2017年四川省中考数学真题选择题精选精编(含答案解析)

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年四川省南充市中考数学试题(含答案)

2017年四川省南充市中考数学试题(含答案)

2017年四川省南充市中考数学试卷(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分) 1.(2017四川南充,1,3分)31-的值是( ) A .3 B .-3 C .13 D .-13【答案】C2.(2017四川南充,2,3分)下列运算正确的是( )A .a 3a 2=a 5B .(a 2) 3=a 5C .a 3+a 3=a 6D .(a +b )2=a 2+b 2 【答案】A 3.(2017四川南充,3,3分)下列几何体的主视图既是中心对称图形又是轴对称图形的是( )A B C D【答案】D 4.(2017四川南充,4,3分)如图,已知AB ∥CD ,65C ∠=︒,30E ∠=︒,则A ∠的度数为( )DA(第2题图)A .30°B .32.5°C .35°D .37.5°【答案】C5.(2017四川南充,5,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,则点C的坐标为()(第5题图)A.1)B.(-1C.1)D.1)【答案】A6.(2017四川南充,6,3分)不等式组1(1)22331xx x⎧+⎪⎨⎪-<+⎩…的解集在数轴上表示正确的是()【答案】D7.(2017四川南充,7,3分)为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等。

从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是()DBA.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10% D.估计全校学生成绩为A等大约有900人【答案】B-23A B C D8.(2017四川南充,8,3分)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°(第8题图)【答案】B9.(2017四川南充,9,3分)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )(第9题图)A .25π2B .13πC .25π D.【答案】B10.(2017四川南充,10,3分)二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤(第10题图)【答案】D北京初中数学周老师的博客:/beijingstudyAB CDl二、填空题(本大题共6个小题,每小题3分,共18分) 11.(2017四川南充,11,3分)分式方程212011x x +=--的解是__________. 【答案】x= -312.(2017四川南充,12,3分)因式分解3269x x x -+=__________. 【答案】2-x x 3()13.(2017四川南充,13,3分)一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,则这组数据的方差是__________. 【答案】5314.(2017四川南充,14,3分)如图,两圆圆心相同,大圆的弦AB 与小圆相切,AB =8,则图中阴影部分的面积是__________.(结果保留π)【答案】16π15. (2017四川南充,15,3分)一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则12a a a a ++++=L L__________.【答案】2011216.(2017四川南充,16,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A ′处,折痕所在直线同时经过边AB 、AD (包括端点),设BA ′=x ,则x 的取值范围是.(第14题图)【答案】28x ≤≤北京初中数学周老师的博客:/beijingstudy 三、解答题(本大题共9个小题,共72分)17.(2017四川南充,17,6分)计算:13130tan 3)23()12014(-⎪⎭⎫⎝⎛++---【答案】解:103130tan 3)23()12014(-⎪⎭⎫⎝⎛++---2+3+113218. (2017四川南充,18,8分)如图,AD 、BC 相交于O ,OA=OC ,∠OBD=∠ODB .求证:AB=CD.【答案】证明:∵∠OBD=∠ODB . ∴OB=OD在△AOB 与△COD 中,OA OC AOB OD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS ) ∴AB=CD.19.(2017四川南充,19,8分)(8分)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A 、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B 组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A 组中随机抽取一张记为x ,乙从B 组中随机抽取一张记为y .(1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax -y =5的解,求a 的值; (2)求甲、乙随机抽取一次的数恰好是方程ax -y =5的解的概率.(请用树形图或列表法求解) 【答案】解:AB OC D(18题图)20. (2017四川南充,20,8分)(8分)已知关于x 的一元二次方程x 2-22x +m =0,有两个不相等的实数根.⑴求实数m 的最大整数值;⑵在⑴的条下,方程的实数根是x 1,x 2,求代数式x 12+x 22-x 1x 2的值. 【答案】解:⑴由题意,得:△>0,即:(24m -- >0,m <2,∴m 的最大整数值为m=1(2)把m=1代入关于x 的一元二次方程x 2-22x +m =0得x 2-22x +1=0,根据根与系数的关系:x 1+x 2 = 22,x 1x 2=1,∴x 12+x 22-x 1x 2= (x 1+x 2)2-3x 1x 2=(22)2-3×1=521.(2017四川南充,21,8分)(8分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7). (1)求这两个函数的解析式; (2)当x 取何值时,1y <2y .(第21题图)【答案】解:∵反比例函数y 2=mx 的图象过点A (2,5)∴5=2m,m=10 即反比例函数的解析式为y =10x。

2017年盘锦市中考数学试题(含答案和解释)

2017年盘锦市中考数学试题(含答案和解释)

2017年盘锦市中考数学试题(含答案和解释)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.﹣2的相反数是()A.2B..﹣D.﹣2 【答案】A.【解析】试题分析:﹣2的相反数是2,故选A.考点:相反数.2.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是()A.B..D.【答案】.考点:中心对称图形.3.下列等式从左到右的变形,属于因式分解的是()A.B..D.【答案】.【解析】试题分析:A.,故A不是因式分解;B.,故B不是因式分解;.,故正确;D.=a(x+1)(x﹣1),故D分解不完全.故选.考点:因式分解的意义.4.如图,下面几何体的俯视图是()A.B..D.【答案】D.【解析】试题分析:从上面可看到第一行有三个正方形,第二行最左边有1个正方形.故选D.考点:简单组合体的三视图..在我市举办的中学生“争做明盘锦人”演讲比赛中,有1名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这1名学生成绩的()A.众数B.方差.平均数D.中位数【答案】D.考点:统计量的选择.6.不等式组的解集是()A.﹣1<x≤3B.1≤x<3.﹣1≤x<3D.1<x≤3【答案】.考点:解一元一次不等式组.7.样本数据3,2,4,a,8的平均数是4,则这组数据的众数是()A.2B.3.4D.8【答案】B.【解析】试题分析:a=4×﹣3﹣2﹣4﹣8=3,则这组数据为3,2,4,3,8;众数为3,故选B.考点:众数;算术平均数.8.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进,结果每位同学比原少分摊4元车费.设原游玩的同学有x名,则可得方程()A.B..D.【答案】D.【解析】试题分析:由题意得:,故选D.考点:由实际问题抽象出分式方程.9.如图,双曲线(x<0)经过&#9649;AB的对角线交点D,已知边在轴上,且A⊥于点,则&#9649;AB的面积是()A.B..3D.6【答案】.考点:反比例函数系数的几何意义;平行四边形的性质.10.如图,抛物线与x轴交于点A(﹣1,0),顶点坐标(1,n),与轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①ab>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥a2+b(为任意实数);⑤一元二次方程有两个不相等的实数根,其中正确的有()A.2个B.3个.4个D.个【答案】B.【解析】试题分析:∵抛物线开口向下,∴a<0,∵顶点坐标(1,n),∴对称轴为直线x=1,∴=1,∴b=﹣2a>0,∵与轴的交点在(0,3),(0,4)之间(包含端点),∴3≤≤4,∴ab<0,故①错误;3a+b=3a+(﹣2a)=a<0,故②正确;∵与x轴交于点A(﹣1,0),∴a﹣b+=0,∴a﹣(﹣2a)+=0,∴=﹣3a,∴3≤﹣3a≤4,∴﹣≤a≤﹣1,故③正确;∵顶点坐标为(1,n),∴当x=1时,函数有最大值n,∴a+b+≥a2+b+,∴a+b≥a2+b,故④正确;一元二次方程有两个相等的实数根x1=x2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B.考点:抛物线与x轴的交点;根的判别式;二次函数的性质.二、填空题(每小题3分,共24分)11.2016年我国对“一带一路”沿线国家直接投资14亿美元,将14亿用科学记数法表示为.【答案】14×1010.【解析】试题分析:将14亿用科学记数法表示为:14×1010.故答案为:14×1010.考点:科学记数法—表示较大的数.12.若式子有意义,则x的取值范围是.【答案】x>.考点:二次根式有意义的条.13.计算:= .【答案】.【解析】试题分析:原式= ,故答案为:.考点:整式的除法.14.对于&#9649;ABD,从以下五个关系式中任取一个作为条:①AB=B;②∠BAD=90°;③A=BD;④A⊥BD;⑤∠DAB=∠AB,能判定&#9649;ABD是矩形的概率是.【答案】.【解析】试题分析:由题意可知添加②③⑤可以判断平行四边形是矩形,∴能判定&#9649;ABD是矩形的概率是,故答案为:.考点:概率公式;矩形的判定.1.如图,在△AB中,∠B=30°,∠=4°,AD是B边上的高,AB=4,分别以B、为圆心,以BD、D为半径画弧,交边AB、A于点E、F,则图中阴影部分的面积是2.【答案】.考点:扇形面积的计算;勾股定理.16.在平面直角坐标系中,点P的坐标为(0,﹣),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于轴,且AB=8,反比例函数(≠0)经过点B,则= .【答案】﹣8或﹣32.【解析】试题分析:设线段AB交轴于点,当点在点P的上方时,连接PB,如图,∵⊙P 与x轴相切,且P(0,﹣),∴PB=P=,∵AB=8,∴B=4,在Rt△PB 中,由勾股定理可得P= =3,∴=P﹣P=﹣3=2,∴B点坐标为(4,﹣2),∵反比例函数(≠0)经过点B,∴=4×(﹣2)=﹣8;当点在点P下方时,同理可求得P=3,则=P+P=8,∴B(4,﹣8),∴=4×(﹣8)=﹣32;综上可知的值为﹣8或﹣32,故答案为:﹣8或﹣32.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论.17.如图,⊙的半径A=3,A的垂直平分线交⊙于B、两点,连接B、,用扇形B围成一个圆锥的侧面,则这个圆锥的高为.【答案】.考点:圆锥的计算;线段垂直平分线的性质.18.如图,点A1(1,1)在直线=x上,过点A1分别作轴、x轴的平行线交直线于点B1,B2,过点B2作轴的平行线交直线=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为.【答案】.考点:一次函数图象上点的坐标特征;规律型:点的坐标;综合题.三、解答题(19小题8分,20小题10分,共18分)19.先化简,再求值:,其中a= .【答案】,1.【解析】试题分析:根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.试题解析:原式===当a=1+2=3时,原式= =1.考点:分式的化简求值;零指数幂;负整数指数幂.20.如图,码头A、B分别在海岛的北偏东4°和北偏东60°方向上,仓库在海岛的北偏东7°方向上,码头A、B均在仓库的正西方向,码头B和仓库的距离B=0,若将一批物资从仓库用汽车运送到A、B两个码头中的一处,再用货船运送到海岛,若汽车的行驶速度为0/h,货船航行的速度为2/h,问这批物资在哪个码头装船,最早运抵海岛?(两个码头物资装船所用的时间相同,参考数据:≈14,≈17)【答案】这批物资在B码头装船,最早运抵海岛.由题意∠=7°,∠B=60°,∠=4°,∠=90°,∴∠=1°,∠B=30°,=A,∵∠B=∠+∠B,∴∠=∠B=1°,∴B=B=0(),在Rt△B中,= B=2(),B= = (),在Rt△A中,=A=2(),A= ≈3,∴AB=B﹣A≈17(),∴从A码头的时间= =34(小时),从B码头的时间= =3(小时),3<34.答:这批物资在B码头装船,最早运抵海岛.考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【答案】(1)0;(2)26;(3)104000元;(4).【解析】试题分析:(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出类型人数,即可补全条形图;(2)由各类的人数可得其总消费,进而可求出该班同学用于饮品上的人均花费是多少元;(3)用总人数乘以样本中的人均消费数额即可;(4)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一名男生和一名女生的结果数,根据概率公式求解可得.试题解析:(1)∵抽查的总人数为:20÷40%=0人,∴类人数=0﹣20﹣﹣1=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(×0+20×2+3×10+4×1)÷0=26元;(3)我市初中生每天用于饮品上的花费=40000×26=104000元.(4)列表得:或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)= = .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图;加权平均数.22.如图,在平面直角坐标系中,直线l:与x轴、轴分别交于点,N,高为3的等边三角形AB,边B在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B11,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A11所在直线的解析式;(3)在坐标平面内找一点P,使得以P、A1、1、为顶点的四边形是平行四边形,请直接写出P点坐标.【答案】(1)A1(,3),在直线上;(2);(3)P1(,3),P2(,﹣3),P3(﹣,3).试题解析:(1)如图作A1H⊥x轴于H.在Rt△A1H中,∵A1H=3,∠A1H=60°,∴H=A1H&#8226;tan30°= ,∴A1(,3),∵x= 时,=3,∴A1在直线上.(2)∵A1(,3),1(,0),设直线A11的解析式为=x+b,则有:,解得:,∴直线A11的解析式为.(3)∵(4 ,0),A1(,3),1(2 ,0),由图象可知,当以P、A1、1、为顶点的四边形是平行四边形时,P1(,3),P2(,﹣3),P3(﹣,3).考点:一次函数综合题;分类讨论.23.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)【答案】小慧:定价为102元;小杰:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.=﹣10x2+2210x﹣112800,当=880时,﹣10x2+2210x﹣112800=880,整理,得:x2﹣221x+12138=0,解得:x=102或x=119,∵当x=102时,销量为1410﹣1020=390,当x=119时,销量为1410﹣1190=220,∴若要达到880元的利润,且薄利多销,∴此时的定价应为102元;小杰:=﹣10x2+2210x﹣112800= ,∵价格取整数,即x为整数,∴当x=110或x=111时,取得最大值,最大值为9300.答:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.考点:二次函数的应用;二次函数的最值;最值问题.24.如图,在等腰△AB中,AB=B,以B为直径的⊙与A相交于点D,过点D作DE⊥AB交B延长线于点E,垂足为点F.(1)判断DE与⊙的位置关系,并说明理由;(2)若⊙的半径R=,tan= ,求EF的长.【答案】(1)直线DE是⊙的切线;(2).(2)过D作DH⊥B于H,∵⊙的半径R=,tan= ,∴B=10,设BD=,D=2,∴B= =10,∴=2 ,∴BD=2 ,D=4 ,∴DH= =4,∴H= =3,∵DE⊥D,DH⊥E,∴D2=H&#8226;E,∴E= ,∴BE= ,∵DE⊥AB,∴BF∥D,∴△BFE∽△DE,∴,即,∴BF=2,∴EF= = .考点:直线与圆的位置关系;等腰三角形的性质;解直角三角形;探究型.2.如图,在Rt△AB中,∠AB=90°,∠A=30°,点为AB中点,点P 为直线B上的动点(不与点B、点重合),连接、P,将线段P绕点P 顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段B上时,请直接写出线段BQ与P的数量关系.(2)如图2,当点P在B延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在B延长线上时,若∠BP=1°,BP=4,请求出BQ的长.【答案】(1)BQ=P;(2)成立:P=BQ;(3).(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.设E==a,则E=FP=2a,EF= a,在Rt△PE中,表示出P,根据P+B=4,可得方程,求出a即可解决问题;试题解析:(1)结论:BQ=P.理由:如图1中,作PH∥AB交于H.在Rt△AB中,∵∠AB=90°,∠A=30°,点为AB中点,∴=A=B,∠B=60°,∴△B是等边三角形,∴∠HP=∠B=60°,∠PH=∠B=60°,∴∠HP=∠PH=60°,∴△PH是等边三角形,∴P=PH=H,∴H=PB,∵∠PB=∠PQ+∠QPB=∠B+∠P,∵∠PQ=∠P=60°,∴∠PH=∠QPB,∵P=PQ,∴△PH≌△QPB,∴PH=QB,∴P=BQ.(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.∵∠P=1°,∠B=∠P+∠P,∴∠P=4°,∴E=E,设E==a,则E=FP=2a,EF= a,在Rt△PE中,P= = = ,∵P+B=4,∴,解得a= ,∴P= ,由(2)可知BQ=P,∴BQ= .考点:几何变换综合题;探究型;变式探究;压轴题.26.如图,直线=﹣2x+4交轴于点A,交抛物线于点B(3,﹣2),抛物线经过点(﹣1,0),交轴于点D,点P是抛物线上的动点,作PE⊥DB交DB所在直线于点E.(1)求抛物线的解析式;(2)当△PDE为等腰直角三角形时,求出PE的长及P点坐标;(3)在(2)的条下,连接PB,将△PBE沿直线AB翻折,直接写出翻折点后E的对称点坐标.【答案】(1);(2)PE=或2,P(2,﹣3)或(,3);(3)E的对称点坐标为(,﹣)或(36,﹣12).【解析】试题分析:(1)把B(3,﹣2),(﹣1,0)代入即可得到结论;(2)由求得D(0,﹣2),根据等腰直角三角形的性质得到DE=PE,列方程即可得到结论;(3)①当P点在直线BD的上方时,如图1,设点E关于直线AB 的对称点为E′,过E′作E′H⊥DE于H,求得直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论;②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE 于H,得到直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论.(2)设P(,),在中,当x=0时,=﹣2,∴D(0,﹣2),∵B(3,﹣2),∴BD∥x轴,∵PE⊥BD,∴E(,﹣2),∴DE=,PE= ,或PE= ,∵△PDE为等腰直角三角形,且∠PED=90°,∴DE=PE,∴= ,或= ,解得:=,=2,=0(不合题意,舍去),∴PE=或2,P(2,﹣3)或(,3);②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE于H,由(2)知,此时,E(2,﹣2),∴DE=2,∴BE′=BE=1,∵EE′⊥AB,∴设直线EE′的解析式为,∴﹣2= ×2+b,∴b=﹣3,∴直线EE′的解析式为,设E′(,),∴E′H= = ,BH=﹣3,∵E′H2+BH2=BE′2,∴()2+(﹣3)2=1,∴=36,=2(舍去),∴E′(36,﹣12).综上所述,E的对称点坐标为(,﹣)或(36,﹣12).考点:二次函数综合题;动点型;翻折变换(折叠问题);分类讨论;压轴题.。

历年四川省成都市中考数学试卷(A卷)(含答案)

历年四川省成都市中考数学试卷(A卷)(含答案)

2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。

四川宜宾 2017年中考真题数学(解析版)详细答案

四川宜宾 2017年中考真题数学(解析版)详细答案

2017年四川省宜宾市中考数学试卷一、选择题(8题&#215;3分=24分)1.9的算术平方根是()A.3 B.﹣3 C.±3 D.【考点】22:算术平方根.【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000000=5.5×107,故选:D.3.下面的几何体中,主视图为圆的是()A. B.C. D.【考点】U1:简单几何体的三视图.【分析】根据常见几何体的主视图,可得答案.【解答】解:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选:C.4.一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法判断【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出△=0,由此即可得出原方程有两个相等的实数根.【解答】解:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×()=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选B.5.如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()A.24°B.59°C.60°D.69°【考点】JA:平行线的性质.【分析】先由三角形的外角性质求出∠CBE的度数,再根据平行线的性质得出∠E=∠CBE即可.【解答】解:∵∠A=35°,∠C=24°,∴∠CBE=∠A+∠C=59°,∵BC∥DE,∴∠E=∠CBE=59°;故选:B.6.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵【考点】VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】A、将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15、16个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.73棵,结论D错误.此题得解.【解答】解:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.7.如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.C.5 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD﹣BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE的长.【解答】解:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,则有ED=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3(负值舍去),则DE=8﹣3=5,故选C8.如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A .1个B .2个C .3个D .4个【考点】H3:二次函数的性质;H2:二次函数的图象;KW :等腰直角三角形.【分析】把点A 坐标代入y 2,求出a 的值,即可得到函数解析式;令y=3,求出A 、B 、C 的横坐标,然后求出BD 、AD 的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.【解答】解:∵抛物线y 1=(x +1)2+1与y 2=a (x ﹣4)2﹣3交于点A (1,3), ∴3=a (1﹣4)2﹣3,解得:a=,故①正确;∵E 是抛物线的顶点,∴AE=EC ,∴无法得出AC=AE ,故②错误;当y=3时,3=(x +1)2+1,解得:x 1=1,x 2=﹣3,故B (﹣3,3),D (﹣1,1),则AB=4,AD=BD=2,∴AD 2+BD 2=AB 2,∴③△ABD 是等腰直角三角形,正确;∵(x +1)2+1=(x ﹣4)2﹣3时,解得:x 1=1,x 2=37,∴当37>x >1时,y 1>y 2,故④错误.故选:B .二、填空题(8题&#215;3分=24分)9.分解因式:xy2﹣4x=x(y+2)(y﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)10.在平面直角坐标系中,点M(3,﹣1)关于原点的对称点的坐标是(﹣3,1).【考点】R6:关于原点对称的点的坐标.【分析】根据两点关于原点对称,则两点的横、纵坐标都是互为相反数解答.【解答】解:点M(3,﹣1)关于原点的对称点的坐标是(﹣3,1).故答案为:(﹣3,1).11.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是24.【考点】L8:菱形的性质.【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=AC•BD=×8×6=24.故答案为:24.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.【考点】R2:旋转的性质.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=27°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故答案为:60°.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m >﹣2.【考点】C6:解一元一次不等式;97:二元一次方程组的解.【分析】首先解关于x和y的方程组,利用m表示出x和y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是50(1﹣x)2=32.【考点】AC:由实际问题抽象出一元二次方程.【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.【解答】解:由题意可得,50(1﹣x)2=32,故答案为:50(1﹣x)2=32.15.如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是﹣1.【考点】MM:正多边形和圆.【分析】在⊙O的内接正五边形ABCDE中,设EG=x,易知:∠AEB=∠ABE=∠EAG=36°,∠BAG=∠AGB=72°,推出AB=BG=AE=2,由△AEG∽△BEA,可得AE2=EG•EB,可得22=x(x+2),解方程即可.【解答】解:在⊙O的内接正五边形ABCDE中,设EG=x,易知:∠AEB=∠ABE=∠EAG=36°,∠BAG=∠AGB=72°,∴AB=BG=AE=2,∵∠AEG=∠AEB,∠EAG=∠EBA,∴△AEG∽△BEA,∴AE2=EG•EB,∴22=x(x+2),解得x=﹣1+或﹣1﹣,∴EG=﹣1,故答案为﹣1.16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是②③.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【考点】FF:两条直线相交或平行问题;18:有理数大小比较;CB:解一元一次不等式组.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.【解答】解:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.三、解答题(本大题共8个题,共72分)17.(1)计算0﹣()﹣1+|﹣2|(2)化简(1﹣)÷().【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.【解答】解:(1)原式=1﹣4+2=﹣1;(2)原式=÷=•=.18.如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.【考点】KD:全等三角形的判定与性质.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.19.端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去兴文石海旅游的情况,再利用概率公式即可求得答案.【解答】解:(1)∵小明准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,∴小明选择去蜀南竹海旅游的概率=,故答案为:;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去兴文石海旅游的概率=.20.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【考点】B7:分式方程的应用.【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=,B型机器人所用时间=,由所用时间相等,建立等量关系.【解答】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:=,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.21.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).【考点】T8:解直角三角形的应用.【分析】直接过点A作AD⊥BC于点D,利用tan30°==,进而得出答案.【解答】解:过点A作AD⊥BC于点D,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=xm,则tan30°==,解得:x=50(+1),答:河的宽度为50(+1)m.22.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B (n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC=S△AOC+S△BOC列式计算即可得解.的长度,再根据S△AOB【解答】解:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=4.23.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.【考点】ME:切线的判定与性质.【分析】(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得==,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB 中,可得2k2+4k2=5,求出k即可解决问题.【解答】(1)证明:连结OC,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴==,∴CD2=CB•CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.24.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).。

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

2017年四川省泸州市中考数学试卷(附答案解析版)

2017年四川省泸州市中考数学试卷(附答案解析版)

2017年四川省泸州市中考数学试卷一、选择题(每题3分.共36分)1.(3分)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣2.(3分)“五一”期间.某市共接待海内外游客约567000人次.将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1063.(3分)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x4.(3分)如图是一个由4个相同的正方体组成的立体图形.它的左视图是()A.B.C.D.5.(3分)已知点A(a.1)与点B(﹣4.b)关于原点对称.则a+b的值为()A.5 B.﹣5 C.3 D.﹣36.(3分)如图.AB是⊙O的直径.弦CD⊥AB于点E.若AB=8.AE=1.则弦CD的长是()A.B.2 C.6 D.87.(3分)下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形8.(3分)下列曲线中不能表示y与x的函数的是()A.B.C.D.9.(3分)已知三角形的三边长分别为a、b、c.求其面积问题.中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron.约公元50年)给出求其面积的海伦公式S=.其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=.若一个三角形的三边长分别为2.3.4.则其面积是()A.B.C.D.11.(3分)如图.在矩形ABCD中.点E是边BC的中点.AE⊥BD.垂足为F.则tan∠BDE的值是()A.B.C.D.12.(3分)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0.2)的距离与到x轴的距离始终相等.如图.点M的坐标为(.3).P是抛物线y=x2+1上一个动点.则△PMF周长的最小值是()A.3 B.4 C.5 D.6二、填空题(本大题共4小题.每题3分.共12分)13.(3分)在一个不透明的袋子中装有4个红球和2个白球.这些球除了颜色外无其他差别.从袋子中随机摸出一个球.则摸出白球的概率是.14.(3分)分解因式:2m2﹣8= .(3分)若关于x的分式方程+=3的解为正实数.则实数m的取值范围是.15.16.(3分)在△ABC中.已知BD和CE分别是边AC、AB上的中线.且BD⊥CE.垂足为O.若OD=2cm.OE=4cm.则线段AO的长度为cm.三、解答题(每题6分.共18分)17.(6分)计算:(﹣3)2+20170﹣×sin45°.18.(6分)如图.点A、F、C、D在同一条直线上.已知AF=DC.∠A=∠D.BC∥EF.求证:AB=DE.19.(6分)化简:•(1+)四、本大题共2小题.每小题7分.共14分20.(7分)某单位750名职工积极参加向贫困地区学校捐书活动.为了解职工的捐数量.采用随机抽样的方法抽取30名职工作为样本.对他们的捐书量进行统计.统计结果共有4本、5本、6本、7本、8本五类.分别用A、B、C、D、E表示.根据统计数据绘制成了如图所示的不完整的条形统计图.由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?21.(7分)某中学为打造书香校园.计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现.若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个.其中乙种书柜的数量不少于甲种书柜的数量.学校至多能够提供资金4320元.请设计几种购买方案供这个学校选择.五、本大题共2小题.每小题8分.共16分.(8分)如图.海中一渔船在A处且与小岛C相距70nmile.若该渔船由西向东航行30nmile 22.到达B处.此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.23.(8分)一次函数y=kx+b(k≠0)的图象经过点A(2.﹣6).且与反比例函数y=﹣的图象交于点B(a.4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0).l与反比例函数y2=的图象相交.求使y1<y2成立的x的取值范围.六、本大题共两个小题.每小题12分.共24分24.(12分)如图.⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D.与边BC相交于点F.OA与CD相交于点E.连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6.AB=10.求CG的长.25.(12分)如图.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1.0)、B(4.0)、C (0.2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点.且满足∠DBA=∠CAO(O是坐标原点).求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点.连接PA分别交BC.y轴与点E、F.若△PEB、△CEF的面积分别为S1、S2.求S1﹣S2的最大值.2017年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(每题3分.共36分)1.(3分)(2017•泸州)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣【分析】根据绝对值的性质解答.当a是负有理数时.a的绝对值是它的相反数﹣a.【解答】解:|﹣7|=7.故选A.【点评】本题考查了绝对值的性质.如果用字母a表示有理数.则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.(3分)(2017•泸州)“五一”期间.某市共接待海内外游客约567000人次.将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n的绝对值与小数点移动的位数相同.当原数绝对值>1时.n是正数;当原数的绝对值<1时.n是负数.【解答】解:567000=5.67×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.表示时关键要正确确定a的值以及n的值.3.(3分)(2017•泸州)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x【分析】各项计算得到结果.即可作出判断.【解答】解:A、原式=6x2.不符合题意;B、原式=x.符合题意;C、原式=4x2.不符合题意;D、原式=3.不符合题意.故选B【点评】此题考查了整式的混合运算.熟练掌握运算法则是解本题的关键.4.(2017•泸州)如图是一个由4个相同的正方体组成的立体图形.它的左视图是()(3分)A.B.C.D.【分析】根据左视图是从左边看到的图形解答.【解答】解:左视图有2行.每行一个小正方体.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•泸州)已知点A(a.1)与点B(﹣4.b)关于原点对称.则a+b的值为()A.5 B.﹣5 C.3 D.﹣3【分析】根据关于原点的对称点.横纵坐标都变成相反数.可得a、b的值.根据有理数的加法.可得答案.【解答】解:由A(a.1)关于原点的对称点为B(﹣4.b).得a=4.b=﹣1.a+b=3.故选:C.【点评】本题考查了关于原点对称的点的坐标.利用了关于原点对称的点的坐标规律:关于原点的对称点.横纵坐标都变成相反数.6.(3分)(2017•泸州)如图.AB是⊙O的直径.弦CD⊥AB于点E.若AB=8.AE=1.则弦CD 的长是()A.B.2 C.6 D.8【分析】根据垂径定理.可得答案.【解答】解:由题意.得OE=OB﹣AE=4﹣1=3.CE=CD==.CD=2CE=2.故选:B.【点评】本题考查了垂径定理.利用勾股定理.垂径定理是解题关键.7.(3分)(2017•泸州)下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形【分析】根据矩形的判定定理.菱形的性质.正方形的判定判断即可得到结论.【解答】解:A、四边都相等的四边形是菱形.故错误;B、矩形的对角线相等.故错误;C、对角线互相垂直的平行四边形是菱形.故错误;D、对角线相等的平行四边形是矩形.正确.故选D.【点评】此题考查了命题与定理.正确的命题叫真命题.错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2017•泸州)下列曲线中不能表示y与x的函数的是()A.B.C.D.【分析】函数是在一个变化过程中有两个变量x.y.一个x只能对应一个y.【解答】解:当给x一个值时.y有唯一的值与其对应.就说y是x的函数.x是自变量.选项C中的图形中对于一个自变量的值.图象就对应两个点.即y有两个值与x的值对应.因而不是函数关系.故选C.【点评】考查了函数的概念.理解函数的定义.是解决本题的关键.9.(3分)(2017•泸州)已知三角形的三边长分别为a、b、c.求其面积问题.中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron.约公元50年)给出求其面积的海伦公式S=.其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=.若一个三角形的三边长分别为2.3.4.则其面积是()A.B.C.D.【分析】根据题目中的秦九韶公式.可以求得一个三角形的三边长分别为2.3.4的面积.从而可以解答本题.【解答】解:∵S=.∴若一个三角形的三边长分别为 2.3.4.则其面积是:S==.故选B.【点评】本题考查二次根式的应用.解答本题的关键是明确题意.求出相应的三角形的面积.11.(3分)(2017•泸州)如图.在矩形ABCD中.点E是边BC的中点.AE⊥BD.垂足为F.则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF.得出EF=AF.EF=AE.由矩形的对称性得:AE=DE.得出EF=DE.设EF=x.则DE=3x.由勾股定理求出DF==2x.再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形.∴AD=BC.AD∥BC.∵点E是边BC的中点.∴BE=BC=AD.∴△BEF∽△DAF.∴=.∴EF=AF.∴EF=AE.∵点E是边BC的中点.∴由矩形的对称性得:AE=DE.∴EF=DE.设EF=x.则DE=3x.∴DF==2x.∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质.矩形的性质.三角函数等知识;熟练掌握矩形的性质.证明三角形相似是解决问题的关键.12.(3分)(2017•泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0.2)的距离与到x轴的距离始终相等.如图.点M的坐标为(.3).P是抛物线y=x2+1上一个动点.则△PMF周长的最小值是()A.3 B.4 C.5 D.6【分析】过点M作ME⊥x轴于点E.交抛物线y=x2+1于点P.由PF=PE结合三角形三边关系.即可得出此时△PMF周长取最小值.再由点F、M的坐标即可得出MF、ME的长度.进而得出△PMF周长的最小值.【解答】解:过点M作ME⊥x轴于点E.交抛物线y=x2+1于点P.此时△PMF周长最小值. ∵F(0.2)、M(.3).∴ME=3.FM==2.∴△PMF周长的最小值=ME+FM=3+2=5.故选C.【点评】本题考查了二次函数的性质以及三角形三边关系.根据三角形的三边关系确定点P 的位置是解题的关键.二、填空题(本大题共4小题.每题3分.共12分)13.(3分)(2017•泸州)在一个不透明的袋子中装有4个红球和2个白球.这些球除了颜色外无其他差别.从袋子中随机摸出一个球.则摸出白球的概率是.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解;袋子中球的总数为:4+2=6.∴摸到白球的概率为:=.故答案为:.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.14.(3分)(2017•泸州)分解因式:2m2﹣8= 2(m+2)(m﹣2).【分析】先提取公因式2.再对余下的多项式利用平方差公式继续分解因式.【解答】解:2m2﹣8.=2(m2﹣4).=2(m+2)(m﹣2).故答案为:2(m+2)(m﹣2).【点评】本题考查了提公因式法与公式法分解因式.要求灵活使用各种方法对多项式进行因式分解.一般来说.如果可以先提取公因式的要先提取公因式.再考虑运用公式法分解.15.(3分)(2017•泸州)若关于x的分式方程+=3的解为正实数.则实数m的取值范围是m<6且m≠2 .【分析】利用解分式方程的一般步骤解出方程.根据题意列出不等式.解不等式即可.【解答】解:+=3.方程两边同乘(x﹣2)得.x+m﹣2m=3x﹣6.解得.x=.由题意得.>0.解得.m<6.∵≠2.∴m≠2.故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法.掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.16.(3分)(2017•泸州)在△ABC中.已知BD和CE分别是边AC、AB上的中线.且BD⊥CE.垂足为O.若OD=2cm.OE=4cm.则线段AO的长度为4cm.【分析】连接AO并延长.交BC于H.根据勾股定理求出DE.根据三角形中位线定理求出BC.根据直角三角形的性质求出OH.根据重心的性质解答.【解答】解:连接AO并延长.交BC于H.由勾股定理得.DE==2.∵BD和CE分别是边AC、AB上的中线.∴BC=2DE=4.O是△ABC的重心.∴AH是中线.又BD⊥CE.∴OH=BC=2.∵O是△ABC的重心.∴AO=2OH=4.故答案为:4.【点评】本题考查的是重心的概念和性质.掌握三角形的重心是三角形三条中线的交点.且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.三、解答题(每题6分.共18分)17.(6分)(2017•泸州)计算:(﹣3)2+20170﹣×sin45°.【分析】首先计算乘方、开方、乘法.然后从左向右依次计算.求出算式的值是多少即可.【解答】解:(﹣3)2+20170﹣×sin45°=9+1﹣3×=10﹣3=7【点评】此题主要考查了实数的运算.要熟练掌握.解答此题的关键是要明确:在进行实数运算时.和有理数运算一样.要从高级到低级.即先算乘方、开方.再算乘除.最后算加减.有括号的要先算括号里面的.同级运算要按照从左到右的顺序进行.另外.有理数的运算律在实数范围内仍然适用.18.(6分)(2017•泸州)如图.点A、F、C、D在同一条直线上.已知AF=DC.∠A=∠D.BC∥EF.求证:AB=DE.【分析】欲证明AB=DE.只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD.∴AC=DF.∵BC∥EF.∴∠ACB=∠DFE.在△ABC和△DEF中..∴△ABC≌△DEF(ASA).∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识.熟练掌握全等三角形的判定方法是解决问题的关键.19.(6分)(2017•泸州)化简:•(1+)【分析】原式括号中两项通分并利用同分母分式的加法法则计算.约分即可得到结果.【解答】解:原式=•=.【点评】此题考查了分式的混合运算.熟练掌握运算法则是解本题的关键.四、本大题共2小题.每小题7分.共14分20.(7分)(2017•泸州)某单位750名职工积极参加向贫困地区学校捐书活动.为了解职工的捐数量.采用随机抽样的方法抽取30名职工作为样本.对他们的捐书量进行统计.统计结果共有4本、5本、6本、7本、8本五类.分别用A、B、C、D、E表示.根据统计数据绘制成了如图所示的不完整的条形统计图.由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?【分析】(1)根据题意列式计算得到D类书的人数.补全条形统计图即可;(2)根据次数出现最多的数确定众数.按从小到大顺序排列好后求得中位数;(3)用捐款平均数乘以总人数即可.【解答】解(1)捐D类书的人数为:30﹣4﹣6﹣9﹣3=8.补图如图所示;(2)众数为:6 中位数为:6平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;(3)750×6=4500.即该单位750名职工共捐书约4500本.【点评】此题主要考查了中位数.众数.平均数的求法.条形统计图的画法.用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.注意众数可以不止一个.21.(7分)(2017•泸州)某中学为打造书香校园.计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现.若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个.其中乙种书柜的数量不少于甲种书柜的数量.学校至多能够提供资金4320元.请设计几种购买方案供这个学校选择.【分析】(1)设甲种书柜单价为x元.乙种书柜的单价为y元.根据:若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元列出方程求解即可;(2)设甲种书柜购买m个.则乙种书柜购买(20﹣m)个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W≤1820且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组.解不等式组即可的不等式组的解集.从而确定方案.【解答】(1)解:设甲种书柜单价为x元.乙种书柜的单价为y元.由题意得:.解之得:.答:设甲种书柜单价为180元.乙种书柜的单价为240元.(2)解:设甲种书柜购买m个.则乙种书柜购买(20﹣m)个;由题意得:解之得:8≤m≤10因为m取整数.所以m可以取的值为:8.9.10即:学校的购买方案有以下三种:方案一:甲种书柜8个.乙种书柜12个.方案二:甲种书柜9个.乙种书柜11个.方案三:甲种书柜10个.乙种书柜10个.【点评】本题主要考查二元一次方程组、不等式组的综合应用能力.根据题意准确抓住相等关系或不等关系是解题的根本和关键.五、本大题共2小题.每小题8分.共16分.22.(8分)(2017•泸州)如图.海中一渔船在A处且与小岛C相距70nmile.若该渔船由西向东航行30nmile到达B处.此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.【分析】过点C作CD⊥AB于点D.由题意得:∠BCD=30°.设BC=x.解直角三角形即可得到结论.【解答】解:过点C作CD⊥AB于点D.由题意得:∠BCD=30°.设BC=x.则:在Rt△BCD中.BD=BC•sin30°=x.CD=BC•cos30°=x;∴AD=30x.∵AD2+CD2=AC2.即:(30+x)2+(x)2=702.解之得:x=50(负值舍去).答:渔船此时与C岛之间的距离为50海里.【点评】此题考查了方向角问题.此题难度适中.注意能借助于方向角构造直角三角形.并利用解直角三角形的知识求解是解此题的关键.23.(8分)(2017•泸州)一次函数y=kx+b(k≠0)的图象经过点A(2.﹣6).且与反比例函数y=﹣的图象交于点B(a.4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0).l与反比例函数y2=的图象相交.求使y1<y2成立的x的取值范围.【分析】(1)根据点B的纵坐标利用反比例函数图象上点的坐标特征可求出点B的坐标.根据点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)根据“上加下减”找出直线l的解析式.联立直线l和反比例函数解析式成方程组.解方程组可找出交点坐标.画出函数图象.根据两函数图象的上下位置关系即可找出使y1<y2成立的x的取值范围.【解答】解:(1)∵反比例函数y=﹣的图象过点B(a.4).∴4=﹣.解得:a=﹣3.∴点B的坐标为(﹣3.4).将A(2.﹣6)、B(﹣3.4)代入y=kx+b中..解得:.∴一次函数的解析式为y=﹣2x﹣2.(2)直线AB向上平移10个单位后得到直线l的解析式为:y1=﹣2x+8.联立直线l和反比例函数解析式成方程组..解得:..∴直线l与反比例函数图象的交点坐标为(1.6)和(3.2).画出函数图象.如图所示.观察函数图象可知:当0<x<1或x>3时.反比例函数图象在直线l的上方.∴使y1<y2成立的x的取值范围为0<x<1或x>3.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式以及解方程组.解题的关键是:(1)根据点A、B的坐标利用待定系数法求出直线AB的解析式;(2)联立两函数解析式成方程组.通过解方程组求出两函数图象的交点坐标.六、本大题共两个小题.每小题12分.共24分24.(12分)(2017•泸州)如图.⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D.与边BC相交于点F.OA与CD相交于点E.连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6.AB=10.求CG的长.【分析】(1)欲证明DF∥OA.只要证明OA⊥CD.DF⊥CD即可;(2)过点作EM⊥OC于M.易知=.只要求出EM、FM、FC即可解决问题;【解答】(1)证明:连接OD.∵AB与⊙O相切与点D.又AC与⊙O相切与点.∴AC=AD.∵OC=OD.∴OA⊥CD.∴CD⊥OA.∵CF是直径.∴∠CDF=90°.∴DF⊥CD.∴DF∥AO.(2)过点作EM⊥OC于M.∵AC=6.AB=10.∴BC==8.∴AD=AC=6.∴BD=AB﹣AD=4.∵BD2=BF•BC.∴BF=2.∴CF=BC﹣BF=6.OC=CF=3.∴OA==3.∵OC2=OE•OA.∴OE=.∵EM∥AC.∴===.∴OM=.EM=.FM=OF+OM=.∴===.∴CG=EM=2.【点评】本题考查切线的性质、直径的性质、切线长定理、勾股定理、平行线分线段成比例定理等知识.解题的关键是学会添加常用辅助线.灵活运用所学知识解决问题.25.(12分)(2017•泸州)如图.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1.0)、B(4.0)、C(0.2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点.且满足∠DBA=∠CAO(O是坐标原点).求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点.连接PA分别交BC.y轴与点E、F.若△PEB、△CEF的面积分别为S1、S2.求S1﹣S2的最大值.【分析】(1)由A、B、C三点的坐标.利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时.则可知当CD∥AB时.满足条件.由对称性可求得D点坐标;当点D在x轴下方时.可证得BD∥AC.利用AC的解析式可求得直线BD的解析式.再联立直线BD 和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H.可设出P点坐标.从而可表示出PH的长.可表示出△PEB的面积.进一步可表示出直线AP的解析式.可求得F点的坐标.联立直线BC和PA的解析式.可表示出E点横坐标.从而可表示出△CEF的面积.再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得.解得.∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时.过C作CD∥AB交抛物线于点D.如图1.∵A、B关于对称轴对称.C、D关于对称轴对称.∴四边形ABDC为等腰梯形.∴∠CAO=∠DBA.即点D满足条件.∴D(3.2);当点D在x轴下方时.∵∠DBA=∠CAO.∴BD∥AC.∵C(0.2).∴可设直线AC解析式为y=kx+2.把A(﹣1.0)代入可求得k=2.∴直线AC解析式为y=2x+2.∴可设直线BD解析式为y=2x+m.把B(4.0)代入可求得m=﹣8.∴直线BD解析式为y=2x﹣8.联立直线BD和抛物线解析式可得.解得或. ∴D(﹣5.﹣18);综上可知满足条件的点D的坐标为(3.2)或(﹣5.﹣18);(3)过点P作PH∥y轴交直线BC于点H.如图2.设P(t.﹣t2+t+2).由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2.∴H(t.﹣t+2).∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t.设直线AP的解析式为y=px+q.∴.解得.∴直线AP的解析式为y=(﹣t+2)(x+1).令x=0可得y=2﹣t.∴F(0.2﹣t).∴CF=2﹣(2﹣t)=t.联立直线AP和直线BC解析式可得.解得x=.即E点的横坐标为.∴S1=PH(x B﹣x E)=(﹣t2+2t)(5﹣).S2=••.∴S1﹣S2=(﹣t2+2t)(5﹣)﹣••=﹣t2+5t=﹣(t﹣)2+.∴当t=时.有S1﹣S2有最大值.最大值为.【点评】本题为二次函数的综合应用.涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想伋分类讨论思想等知识.在(1)中注意待定系数法的应用.在(2)中确定出D点的位置是解题的关键.在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多.综合性较强.计算量大.难度较大.参与本试卷答题和审题的老师有:bjf;gbl210;sks;星期八;dbz1018;2300680618;王学峰;弯弯的小河;zgm666;家有儿女;曹先生;三界无我;知足长乐;放飞梦想;nhx600;Ldt(排名不分先后)菁优网2017年6月23日。

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

专题3 方程(组)和不等式(组)一、选择题目1. (2017浙江衢州第6题)二元一次方程组的解是A. B. C. D. 2.(2017山东德州第8题)不等式组的解集为( )学科网A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 43.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A. B.C. D.4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x ++=--的解为正数,且使关于y的不等式组12()y 2320y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是⎩⎨⎧-=-=+236y x y x ⎩⎨⎧==15y x ⎩⎨⎧==24y x ⎩⎨⎧-=-=15y x ⎩⎨⎧-=-=24y x 31+2-132+9x xx ⎧≥>⎪⎨⎪⎩240120-=4-20x x 240120-=4+20x x 120240-=4-20xx 120240-=4+20x x( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x -2x 2=5706.(2017贵州安顺第8题)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则m 的值可以是( ) A .0B .﹣1C .2D .﹣37.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x 的两个根,则12x x 的值是( )A.2B.2C.4D.38. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5%9.(2017甘肃兰州第6题)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值为( ) A.98mB.89mC.98mD.89m10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.80703000x xB.2807043000xC.8027023000x xD.28070470803000x x11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x +的值为( ) A .2B .﹣1C .-12D .﹣2 12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣313.(2017山东烟台第10题)若是方程的两个根,且,则的值为( )A .或2B .1或 C. D .114.(2017四川宜宾第4题)一元二次方程4x 2﹣2x+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断15.(2017四川自贡第4题)不等式组23-42+1x x >≤⎧⎨⎩的解集表示在数轴上正确的是( )16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3D .617. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .600480+40x x =C .600480+40xx =D .600480-40xx =18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )21,x x 01222=--+-m m mx x 21211x x x x -=+m 1-2-2-14A .1B .3C .14-D .7419.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x += B .2(1)2x += C .2(2)3x += D .2(1)3x += 二、填空题目1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是2.(2017浙江宁波第14题)分式方程21332x x的解是 .3.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是 4.(2017江苏盐城第13题)若方程x 2-4x+1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为 5.(2017山东烟台第15题)运行程序如图所示,从“输入实数”到“结果是否”为一次程序操作,若输入后程序操作仅进行了一次就停止,则的取值范围是 .6.(2017四川泸州第15题)若关于x 的分式方程x 2322m mx x ++=--的解为正实数,则实数m 的取值范围是 .7.(2017四川宜宾第13题)若关于x 、y 的二元一次方程组的解满足x+y >0,则m 的取值范围是 .8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 .10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.x 18<x x 2m 133x y x y ⎧-=+⎨+=⎩三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 x 的垂线,垂足为点 A1,过点 A1 作 A1A2⊥x 3
轴,垂足为点 A2, 过点 A2 作 A2A3⊥l,垂足为点 A3, …,这样依次下去,得到一组线段:AA1,A1A2, A2A3,…,则线段 A2016A21 07 的长为( )
A. (
3 2015 ) 2
B. (
3 2016 ) 2
A.2017π
B.2034π
C.3024π
D.3026π
四、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一:本 节共 10 题,共 30 分。 23. (3 分)随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016 年国民出境旅游超 过 120 000 000 人次,将 120 000 000 用科学记数法表示为( ) 9 7 9 A.1.2×10 B.12×10 C.0.12×10 D.1.2×108 24. (3 分)下列说法正确的是( ) A.打开电视,它正在播广告是必然事件 B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查 C.在抽样调查过程中,样本容量越大,对总体的估计就越准确
17. (3 分)已知二次函数 y=ax2+bx+c 的图象如下,则一次函数 y=ax﹣2b 与反比例函数 y= 在同 一平面直角坐标系中的图象大致是( )
A.
B. )
C.
D.
18. (3 分)﹣2 的倒数是( A.2 B.﹣2 C.
D.﹣ )
19. (3 分)如图,几何体是由 3 个完全一样的正方体组成,它的左视图是(
跳远成绩 人数
160 3
170 9
180 6
190 9
200 15
210 3
这些立定跳远成绩的中位数和众数分别是( ) A.9,9 B.15,9 C.190,200 11. (3 分)下面四个数中比﹣5 小的数是( A.1 B.0 C.﹣4 ) D. ﹣6
D.185,200
12. (3 分)PM2.5 是指大气中直径小于或等于 2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺 颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科 学记数法可表示为( ) ﹣5 ﹣ ﹣ A.23×10 m B.2.3×10 5m C.2.3×10 6m D.0.23×10 ﹣7 m 13. (3 分)由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表 示该位置上的小正方体的个数,那么该几何体的主视图是( )
A. (
3 3 3 , ) 2 2
B. (2,
3 3 ) 2
C. (
3 3 3 , ) 2 2
D. (
3 3 3 , 3﹣ ) 2 2
5. (3 分)不等式组 A.4
3x 7 2 的非负整数解的 个数是( 2 x 9 1
C.6 D.7

Байду номын сангаас
B.5
6. (3 分)端午节前夕,某超市用 1680 元购进 A、B 两种 商品共 60 件,其中 A 型商品每件 24 元, B 型商品每件 36 元.设购买 A 型商品 x 件、B 型商品 y 件,依题意列方程组正 确的是( ) A.
班级:________________ 姓名:________________ 学号:________________ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ 装_ _ _ _ _订_ _ _ _ _线_ _ _(装订线内禁止填写答案)_ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____
C. (
3 2017 ) 2
D. (
3 2018 ) 2

8. (3 分)如图,直线 m∥n,直角三角板 ABC 的顶点 A 在直线 m 上,则∠α 的余角等于(
第 2 页共 21 页
班级:________________ 姓名:________________ 学号:________________ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ 装_ _ _ _ _订_ _ _ _ _线_ _ _(装订线内禁止填写答案)_ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____
2017年四川省中考数学真题选择题精选精编 (适用范围:初三一轮复习) 班级______________ 学号_________ 姓名________
一、选择题(本大题共十个小题,每题 3 分,共 30 分,每小题均有四个选项,其中只有一项符:本 节共 2 题,共 6 分。 1. (3 分) 如图, 四边形ABCD和A′B′C′D′是以点 O 为位似图形, 若OA: OA′ = 2:3, 则四边形ABCD和四 边形A′B′C′D′的面积比为() (A)4:9 (B)2:5 (C)2:3 (D) 2: 3
A.
B.
C.
D. )
20. (3 分)已知直线 a∥b,一块含 30° 角的直角三角尺如图放置.若∠1=25° ,则∠2 等于(
A.50° B.55° C.60° D.65°
21. (3 分)某市从今年 1 月 1 日起调整居民用水价格,每立方米水费上涨 .小丽家去年 12 月份
第 5 页共 21 页
班级:________________ 姓名:________________ 学号:________________ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ 装_ _ _ _ _订_ _ _ _ _线_ _ _(装订线内禁止填写答案)_ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____
x y 60 36 x 24 y 1680
B.
x y 60 24 x 36 y 1680
C.
x y 1680 36 x 24 y 60
D.
x y 1680 24 x 36 y 60
7. (3 分)如图,过点 A(2,0)作直线 l: y
第 1 页共 21 页
班级:________________ 姓名:________________ 学号:________________ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ 装_ _ _ _ _订_ _ _ _ _线_ _ _(装订线内禁止填写答案)_ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____
2 2 D.甲、乙两人射中环数的方差分别为 S甲 2 , S乙 4 ,说明乙的射击成绩比甲稳定
25. (3 分)下列图形中,既是轴对称图形又是中心对称图形的是(
A.19°
B.38° )
C.42°
D.52°
9. (3 分)下列计算正确的是( A. 3x2 y 5xy 8x3 y 2 C. (2 x)2 x 4 x
B. ( x y ) 2 x 2 y 2 D.
y x 1 x y yx
10. (3 分)某中学对该校九年级 45 名女学生进行了一次立定跳远测试,成绩如表:
二、选择题(共 12 小题,每小题 3 分,满分 36 分.在每小题给出的四个选项中,只有一项是:本 节共 11 题,共 33 分。 3. (3 分)为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最 合适的是( ) A.随机抽取 100 位女性老人 B.随机抽取 100 位男性老人 C.随机抽取公园内 100 位老人 D.在城市和乡镇各选 10 个点,每个点任选 5 位老人 4. (3 分)如图,在矩形 AOBC 中,O 为坐标原点,OA、OB 分别在 x 轴、y 轴上,点 B 的坐标为 (0, 3 3 ) ,∠ABO=30° ,将△ABC 沿 AB 所在直线对折后,点 C 落在点 D 处,则点 D 的坐标为 ( )
的水费是 15 元, 而今年 5 月的水费则是 30 元. 已知小丽家今年 5 月的用水量比去年 12 月的用水量 多 5cm3.求该市今年居民用水的价格.设去年居民用水价格为 x 元/cm3,根据题意列方程,正确的 是( )
A.
B.
C.
D.
22. (3 分)如图,将矩形 ABCD 绕其右下角的顶点按顺时针方向旋转 90° 至图①位置,继续绕右下 角的顶点按顺时针方向旋转 90° 至图②位置,以此类推,这样连续旋转 2017 次.若 AB=4,AD=3, 则顶点 A 在整个旋转过程中所经过的路径总长为( )
2. (3 分)在平面直角坐标系 xOy 中,二次函数y = ������������ 2 + bx + c的图像如图所示,下列说法正确的 是() (A)������bc < 0,b2 − 4������c > 0 (B)������bc > 0,b2 − 4������c > 0
(C)������bc < 0,b2 − 4������c < 0 (D)������bc > 0,b2 − 4������c < 0
第 3 页共 21 页
班级:________________ 姓名:________________ 学号:________________ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ 装_ _ _ _ _订_ _ _ _ _线_ _ _(装订线内禁止填写答案)_ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____ _ _____
相关文档
最新文档