三角形内角和教学设计
《三角形的内角和》教学设计(最新5篇)

《三角形的内角和》教学设计(最新5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。
《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
三角形内角和教案优秀5篇

三角形内角和教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、汇报材料、自我鉴定、条据文书、合同协议、心得体会、方案大全、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, presentation materials, self-evaluation, documentary evidence, contract agreements, reflections, comprehensive plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample essay formats and writing methods, please stay tuned!三角形内角和教案优秀5篇如果教案无法在实际教学中实施,就无法让学生真正理解和应用所学的知识,教案写好了,能够帮助我们更好地与学生和家长进行沟通和交流,本店铺今天就为您带来了三角形内角和教案优秀5篇,相信一定会对你有所帮助。
最新《三角形的内角和》教学设计

最新《三角形的内角和》教学设计最新《三角形的内角和》教学设计6篇最新《三角形的内角和》教学设计篇1教学内容:四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:1.使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2.使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3.使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:探究和验证“三角形内角和等于180°”。
教学准备:学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:一、创设情境,产生疑问1.理解内角和含义。
2.故事激趣提问:三兄弟围绕什么问题在争吵?你有什么看法?二、自主学习,合作探究1.提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2.进行验证。
(1)验证教师提供的三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800吗?有谁验证出来不是1800的吗?提问:你又能得到什么结论?还有怀疑吗?3.得出结论。
三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
师:三角形有几个内角啊?生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。
三角形内角和教学设计15篇

三角形内角和教学设计15篇三角形内角和教学设计(15篇)作为一名教职工,时常需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
我们该怎么去写教学设计呢?下面是小编收集整理的三角形内角和教学设计,仅供参考,欢迎大家阅读。
三角形内角和教学设计1北师大版四年级数学下册1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。
教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。
扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。
一、创设情境,激发兴趣。
出示课件,提出两个两个疑问:1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?2、三个形状不一样的三角形的争论。
我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?二、初建模型,实际验证自己的猜想在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
这时教师要组织学生进行小组合作,每人用量角器量出一种三角形的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。
三角形的形状三角形每个内角的度数内角和锐角三角形钝角三角形直角三角形等腰三角形等边三角形三、再建模型,彻底的得出正确的结论因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。
《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
三角形内角和教学设计(通用4篇)

三角形内角和教学设计(通用4篇)作为一名人民老师,时常会须要打算好教案,借助教案可以更好地组织教学活动。
如何把教案做到重点突出呢。
以下是我为大家收集的三角形内角和教学设计(通用4篇),仅供参考,欢迎大家阅读。
三角形内角和教学设计篇1【教学内容】《人教版九年义务教化教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。
2.让学生经验量一量、折一折、拼一拼等动手操作的过程。
通过视察、推断、沟通和推理探究用多种方法证明三角形的内角和是180。
3.培育学生自主学习、互动沟通、合作探究的实力和习惯,培育学习数学的爱好,感受学习数学的乐趣。
【教学重点】使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。
【教学难点】通过多种方法验证三角形的内角和是180。
【教学打算】课件。
四组教学用三角板。
铅笔。
大帆布兜子。
固体胶。
剪刀。
筷子若干。
【教学过程】一、激趣导入,提炼学习方法1.课程起先,老师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。
激发学生的新奇心。
然后自述:“你们好,我是一个有三十多年工作阅历的老木匠了。
我收了三个徒弟,他们已经从师学艺三年了,今日我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.接着以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。
老师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的其次个问题。
4.导入新课。
图中有许多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜爱的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探究沟通新知1.分组活动,探究新知依据学生的选择把学生分成三组,分别采纳量一量、折一折和拼一拼的方法探究新知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形内角和》教学设计
绥滨县第二中学:蒋海峰
课题:三角形内角和
教学目标
1、学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度,会应用这一规律进行计算。
2、通过动手操作,找到规律,并能灵活运用。
3、培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
重点:学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度。
难点:会应用这一规律进行计算。
关键:学生动手自己推导。
教具:课件学具:表格、三角板、三角形量角器
一、创设情境揭示课题。
师:前面我们已经认识三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
分类
师:我们在讨论三角形知识的时候,三角形中的两个好朋友却吵了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件)
师:到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。
(板书课题)
二、自主探究,合作交流。
师:什么是三角形的内角? 三角形有几个内角?
师:三条线段在围成三角形后,在三角形内形成了三个角,我们把三角形内的这三个角,分别叫做三角形的内角。
1、师拿出两个三角板,问:它们是什么三角形?
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
学生们能够很快求出每块三角尺的3个角的和都是180°
师:其他三角形的内角和也是180°吗?
2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们拿出准备好的三种(直角三角形、钝角三角形、锐角三角形),请同学们在小组内选出一种三角形先测量出每个角的度数,在算出它们的内角和,把结果填在表中。
(附表)
(1)、小组合作。
(2)汇报结果。
问:你们发现了什么?
小结:通过测量我们发现每个三角形的三个内角和都在180度左右。
(只因为我们测量时会出现一些误差,所以测量出的结果不是很准确。
)
3、验证推测:
师:那么,请同学们回忆一下,我们把180度的角叫什么角?现在请同学们动脑想一想,不用测量,能不能用其它的方法知道三角形的内角和是180度呢?请同学们先独立思考,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。
看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
(1)、小组合作,讨论验证方法。
(2)汇报验证方法、结果。
谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?(生汇报)
师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。
请大家认真看。
3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?
师:刚才这种撕拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。
师:请这位同学把折的方法给大家演示一下。
(投影仪展示)
师:真是个手巧的孩子。
他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?
4、师小结:刚才同学们用量、撕、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
三、巩固深化,加深理解。
1、解决问题:
学会了知识,我们就要懂得去运用。
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。
(课件演示练习题)
(1)数学书29页第一题
∠A=180 °- 75 °- 28 °
∠A=180 °-( 75 °+ 28 °)
(2)、数学书29页第二题
(3)判断下列说法对吗?
①钝角三角形的内角和大于锐角三角形的内角和.()
②在直角三角形中,两个锐角的和等于90 º()
③在钝角三角形中,两个锐角的和大于90 º()
④三角形中有一个角是60 º,那么这个三角形一定是个锐角三角形.()⑤一个三角形中一定不可能有两个钝角。
()
2、变式练习
数学书29页第三题
3、拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。
一块只有原来的一个角,另一块有原来的两个角。
他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。
你知道他带的是哪一块吗?
四、总结提高,课后延伸
通过今天的学习,大家有什么收获?。