末考试模拟试卷及答案 班别_________ 姓名___________ 成绩_____________ 要求: 1、本卷考试形式为闭卷,考试时间为1.5小时。

2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。

3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。

4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。

5、考生禁止携带手机、耳麦等通讯器材。

否则,视为为作弊。

6、不可以使用普通计算器等计算工具。

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

近世代数期末考试题库(包括模拟卷和1套完整题)

近世代数期末考试题库(包括模拟卷和1套完整题)

多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

( )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( )7、如果环R 的阶2≥,那么R 的单位元01≠。

( )8、若环R 满足左消去律,那么R 必定没有右零因子。

( )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换;③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abb a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

优秀的近世代数期末考试总复习

近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分.1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的()A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有()个元素。

A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b∈G都有解,这个解是( )乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数()A、不相等B、0C、相等D、不一定相等。

5、n阶有限群G的子群H的阶必须是n的()A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分。

1、设集合;,则有--—--———-。

2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的--—--———.3、环的乘法一般不交换。

如果环R的乘法交换,则称R是一个-——--—。

4、偶数环是—-—-———-—的子环。

5、一个集合A的若干个—-变换的乘法作成的群叫做A的一个--———--—。

6、每一个有限群都有与一个置换群--—————-。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a的逆元是————--—.8、设和是环的理想且,如果是的最大理想,那么------—-—。

9、一个除环的中心是一个——-—---。

三、解答题(本大题共3小题,每小题10分,共30分)1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积.2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

近世代数模拟试题--附详细答案

近世代数模拟试题一一、单项选择题<本大题共5小题,每小题3分,共15分>在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R<实数集>,如果A 到B 的映射ϕ:x →x +2,∀x ∈R,则ϕ是从A 到B 的〔 〕A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,则,A 与B 的积集合A ×B 中含有〔 〕个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b, a,b ∈G 都有解,这个解是〔 〕乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的<两方程解一样> 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数〔 〕A 、不相等B 、0C 、相等D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的〔 〕A 、倍数B 、次数C 、约数D 、指数二、填空题<本大题共10小题,每空3分,共30分>请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。

2、若有元素e ∈R 使每a ∈A,都有ae=ea=a,则e 称为环R 的--------。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个------。

4、偶数环是---------的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。

6、每一个有限群都有与一个置换群--------。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最##想,则---------。

近世代数基础模拟试题01

《近世代数基础》模拟试题一1.设M 是西昌学院全体学生的集合,以下关系中哪个是M 上的等价关系?( )A .同姓关系B .朋友关系C .师生关系D .不同乡关系 2.以下映射哪个是代数结构),(⋅R 的自同态?( )A . x x 2→B . x x -→C . ||x x →D . 32x x →3.在有理数集Q 上定义代数运算2b)(a b a += ,则这个代数运算( )。

A .既适合结合律又适合交换律B .适合结合律但不适合交换律C .不适合结合律但适合交换律D .既不适合结合律又不适合交换律4.12U 对输的乘法构成一个群,它的子群共有( )个。

A .6B .8C .10D .125.设⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫⎝⎛=Z b a b a R ,00,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是 ( )。

A .有单位元的可换环B .无单位元的可换环C .无单位元的非可换环D .有单位元的非可换环6.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )。

A .(1),(132)B .(12),(13),(23)C .(1),(123),(132)D .3S 中的所有元素一、单项选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填 写在题后的括号内。

错选、多选或未选均无分。

7. =]:)3Q 2,[Q( ( )A .2B .3C .4D .68.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )。

A .B .C .D .9.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )A .B .C .(1),(123),(132)D .10.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )A .B .C .D .11.设},,{c b a A =,则A 的一一变换共有______个。

12.由实数集合R 上的等价关系: 1~≥+⇔∈∀22b a b a R,b a,所决定的集合R 上的元素的分类共有 个。

近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。

2. ()满足左、右消去律的有单位元的半群是群。

3. ()存在一个4阶的非交换群。

4. ()素数阶的有限群G的任一子群都是G的不变子群。

5. ()无零因子环的特征不可能是2001。

6. ()无零因子环的同态象无零因子。

7. ()模97的剩余类环Z97是域。

8. ()在一个环中,若左消去律成立,则消去律成立。

9. ()域是唯一分解整环。

10. ()整除关系是整环R的元素间的一个等价关系。

一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。

2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。

3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。

4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。

5. 环Z6的全部零因子是。

6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。

(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。

3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。

四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、(16分)叙述概念或命题
1.正规子群;
2.唯一分解环;
3.代数数;
4.鲁非尼-阿贝尔定理
二、(12分)填空题
1.设有限域F 的阶为81,则的特征=p 。

2.已知群G 中的元素a 的阶等于50,则4a 的阶等于 。

3.一个有单位元的无零因子 称为整环。

4.如果710002601a 是一个国际标准书号,那么=a 。

三、(10分)设G 是群。

证明:如果对任意的G x ∈,有e x =2,则G 是交换群。

四、(10分)证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

五、(15分)设}R ,,,|{H ∈+++=d c b a dk cj bi a 是四元数体,对H 中任意元
dk cj bi a x +++=,
定义其共轭
dk cj bi a x ---=。

1.证明:x x x x =是一个非负实数;
2.对k j i x 221-+-=,k j i y -+-=22,求xy ,yx 和1-x 。

六、(15分)设)6(1=I ,)15(2=I 是整数环的理想,试求下列各理想,并简述理由。

1.21I I +;
2.21I I ⋂;
3.21I I ⋅
七、(10分)设有置换)1245)(1345
(=σ,6)456)(234(S ∈=τ。

1.求στ和στ-1;
2.确定置换στ和στ-1的奇偶性。

八、(12分)求剩余类加群Z 12中每个元素的阶。

一、1.若H 是群G 的子群,且对每个G a ∈,有Ha aH =,那么H 称为是G 的正规子群。

2.设R 是个整环,若对于R 中每个非零非单位的元都有唯一分解,则称R 为唯一分解环。

3.有理数域上的代数元称为代数数。

4.如果5≥n (特征为0),那么n 次的一般方程没有根式解。

二、1.3
2.25
3.交换环
4.6
三、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。

四、设A 是任意方阵,令)(21A A B '+=,)(2
1A A C '-=,则B 是对称矩阵,而C 是反对称矩阵,且C B A +=。

若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:1B B =,1C C =,所以,表示法唯一。

五、1.02222≥+++==d c b a x x x x
2.k j i xy 8424-+--=,k j i yx 2484-+--=,)221(10
11k i i x +-+=
- 六、1.)3(21=+I I ;
2.)30(21=⋂I I ;
3.)90(21=⋅I I
七、1.)56)(1243(=στ,)16524(1=στ-; 2.两个都是偶置换。

八、 元素 0 1 2 3 4 5 6 7 8 9 10 11
阶 1 12 6 4 3 12 2 12 3 4 6 12。

相关文档
最新文档