高一函数定义域练习题
高一数学函数习题(练习题以及答案

一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。
因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。
⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。
然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。
高一数学《函数的定义域值域》练习题解析版

高一数学《函数的定义域值域》练习题(一)1.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( )A .21x x +B .212x x +-C .212x x +D .21x x+-2.函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( )A .41B .21C .2D .43.函数y = )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]4.设函数,2)2(),0()4(.0,2,0,0,)(2-=-=-⎩⎨⎧>≤≤++=f f f x x x c bx x x f 若则关于x 的方程xx f =)(解的个数为( )A .1B .2C .3D .45、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 - 7.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()(A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,78.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______。
高一数学函数专题(含答案)

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域练习题

函数定义域练习题一、选择题1. 函数f(x) = 1/x的定义域是:A. (-∞, 0) ∪ (0, +∞)B. RC. [0, +∞)D. (-∞, 0) ∪ [1, +∞)2. 若函数f(x) = √(x - 1)的定义域是:A. (-∞, 1]B. [1, +∞)C. (-∞, 1)D. (1, +∞)3. 函数g(x) = log(2x + 3)的定义域是:A. (-∞, -3/2)B. (-3/2, +∞)C. (-∞, -1/2)D. [0, +∞)4. 函数h(x) = 2^(-x)的定义域是:A. (-∞, 0)B. RC. (0, +∞)D. [1, +∞)5. 函数p(x) = sin(πx)的定义域是:A. RB. (-∞, 0) ∪ (0, +∞)C. (-∞, 1) ∪ (1, +∞)D. [0, 1]二、填空题6. 函数f(x) = 1/√(1 - x^2)的定义域是_________。
7. 若函数y = √(4 - x) + 1,则x的取值范围是_________。
8. 函数y = log(1 - 2x)的定义域是_________。
9. 函数y = 1/(3x - 1)的定义域是_________。
10. 函数y = cos(2x)的定义域是_________。
三、解答题11. 已知函数f(x) = √(4 - x) - 1,请求解其定义域,并说明理由。
12. 函数g(x) = log(-x^2 + 5x - 4)的定义域是什么?请给出详细的求解过程。
13. 给定函数h(x) = 1/(1 - x^2),求其定义域,并解释为什么x不能等于1或-1。
14. 函数p(x) = √(-x^2 + 4x)的定义域是什么?请证明你的结论。
15. 函数y = log(2 - x)的定义域如何确定?请列出所有可能的x值。
四、综合题16. 已知函数f(x) = log(3x - 1) / (x^2 - 4),求其定义域,并解释为什么x不能取-2和2。
高一函数定义域练习题(含答案)

函数定义域练习题1.函数)13lg(13)(2++-=x xx x f 的定义域是 ( ) A .(∞-,31-) B .(31-,31) C .(31-,1) D .(31-,∞+) 2. 函数)1lg(11)(++-=x xx f 的定义域是 ( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .R3. 若函数)12(log 1)(2+=x x f ,则)(x f 的定义域为 ( ) A.)0,21(- B.),21(+∞- C.),0()0,21(+∞⋃- D.)2,21(- 4函数y =的定义域为 ( ) A.( 3,1) B(3,∞) C (1,+∞) ( )1k ≤-3,0] D .(0,3)()()()g x f x f x =--的定义 A .[,]a b B .[,]b a -- C .[,]b b - D .[,]a a - 9.设I =R ,已知2()lg(32)f x x x =-+的定义域为F ,函数()lg(1)lg(2)g x x x =-+-的定义域为G ,那么GU I C F 等于 ( )A .(2,+∞)B .(-∞,2)C .(1,+ ∞)D .(1,2)U(2,+∞)10.已知函数)(x f 的定义域为[0,4],求函数)()3(2x f x f y ++=的定义域为( )A .[2,1]--B .[1,2]C .[2,1]-D .[1,2]-11.若函数()f x 的定义域为[-2,2],则函数f 的定义域是 ( )A .[-4,4]B .[-2,2]C . [0,2]D . [0,4]12.已知函数1()lg 1x f x x +=-的定义域为A ,函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A 、B 的关系中,不正确的为 ( )A .A ⊇B B .A ∪B=BC .A∩B=BD .B ⊂≠A13. 函数y =-x 2-3x +4x的定义域为 ( ) A .[-4,1] B .[-4,0) C .(0,1] D .[-4,0)∪(0,1]14. 若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是 ( ) <12)______.20.求函数的定义域:(1)x x x x x x f +-++-=02)1(65)(; (2)y =(3)y . ((1,2)) (4)lgsin y x =- ([5,)(0,)ππ--)21. 设2()lg 2x f x x +=-,求2()(2x f f x+的定义域.(13)f x -的定义域;2(6)x -的定义域.。
高一数学函数的定义域与值域试题答案及解析
高一数学函数的定义域与值域试题答案及解析1.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]【答案】C.【解析】先将函数方程化为,,再由二次函数的图像知,当时,函数取得最小值且为-1;当时,函数取得最大值且为3.所以函数的值域为[-1,3]. 故应选C.【考点】二次函数的值域.2.函数的定义域为 .【答案】.【解析】∵,∴,∴函数的定义域为.【考点】函数的定义域.3.已知函数的值域是,则实数的取值范围是________________.【答案】【解析】由题意得:函数的值域包含,当时,满足题意;当时,要满足值域包含,需使得即或,综合得:实数的取值范围是.【考点】函数值域4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.函数的定义域为 .【答案】【解析】由,所以函数的定义域为.【考点】函数的定义域.6.下列结论:①函数和是同一函数;②函数的定义域为,则函数的定义域为;③函数的递增区间为;④若函数的最大值为3,那么的最小值就是.其中正确的个数为 ( )A.0个B.1个C.2个D.3个【答案】A【解析】因为函数的定义域为R,的定义域为.所以①不成立. 由函数的定义域为,所以.所以函数要满足.所以函数的定义域为.故②不成立.因为函数的定义域为或所以递增区间为不正确,所以③不成立.因为函数y=与函数y=的图像关于y轴对称,所以④不正确.故选A.【考点】1.函数的概念.2.函数的定义域.3.函数的对称性.7.已知函数,则满足不等式的实数的取值范围为.【答案】【解析】,即。
完整版)高一数学函数经典习题及答案
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学函数经典练习题(含答案详细)
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一必修一定义域练习题
高一必修一定义域练习题一、基础题1. 求函数f(x) = √(x 1)的定义域。
2. 求函数g(x) = 1/(x^2 4)的定义域。
3. 求函数h(x) = (x + 2)/(x^2 9)的定义域。
4. 求函数k(x) = |x 3|的定义域。
5. 求函数m(x) = log₂(x 2)的定义域。
二、提高题1. 求函数f(x) = √(4 x^2)的定义域。
2. 求函数g(x) = √(x^2 5x + 6)的定义域。
3. 求函数h(x) = 1/√(x^2 3x + 2)的定义域。
4. 求函数k(x) = (x 1)^2/(x^2 2x)的定义域。
5. 求函数m(x) = log₃(x^2 4x + 3)的定义域。
三、综合题1. 已知函数f(x) = √(3x 2)/(x^2 5x + 6),求其定义域。
2. 已知函数g(x) = (x + 1)/(√(x^2 2x 3)),求其定义域。
3. 已知函数h(x) = log₄(√(x^2 6x + 9)),求其定义域。
4. 已知函数k(x) = √(4 x^2) + 1/(x 2),求其定义域。
5. 已知函数m(x) = √(x^2 5x + 6) log₂(x 3),求其定义域。
四、应用题1. 一个正方形的边长是x厘米,如果边长增加2厘米,面积增加20平方厘米,求x的取值范围。
2. 某企业的成本函数为C(x) = 3x^2 2x + 10,其中x为生产的产品数量,求C(x)的定义域。
3. 一辆汽车以每小时x公里的速度行驶,行驶了t小时后,其油耗量为y升,已知油耗量与速度的关系为y = x^2/20,求x的取值范围。
4. 某商品的价格为p元,需求量q与价格p的关系为q = 100 p,求该商品的需求量q的定义域。
5. 一个等腰三角形的底边长为2x厘米,腰长为x厘米,求x的取值范围。
五、拓展题1. 求函数f(x) = √(x^3 x^2 6x)的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数定义域练习题
1.函数)13lg(13)(2
++-=x x
x x f 的定义域是 ( )
A .(∞-,31-)
B .(31-,31)
C .(31-,1)
D .(31-,∞+) 2. 函数)1lg(11)(++-=x x
x f 的定义域是 ( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .R
3. 若函数)
12(log 1)(2+=
x x f ,则)(x f 的定义域为 ( ) A.)0,21(- B.),21(+∞- C.),0()0,21(+∞⋃- D.)2,2
1(- 4
函数y =的定义域为 ( ) A.( 34,1) B(34,∞) C (1,+∞) D. ( 34
,1)∪(1,+∞) 5. 已知()f x =11+x ,则函数(())f f x 的定义域是 ( ) A .{|1}x x ≠- B .{|2}x x ≠- C .{|12}x x x ≠-≠-且 D .{|12}x x x ≠-≠-或
6.
函数=y R ,则k 的取值范围是 ( )
A.09k k ≥≤-或
B.1k ≥
C.91k -≤≤
D. 01k <≤
7.函数23)(x x x f -=的定义域为 ( )
A .[0,32 ]
B .[0,3]
C .[-3,0]
D .(0,3)
8.若函数()f x 的定义域为[,]a b ,且0b a >->,则函数()()()g x f x f x =--的定义域是 ( ) A .[,]a b B .[,]b a -- C .[,]b b - D .[,]a a -
9.设I =R ,已知2()lg(32)f x x x =-+的定义域为F ,函数()lg(1)lg(2)g x x x =-+-的定义域为G ,
那么GU I C F 等于 ( )
A .(2,+∞)
B .(-∞,2)
C .(1,+ ∞)
D .(1,2)U(2,+∞)
10.已知函数)(x f 的定义域为[0,4],求函数)()3(2x f x f y ++=的定义域为 ( )
A .[2,1]--
B .[1,2]
C .[2,1]-
D .[1,2]-
11.若函数()f x 的定义域为[-2,2]
,则函数f 的定义域是 ( )
A .[-4,4]
B .[-2,2]
C . [0,2]
D . [0,4]
12.已知函数1()lg 1x f x x
+=-的定义域为A ,函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于 A 、B 的关系中,不正确的为 ( )
A .A ⊇
B B .A ∪B=B
C .A∩B=B
D .B ⊂≠A
13. 函数y =-x 2-3x +4
x
的定义域为 ( ) A .[-4,1] B .[-4,0) C .(0,1] D .[-4,0)∪(0,1]
14. 若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是 ( )
A .a =-1或3
B .a =-1
C .a > 3或a <-1
D .-1 < a < 3
15. 若函数y =f (x )的定义域是[0,2],则函数 g (x )=21
f x x ()-的定义域是 ( ) A. [0,1] B. [0,1) C. [0,1)∪(1,4] D. (0,1)
17. 函数261x
x y --=
的定义域是 . 18.已知函数22(3)1x y ax a x -=--+的定义域是R , 则实数a 的范围是_________________ . 19.若函数f (x )的定义域是[0,1],则f (x +a )·f (x -a ) (0<a <12
)的定义域是__ ______. 20.求函数的定义域:(1)x x x x x x f +-++-=
02
)1(65)(; ((0,1)(1,2][3,)+∞)
(2)y ;((0,2)(2,3]) (3) y =. ((1,2))
21. 设2()lg
2x f x x +=-,求2()()2x f f x
+的定义域为. ((4,1)(1,4)--)
22. (1) 已知函数(23)f x -的定义域是(-1, 4), 求函数(13)f x -的定义域; 45(,)33-
(2) 已知函数2(log )f x 的定义域是1[,8]32
,求函数2(6)f x -的定义域. ([3,1][1,3]--)
【答案】CCCA C B B D C C D D D B B 17.(-3,2); 18.(1,9);19.]1,[a a -。