三角形内角和180度教案
三角形的内角和(教案)-四年级下册数学苏教版

三角形的内角和(教案)-四年级下册数学苏教版一、教学目标1. 让学生理解并掌握三角形的内角和是180度。
2. 培养学生运用三角形的内角和解决实际问题的能力。
3. 培养学生合作交流、动手操作的能力。
二、教学内容1. 三角形的内角和的概念。
2. 证明三角形的内角和是180度。
3. 运用三角形的内角和解决实际问题。
三、教学重点与难点1. 教学重点:三角形的内角和是180度。
2. 教学难点:证明三角形的内角和是180度。
四、教学过程1. 导入新课利用多媒体展示一些生活中的三角形图片,如:自行车的三角架、电线杆的三角形支架等,引导学生观察这些三角形的特点,从而引出三角形的内角和的概念。
2. 探究三角形的内角和(1)让学生拿出自己准备好的三角形模型,用量角器测量三角形的内角,并把数据记录下来。
(2)引导学生观察测量结果,发现三角形的内角和是180度。
(3)教师引导学生思考:为什么三角形的内角和是180度呢?组织学生进行小组讨论,引导学生运用拼图、折叠等方法进行探究。
3. 证明三角形的内角和是180度(1)教师引导学生回顾探究过程,总结出三角形的内角和是180度的结论。
(2)教师引导学生思考:如何证明三角形的内角和是180度呢?组织学生进行小组讨论,引导学生运用几何图形的性质进行证明。
4. 运用三角形的内角和解决实际问题(1)教师出示一些实际问题,如:一个三角形的一个内角是60度,另外两个内角的和是多少度?引导学生运用三角形的内角和进行解答。
(2)教师引导学生思考:如何运用三角形的内角和解决更多实际问题?组织学生进行小组讨论,引导学生总结出解题方法。
五、课堂小结1. 让学生回顾本节课所学内容,总结三角形的内角和的概念、证明方法及应用。
2. 强调三角形的内角和在日常生活中的重要性,激发学生学习数学的兴趣。
六、课后作业(略)七、教学反思(略)注:本教案适用于四年级下册数学苏教版教材,教学过程中可根据实际情况进行调整。
三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
师:三角形有几个内角啊?生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。
三角形的内角和教案

三角形的内角和教案一、教学目标:知识与技能:1. 让学生掌握三角形内角和定理,理解三角形内角和为180度的概念。
2. 能够运用三角形内角和定理解决实际问题。
过程与方法:1. 通过观察、操作、推理等过程,引导学生发现三角形的内角和定理。
2. 培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探索精神。
2. 培养学生合作学习、积极思考的良好学习习惯。
二、教学重点与难点:重点:1. 三角形内角和定理的理解和运用。
难点:1. 三角形内角和定理的推导过程。
三、教学准备:教师准备:1. 三角形模型、量角器等教具。
2. 教学课件或黑板。
学生准备:1. 学习三角形相关知识。
2. 准备三角板或其他三角形教具。
四、教学过程:环节一:导入1. 引导学生回顾三角形的相关知识,如三角形的定义、特性等。
2. 提问:你们知道三角形内角和是多少度吗?环节二:探究三角形内角和1. 让学生拿出三角板或其他三角形教具,观察并测量三角形的内角。
2. 引导学生发现并总结三角形内角和的特点。
环节三:推导三角形内角和定理1. 引导学生通过量角器测量多个三角形的内角,记录数据。
2. 让学生观察数据,发现规律,推导出三角形内角和定理。
环节四:验证三角形内角和定理1. 让学生分组讨论,设计实验验证三角形内角和定理。
2. 各小组汇报实验结果,确认三角形内角和定理的正确性。
环节五:运用内角和定理解决问题1. 出示例题,让学生运用内角和定理解决问题。
2. 学生互相讨论,解答例题,分享解题思路。
五、作业布置:1. 请学生运用内角和定理,解决一些关于三角形的实际问题。
2. 总结本节课的学习内容,思考三角形内角和定理在实际生活中的应用。
六、教学反思:本节课通过引导学生观察、操作、推理等活动,发现了三角形内角和定理,并运用该定理解决了一些实际问题。
在教学过程中,注重培养学生的动手操作能力、逻辑思维能力和解决问题的能力。
《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
三角形内角和教学设计(通用4篇)

三角形内角和教学设计(通用4篇)作为一名人民老师,时常会须要打算好教案,借助教案可以更好地组织教学活动。
如何把教案做到重点突出呢。
以下是我为大家收集的三角形内角和教学设计(通用4篇),仅供参考,欢迎大家阅读。
三角形内角和教学设计篇1【教学内容】《人教版九年义务教化教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。
2.让学生经验量一量、折一折、拼一拼等动手操作的过程。
通过视察、推断、沟通和推理探究用多种方法证明三角形的内角和是180。
3.培育学生自主学习、互动沟通、合作探究的实力和习惯,培育学习数学的爱好,感受学习数学的乐趣。
【教学重点】使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。
【教学难点】通过多种方法验证三角形的内角和是180。
【教学打算】课件。
四组教学用三角板。
铅笔。
大帆布兜子。
固体胶。
剪刀。
筷子若干。
【教学过程】一、激趣导入,提炼学习方法1.课程起先,老师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。
激发学生的新奇心。
然后自述:“你们好,我是一个有三十多年工作阅历的老木匠了。
我收了三个徒弟,他们已经从师学艺三年了,今日我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.接着以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。
老师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的其次个问题。
4.导入新课。
图中有许多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜爱的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探究沟通新知1.分组活动,探究新知依据学生的选择把学生分成三组,分别采纳量一量、折一折和拼一拼的方法探究新知。
四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
三角形内角和180度教案

7.2.1 三角形的内角和一、教学目标(一)知识与技能通过一系列的实验、操作活动,让学生推理归纳出三角形的内角和为180°。
(二)数学思考1、经历一系列的推理归纳过程,培养数学推理归纳能力。
2、经历猜想、实验、操作等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点。
(三)解决问题1、学会与人合作,并能与他人交流思维的过程和结果。
2、把抽象的东西转变成形象的东西。
(四)情感态度与态度1、积极参与数学学习活动,对数学有好奇心与求知欲。
2、在探究活动中,培养学生观察、抽象、概括的能力和创新意识,发展学生的逻辑推理能力。
二、教学重点与难点重点:引导学生发现三角形的内角和为180°。
难点:用不同的方法验证三角形的内角和为180°。
三、教学辅助多媒体、投影仪,量角器,不同的三角形四、教学方法实验法五、教学过程六、教学设计说明教学过程不仅是知识传授的过程,更是学生掌握良好学习方法,锻炼思维能力、感受数学思想的过程。
因此,本次课遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。
先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。
接着让学生猜想是不是所有的三角形的内角和是180°。
学生通过用量的方法得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。
再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。
让学生体验数学学习的快乐。
“三角形内角和”教学设计(精选10篇)

“三角形内角和”教学设计(精选10篇)“三角形内角和”教学设计篇1一、教学目标1.学问目标:通过测量、撕拼(剪拼)、折叠等方法,探究和发觉三角形三个内角的度数和等于180°这一规律,并能实际应用。
2.力量目标:培育同学主动探究、动手操作的力量。
使同学养成良好的合作习惯。
3.情感目标:让同学体会几何图形内在的结构美。
并充分体会到学习数学的欢乐。
二、教学过程(一)创设情境,导入新课1、师:我们已经熟悉了三角形,你知道哪些关于三角形的学问?(同学畅所欲言。
)2、师:我们在争论三角形学问的时候,三角形中的三个好伴侣却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!师口述:一个大的直角三角形说:“我的个头大,我的内角和肯定比你们大。
”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,3、究竟谁说的对呢?今日我们就来讨论有关三角形内角和的学问。
(板书课题:三角形内角和)(二)自主探究,发觉规律1、熟悉什么是三角形的内角和。
师:你知道什么是三角形的内角和吗?通过同学争论,得出三角形的内角和就是三角形三个内角的度数和。
2、探究三角形内角和的特点。
①让同学想一想、说一说怎样才能知道三角形的内角和?同学会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。
(假如同学想到别的方法,只要合理的,老师就赐予确定,并鼓舞他们对自己想到的方法进行)②小组合作。
通过小组合作后沟通,汇报。
(老师同时板书出几个小组汇报的结果)让同学们发觉每个三角形的内角和都在180°左右。
引导同学推想出三角形的内角和可能都是180°。
3、验证推想。
让同学动脑筋想一想,怎样才能验证自己的推想是否正确,同学可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。
(小组合作验证,老师参加其中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.1 三角形的内角和
一、教学目标
(一)知识与技能
通过一系列的实验、操作活动,让学生推理归纳出三角形的内角和为180°。
(二)数学思考
1、经历一系列的推理归纳过程,培养数学推理归纳能力。
2、经历猜想、实验、操作等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点。
(三)解决问题
1、学会与人合作,并能与他人交流思维的过程和结果。
2、把抽象的东西转变成形象的东西。
(四)情感态度与态度
1、积极参与数学学习活动,对数学有好奇心与求知欲。
2、在探究活动中,培养学生观察、抽象、概括的能力和创新意识,发展学生的逻辑推理能力。
二、教学重点与难点
重点:引导学生发现三角形的内角和为180°。
难点:用不同的方法验证三角形的内角和为180°。
三、教学辅助
多媒体、投影仪,量角器,不同的三角形
四、教学方法
实验法五、教学过程
六、教学设计说明
教学过程不仅是知识传授的过程,更是学生掌握良好学习方法,锻炼思维能力、感受数学思想的过程。
因此,本次课遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。
先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。
接着让学生猜想是不是所有的三角形的内角和是180°。
学生通过用量的方法得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。
再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。
让学生体验数学学习的快乐。