3.4.1实际问题与一元一次方程--工程问题
人教版七年级数学上册3.4实际问题与一元一次方程一工程问题教学设计

(三)情感态度与价值观
1.培养学生热爱数学,认识到数学在解决实际问题中的价值和作用,增强学习数学的兴趣和信心。
2.通过解决工程问题,让学生认识到团队合作的重要性,培养他们的团队精神和协作能力。
3.引导学生关注社会生活中的数学问题,激发他们运用数学知识为社会服务的意识。
3.小组讨论:布置一道小组讨论题目,要求学生在课后分组讨论,共同解决。在讨论过程中,学生可以相互借鉴思路,提高解决问题的效率。同时,培养他们的团队协作能力和沟通能力。
4.写作任务:要求学生针对本节课学习的工程问题,结合自己的解题过程,撰写一篇数学日记或学习心得。学生在写作过程中,可以反思自己的学习方法和技巧,总结一元一次方程在工程问题中的应用经验。
2.教学过程
a.将学生分成若干小组,每个小组分配一个工程问题。
b.要求学生通过合作、讨论,列出相应的一元一次方程,并求解。
c.学生在讨论过程中,可以相互提问、解答,共同解决问题。
d.教师巡回指导,关注每个小组的讨论情况,适时给予提示和指导。
(四)课堂练习
1.教学活动设计
在课堂练习环节,我将设计一些具有代表性的习题,帮助学生巩固所学知识。
2.学生在思维方法上,需要引导他们从具体的实际问题中抽象出数学模型,培养他们运用一元一次方程解决问题的能力。
3.学生在情感态度上,可能对数学学科存在一定的恐惧感,需要激发他们的学习兴趣,帮助他们树立解决实际问题的信心。
4.学生在合作交流方面,需要培养他们的团队协作能力和批判性思维,以便在解决工程问题时,能够进行有效的讨论和反思。
4.培养学生勇于面对困难和挑战,敢于探索和创新的品质,使他们形成积极向上的学习态度。
专题3.4.1实际问题与一元一次方程(配套问题与工程问题)(练习)(解析版)

第三章一元一次方程实质问题与一元一次方程(配套问题与工程问题)优选练习答案基础篇一、填空题(共5小题)1.某车间有75 名工人生产A、 B 两种部件,一名工人每日可生产 A 种部件 15 个或 B 种部件 20 个,已知1 个 B 种部件需要配 3 个 A 种部件,该车间应如何分派工人,才能保证每日生产的两种部件恰巧配套?设应安排 x 名工人生产 A 种部件,依据题意,列出的方程是___________________.【答案】 15x=3 20(75-x)【详解】解:设应安排x 名工人生产 A 种部件,则生产 B 种部件的工人为人,由 1 个 B 种部件需要配 3 个 A 种部件,即 A 种部件的个数是 B 种部件的三倍。
可列出方程 15x=3 20(75-x) ,故答案: 15x=3 20(75-x) 。
【名师点睛】本题考察了一元一次方程的应用问题, 依据题意列方程即可。
2.某车间有工人85 人,均匀每人每日可加工大齿轮12 个或小齿轮10 个,又知一个大齿轮与两个小齿轮配成一套,则应安排 _______名工人生产大齿轮、________名工人生产小齿轮能使每日生产的产品恰巧成套. 【答案】 25 60【详解】解:设生产大齿轮需x 名工人,则生产小齿轮有人,依题意得:,解得:,因此生产小齿轮有=60 人,故答案: 2560.【名师点睛】本题考察了一元一次方程的应用问题, 重点是读懂题意,依据已知条件,找到等量关系,列出方程求解。
3.某服饰厂有工人54 人,每人每日可加工上衣8 件或裤子10 条,应如何分派人数,才能使每日生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为________人,依据题意,可列方程为_______,解得 x=_____.【答案】 (54 - x) 8x=10(54-x)30【分析】设x 人做上衣,由共有工人54 人可得做裤子的人数为(54-x )人,再依据一条裤子配一件上衣可得方程 8x= 10(54 -x),解方程得x=30.4.一件工程,甲队独自做要8 天达成,乙队独自做要12 天达成,甲队做 2 天后,乙队来增援,两队合做x 天达成任务的,则由此条件可列出的方程是____________________.【答案】(x + 2) +x=【剖析】依据题意表示出甲和乙的工作效率分别是和,则甲的工作量为,乙的工作量为,再依据题意可得等量关系, 由等量关系列出方程即可.【详解】依据题意得:+=【名师点睛】本题考察了一元一次方程的应用, 由实质问题抽象出分式方程, 重点是正确理解题意, 抓住题目中的重点语句, 找出等量关系 , 列出方程 .5.小亮读一本书,第一天读了全书的,次日读了全书的,第三天读了全书的,三天共读了页.设全书共页,可列方程为_____.【答案】【剖析】第一表示出全书的是 x 页,次日读了全书的是x页,第三天读了全书的是x页,依据“三天共读了480 页”可得方程.【详解】设全书共x 页,由题意得:,故答案为:.【名师点睛】本题主要考察了由实质问题抽象出一元一次方程,重点是正确理解题意,抓住题目中的重点语句,列出方程.二、解答题(共5小题)6.用白铁皮做罐头盒,每张铁皮可制盒身25 个或制盒底40 个,一个盒身与两个盒底配成一套,现有36 张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?【答案】需要16 张白铁皮做盒身,20 张白铁皮做盒底【分析】解:设用x 张制盒身,则(36-x)张制盒底,依据题意,获得方程: 2×25 x= 40(36 -x) ,解得: x=16,36-x= 36- 16= 20.答:用 16 张制盒身, 20 张制盒底,可使盒身与盒底正好配套.7.一些技工做由若干个部件组成的模具, 3 名A级技工一天做 6 套模具,结果此中有18 个部件将来得及做,相同的时间内 5 名B级技工做8 套模具,结果还多做了10 个部件,每名 A 级技工比 B 级技工一天多做 4 个部件,求每套模具中的部件数.【答案】 30.【分析】试题剖析:是 A 级技工的工作效率,是B级技工的工作效率,利用 A 级技工和 B 级技工的工作效率关系作为等量关系,列方程求解.试题分析:解:设每套模具中有x 个部件.依据题意,列方程得,解得x=30.因此每套模具中有30 个部件.8.某项工作,甲独自做 4 天达成,乙独自做8 天达成,此刻甲先做一天,而后和乙共同达成余下的工作,问达成这项工作共需多少天?【答案】达成这项工作共需 3 天 .【详解】设达成这项工作共需x 天,依据题意得:解得 x=3,答:达成这项工作共需 3 天 .【名师点睛】本题主要考察一元一次方程的应用,重点是正确理解题意,找出题目中的等量关系,列出方程求解 .提高篇9.一件工作,甲独自达成需7.5 小时,乙独自达成需 5 小时,先由甲、乙两人合做 1 小时,再由乙独自完成节余任务,共需多少小时达成任务?【答案】小时 .【分析】试题剖析:设共需要x 小时达成任务.,依据总工作量=各部分的工作量之和成立等量关系列出方程解方程即可.试题分析:设共需要x 小时达成任务.由题意得(+ ) ×1+=1.解得x=.答:共需小时达成任务.10.某地为了打造风光带,将一段长为360m的河流整顿任务由甲、乙两个工程队先后接力达成,共用时20 天,已知甲工程队每日整顿24m,乙工程队每日整顿16m.求甲、乙两个工程队分别整顿了多长的河流.【答案】甲、乙两个工程队分别整顿了120m, 240m【剖析】设甲队整顿了x 天,则乙队整顿了天,由两队一共整顿了360m为等量关系成立方程求出其解即可.【详解】设甲队整顿了x 天,则乙队整顿了天,由题意,得24x+16 ( 20-x ) =360,解得: x=5,∴乙队整顿了20-5=15 天,∴甲队整顿的河流长为:24×5=120m;乙队整顿的河流长为: 16×15=240m.。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案

最后,我觉得自己在课堂上的语言表达和引导方式还有待改进。在今后的教学中,我将努力提高自己的教学水平,用更生动、更贴近学生生活的例子来讲解知识,使课堂氛围更加活跃,让学生在轻松愉快的氛围中学习数学。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案
一、教学内容
人教版七年级数学上册3.4节《实际问题与一元一次方程(1)-配套问题和工程问题》主要包括以下内容:
1.配套问题:通过实际生活情境,引入配套问题的概念,让学生理解并掌握如何建立一元一次方程解决配套问题。
-例如:某一个乙产品需要4个A零件和1个B零件。若工厂现有A零件20个,B零件18个,求甲、乙两种产品各能生产多少个?
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了如何运用一元一次方程解决配套问题和工程问题。通过实践活动和小组讨论,我们加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,学生们表现得积极主动,能够围绕实际问题展开讨论,并提出自己的观点。但在引导讨论时,我发现部分学生对于开放性问题的思考还不够深入,这可能是因为他们对问题的理解不够透彻。为此,我将在以后的课堂中尝试用更多实例和问题引导学生,帮助他们深入思考。
实践活动环节,学生们通过分组讨论和实验操作,加深了对一元一次方程的理解。但从实验结果来看,部分学生对实验操作还不够熟练,这可能影响他们对知识的掌握。因此,我考虑在接下来的课程中增加实践活动的时间,让学生有更多的机会动手操作,提高他们的实践能力。
2021人教版初中数学七年级上一元一次方程 3.4.1 实际问题与一元一次方程同步精品课件

6+x + x = 1
16 24
解这个方程得: x=6
经检验:x=6符合题意.
答:B工程队工问题的基本过程如下:
设未知数,列方程
实际问题
一元一次方程
解 方 程
实际问题的答案
检验
一元一次方程的解 (x=a)
2.配套类应用题的解题思路:
配套问题 例2 某加工厂用36张白铁皮制作罐头盒,每张铁皮可制盒身25个,或制 盒底40个,已知一个盒身与两个盒底配成一套罐头盒. 用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
分析: 设用x张制盒身,则用(36一x)张制盒底,根据制作的 盒底的总数是制作的盒身的2倍,即可得出关于x的一元 一次方程,解之即可得出结论.
列出方程:4x +8(x+2) = 1
40
40
解得:
x=2
答:安排2人先做4小时.
知识小结
解决工程问题的基本思路:
1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量=工作效率×工作时间.
2. 相等关系:工作总量 = 各部分工作量之和. (1) 按工作时间,工作总量 = 各时间段的工作量之和; (2) 按工作者,工作总量 = 各工作者的工作量之和.
配套问题通常从调配后各量之间的倍、分关系寻找相等关系, 建立方程,解决配套问题的思路: 1.利用配套问题中物品之间具有的数量关系作为列方程的依据; 2.利用配套问题中的套数不变作为列方程的依据.
数学
七年级(上)
3.4.1实际问题与一元一次方程(一)
3.4 实际问题与一元一次方程
3.4.1 配套问题与工程问题
人教版7年级数学上册 第3章 一元一次方程
3.4 .1产品配套问题和工程问题人教版数学七年级上册

(1) 按工作时间,工作总量=各时间段的工作量之和; (2) 按工作者,工作总量=各工作者的工作量之和. 3. 通常在没有具体数值的情况下,把工作总量看作1.
学以致用
一条地下管线由甲工程队单独铺设需要12天,由 乙工程队单独铺设需要24天. 如果由这两个工程队 从两端同时施工,要多少天可以铺好这条管线?
产品类型 生产人数 单人产量 总产量 产品套数
螺钉 螺母
x
22-x
1200 2000
1200 x 1200 x
2000(22-x) 2000(22 - x)
2
解:设应安排 x 名工人生产螺钉,(22-x)名工人生
产螺母.依题意,得
2000(22 - x) 2000x.
2
解方程,得 x=10.
所以2-x=12.
可列方程 4x 8(x 2) 1. 40 40
解方程,得
4x+8(x+2)=40, 4x+8x+16=40,
12x=24, x=2.
答:应先安排 2人做4 小时.
学以致用
加工某种工件,甲单独作要20天完成,乙只要 10就能完成任务,现在要求二人在12天内完成 任务.问乙需工作几天后甲再继续加工才可正 好按期完成任务?
学习探究
5分钟
➢【展学】
在工程问题中:工作量=人均效率×人数×时间; 工作总量=各部分工作量之和.
如果把总工作量设为1,则人均效率 (一个人 1 h
完成的工作量) 为 1 ,x人先做 4h 完成的工
作量为 4x
40 ,增加 2 人后再做 8h 完成的工作量
为
40 8(x 2) ,这两个工作量之和等于 总工
实际问题与一元一次方程(一)配套问题和工程问题(教学设计)七年级数学上册系列(人教版)

3.4.1 实际问题与一元一次方程(一) 配套问题和工程问题教学设计一、内容和内容解析本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.4.1 实际问题与一元一次方程(一) 配套问题和工程问题,内容包括:列一元一次方程解决配套问题和工程问题.这一节是人教版新课标实验教材中学数学七年级上册第三章第四节第一课时的内容,是学生学习了代数式、简易方程及一元一次方程的解法后一个理论联系实际的最好教材,也是前一部分知识的应用与巩固.所有列方程解应用题的基本方法都与列一元一次方程解应用题的基本方法类似,所以这一节又是整个列方程解应用题的重点.列方程解应用题体现了现实世界中事物的相互联系,学生从这些联系中看问题的同时也为今后学习函数奠定了基础.在能力方面,无论是逻辑思维能力、计算能力.还是分析问题、解决问题的能力,都可在本单元教学中得以培养和提高.基于以上分析,确定本节课的教学重点为:掌握用一元一次方程解决实际问题的基本过程.二、目标和目标解析(1)理解配套问题和工程问题的背景.(2)掌握用一元一次方程解决实际问题的基本过程.(3)分清有关数量关系,能正确找出作为列方程依据的主要等量关系.掌握配套问题和工程问题中有关量的基本关系式,并会寻求等量关系列方程求解提高利用一元一次方程解决实际问题的能力.让学生亲身经历和体验运用方程解决实际问题的过程,培养学生用数学的眼光去看待、分析现实生活中的情境:并能作出相应的选择.经历将实际问题转化为数学问题的过程,进一步体会并认识到方程是刻画现实世界的一个很有效的数学模型,渗透数学建模思想.培养学生的抽象、概括、分析和解决问题的能力.通过学习,进一步认识到方程与现实世界的密切联系感受数学的应用价值,增强用数学的意识,从而激发学生学习数学的热情体会在解决问题的过程中同学之间交流合作的重要性让学生在探究中感受学习的快乐.三、教学问题诊断分析本节课教学的对象是七年级学生,他们思想活跃,兴趣广泛,善于思考.在进行教学设计时力争从教学内容、教学形式、教学评价中体现出趣味性和切近生活的原则.通过教学活动,让学生自主探究,引导他们由浅入深、步步推进,从广度、高度和深度上开拓学生的思维,也有助于学生形成完整的知识体系.基于以上学情分析,确定本节课的教学难点为:将实际问题抽象为方程的过程中,如何找等量关系.四、教学过程设计(一)自学导航1.一个三角形的三边长度的比是3:4:5,最短的边比最长边短4,则三边各是多少?解:设最短边为3x,则最长边为____,根据题意,列得方程____________.2.铅笔每支1元,钢笔每支8元. 小明买回铅笔钢笔共8支,用了22元. 问小明买了铅笔钢笔各多少支?解:设小明买了x支铅笔,则买了_______支钢笔,根据题意,列得方程______________.3.甲队有32人,乙队有40人,现在从乙队抽调x 人到甲队,使得甲队的人数是乙队人数的2倍,根据题意,列得方程_________________.(二)情境引入生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺母、电扇叶片和电机等,大家能举出生活中配套问题的例子吗?(三)考点解析例1.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母. 1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?提示:这类问题中配套的物品之间具有一定的数量关系,这可以作为列方程的依据.分析:每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套.螺母总量=螺钉总量×2列表分析:解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母.根据螺母数量应是螺钉数量的2倍,列出方程2000(22-x)=2×1200x .解方程,得x=10.所以22-x=12.答:应安排10名工人生产螺钉,12名工人生产螺母.思考:如果设x名工人生产螺母,怎样列方程?解:设应安排x名工人生产螺母,(22-x)名工人生产螺钉.根据螺母数量应是螺钉数量的2倍,列出方程2×1200(22-x)=2000x解方程,得x=12所以22-x=10答:应安排10名工人生产螺钉,12名工人生产螺母.思考:本题还有其他做法吗?分析:从螺钉的角度来看,螺钉数等于套数;从螺母的角度来看,螺母数等于套数的2倍.可以根据生产的套数是一样的建立方程解决.列表分析:解:设应安排x 名工人生产螺钉,(22-x)名工人生产螺母.依题意,得2000(22-)1200.2x x 解方程,得 x =10.所以 2-x =12.答:应安排10名工人生产螺钉,12名工人生产螺母.【方法归纳】解决配套问题的思路:物品之间具有的数量关系作为列方程的依据;套数不变作为列方程的依据.例2.某服装厂要生产一批校服,已知每3m 的布料可以做2件上衣或3条裤子,要求一件上衣和两条裤子配一套,现有1008m 的布料,应怎样计划用料才能做尽可能多的成套校服?校服有多少套?解:设用x m 布料做上衣,则用(1008-x)m 布料做裤子.由题意,得23x×2=1008-x , 解得x=432.所以1008-x=576,23x=288.答:用432m 布料做上衣,576m 布料做裤子,刚好能做288套校服.【迁移应用】1.某防护服厂有54人,每人每天可加工防护服8件或防护面罩10个,已知一件防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排多少人生产防护服?解:设需要安排x 人生产防护服,则安排(54-x)人生产防护面罩.由题意,得8x=10(54-x),解得x=30.答:需要安排30人生产防护服.2.一张方桌由1个桌面、4条桌腿组成,如果1m3木料可以做50个桌面或300条桌腿,现有5m3木料,要使做出的桌面和桌腿恰好配成方桌,应用多少木料来做桌面?能配成多少张方桌?解:设应用xm3木料做桌面,则用(5-x)m3木料做桌腿.根据题意得50x×4=300(5-x),解得x=3.则能配成方桌50×3=150(张).答:应用3m3木料做桌面,能配成150张方桌.(四)自学导航做某件工作,甲单独做要8时才能完成,乙单独做要12时才能完成,问:①甲做1时完成全部工作量的几分之几?_______.①乙做1时完成全部工作量的几分之几?_______.①甲、乙合做1时完成全部工作量的几分之几?_______.①甲做x时完成全部工作量的几分之几?_______.①甲、乙合做x时完成全部工作量的几分之几?_______.①甲先做2时完成全部工作量的几分之几?_______;乙后做3时完成全部工作量的几分之几?_______;甲、乙再合做x时完成全部工作量的几分之几?_______;三次共完成全部工作量的几分之几?______________;结果完成了工作,则可列出方程:________________.(五)考点解析例3.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:这里可以把总工作量看作1;工作量=人均效率×人数×时间.人均效率(一人做1h完成工作量)为( )x人1h完成的工作量( )x人4h完成的工作量( )增加2人后再做8h,完成工作量为()这两个工作量之和为( ).解:设安排x人先做4h. 根据先后两个时段的工作量之和应等于总工作量,列出方程48(2)14040x x ++= 解方程,得 4x+8(x+2)=404x+8x+16=4012x=24x=2答:应安排2人先做4h.【总结提升】解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间.它们之间的关系是:工作量=工作效率×工作时间.2. 相等关系:工作总量=各部分工作量之和.(1) 按工作时间,工作总量=各时间段的工作量之和;(2) 按工作者,工作总量=各工作者的工作量之和.3. 通常在没有具体数值的情况下,把工作总量看作“1”.例4.某村经济合作社决定把22t 竹笋加工后再上市销售,刚开始每天加工3t ,后来在乡村振兴工作队的指导下改进加工方法,每天加工5t ,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?分析:相等关系:改进方法前的工作量+改进方法后的工作量=22t.解:设改进加工方法前用了x 天,则改进加工方法后用了(6-x)天.根据题意,得3x+5(6-x)=22,解得x=4.所以6-x=2答:改进加工方法前用了4天,改进加工方法后用了2天.【迁移应用】1.将一段长为1.2km 的河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24m ,乙队每天整治16m ,则甲队整治河道_______m ,乙队整治河道_______m.2.有一段长为146m 的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26m.已知甲工程队每天比乙工程队多掘进2m ,按此速度施工,甲、乙两个工程队还需联合工作______天.例5.?解:设甲做了xh ,则乙做了(x+2)h.x 根据题意,得140+x+330=1,解得x=16.答:甲做了16h.【迁移应用】1.一项工程,甲单独做10天可以完成,乙单独做15天可以完成,现甲队先做2天,余下的工程由两队共同做x 天刚好可以完成,则由题意可列出的方程是___________________.2.加工一批零件,由一个人做要100h 完成,现计划由若干人先做2h ,再增加5人与他们一起做9h ,可完成这项工作的3950.假设这些人50的工作效率相同,先做2h 的有多少人? 解:设先做2h 的有x 人.根据题意,得x 100×2+(x+5)100×9=3950. 解得x=3.答:先做2h 的有3人.例6.【分类讨论思想】某玩具公司要生产若干件高级玩具,现有甲、乙两个加工厂都想加工这批玩具,已知甲厂单独加工这批玩具比乙厂单独加工这批玩具多用20天,甲厂每天可加工16 件玩具,乙厂每天可加工24件玩具,玩具公司每天需付给甲厂800元加工费,每天需付给乙厂1200元加工费.(1)这个玩具公司要生产多少件高级玩具?(2)在加工过程中(无论单独加工,还是两厂合作),玩具公司需派一名技术员每天给加工厂提供指导,并为该技术员提供每天20元的额外补助,玩具公司制订玩具加工方案如下:可由一个厂单独加工完成,也可由两厂合作完成请你帮助玩具公司选择一种既省钱又省时的加工方案.解:(1)设这个玩具公司要生产x 件高级玩具.由题意,得x 16-x 24=20,解得x=960.答:这个玩具公司要生产960件高级玩具.(2)分三种情况讨论:①甲厂单独加工:耗时96016=60(天),费用为60×(20+800)=49200(元);①乙厂单独加工:耗时96024=40(天),费用为40×(1200+20)=48800(元);9①两厂共同加工:耗时96016+24=24(天),费用为24×(800+1200+20)=48480(元).所以由两厂合作完成时,既省钱又省时.【迁移应用】为推进我国“碳达峰、碳中和”双碳目标的实现,各地大力推广分布式光伏发电项目.某公司计划建设一座光伏发电站,若由甲工程队单独施工需要3周,每周耗资8万元,若由乙工程队单独施工需要6周,每周耗资3万元.(1)若甲、乙两工程队合作施工,需要几周完成?共需耗资多少万元?(2)若需要最迟4周完成工程,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整周计算)解:(1)设甲、乙两工程队合作施工需要x 周完成.根据题意,得(13+16)x=1, 解得x=2.所以(8+3)×2=22(万元).答:甲、乙两工程队合作施工,需要2周完成,共需耗资22万元.(2)因为乙工程队每周耗资较少,为最大限度节省资金,则乙工程队应尽可能多做.设先由甲、乙两工程队合作施工y 周,剩下的工作量由乙工程队单独完成.根据题意,得(13+16)y+4−y 6=1,解得y=1.所以4-y=3.答:先由甲、乙两工程队合作施工1周,再由乙工程队单独施工了周,既保证按时完成任务,又最大限度节省资金.(六)小结梳理用一元一次方程解决实际问题的基本过程如下:列方程解决实际问题的一般步骤:审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案(包括单位).五、教学反思。
3.4.1 用一元一次方程解配套问题和工程问题 课件

B. 16x=45(100-x)
C. 16x=2×45(100-x)
D. 16x=45(50-x)
过关练习
3. 41人参加运土劳动,有30根扁担,安排多少人抬,多少人挑,可使扁
担和人数相配不多不少?若设有x人挑土,则列方程是( C )
A. 2x-(30-x)=41
天完成,则符合题意的方程是( A )
x 22 22
A.
1
45
30
x 22 22
B.
1
30
45
x 22 22
C.
1
45
30
x x 22
D.
1
30
45
过关练习
一水池装有甲、乙、丙三个水管,甲、乙两管是
注水管,丙管是排水管,单独开甲管6小时可注满水
池,单独开乙管8小时可注满水池,单独开丙管12小
答:分配24名学生剪筒身,20名学生剪筒底.
达标检测
8.一套仪器由一个A部件和三个B部件构成. 用1
m3钢材可以做40个A部件或240个B部件. 现要用6 m3
钢材制作这种仪器,应用多少钢材做A部件,多少钢
材做B部件,恰好配成这种仪器多少套?
解:设应用 x m3钢材做A部件,(6-x) m3 钢材做B部
工程问题
实际工作天数×每天完成这项任务的几分之
一=实际完成这项工作的几分之几.
作业布置
教材练习题
B.32+x=2(22+x)
C.32-x=2(22+x)
D.32+x=2(22-x)
达标检测
3. 某工厂男、女工人共70人,男工人调走10%,女工人调入6人,男、女
人教版数学七年级上册3.4.1 配套问题与工程问题教案

3.4 实际问题与一元一次方程第1课时 配套问题与工程问题●情景导入 前面我们学习了一元一次方程的解法,本节课,我们将讨论一元一次方程的应用.生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺母、电扇叶片和电机等,大家还能举出一些生活中配套问题的例子吗?【教学与建议】教学:通过这一情景的导入,让学生认识到配套问题无处不在.建议:让学生例举日常生活中配套问题.●悬念激趣 展示近年来全国各地的城市面貌变化的图片,让学生感受到我国经济正突飞猛进的发展,我们的家乡发生了日新月异的变化,同时工人叔叔们在盖房子、修建公路的工程建设中,经常会遇到一些数学问题.某市内要修一条公路,公路大约长120 km.有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?【教学与建议】教学:展示工程问题,明确本课学习的列一元一次方程解应用题的方法技巧,调动学生的学习热情.建议:小组内讨论说出自己的见解. *命题角度1 产品配套问题此类问题中的配套的物品之间具有一定的数量关系,可作为列方程的依据.【例1】某车间有28名工人,每人每天能生产桌子12张或椅子18把.设有x 名工人生产桌子,其他工人生产椅子,每天生产的桌子和椅子按1∶2配套,则所列方程正确的是(D)A .12x =18(28-x )B .18x =12(28-x )C .2×18x =12(28-x )D .2×12x =18(28-x )【例2】用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒.现在150张白铁皮,用多少张白铁皮制盒身,多少张白铁皮制盒底可以正好制成整套罐头盒而无余料?若设用x 张白铁皮制盒身,则所列的方程应该是__2×16x =43(150-x )__.*命题角度2 工程问题工作总量、工作时间、工作效率,它们的关系是:工作总量=工作时间×工作效率.【例3】一项工程,甲队单独完成需要20天,乙队单独完成需要30天.若先由甲队单独做5天,剩下的部分由甲、乙两队合作完成,则还需要的天数是(A)A .9B .10C .12D .15【例4】整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人做1 h ,随后又增加6人和他们一起做了2 h ,恰好完成这项工作.假设每个人的工作效率相同,那么应先安排多少人工作?解:设应先安排x 人工作.根据题意,得x 30 +x +630 ×2=1,解得x =6.答:应先安排6人工作.*命题角度3 人员调配问题解决人员调配问题,理清调配前后的等量关系,恰当设出未知数,正确列出方程.【例5】某班同学参加平整土地劳动,运土人数比挖土人数的一半多2人.若从挖土人员中抽出7人去运土,则两者人数相等.求原来运土和挖土的各有多少人.解:设原来挖土的有x 人,则原来运土的有⎝⎛⎭⎫12x +2 人. 根据题意,得x -7=12 x +2+7,解得x =32.则12 x +2=18.答:原来运土的有18人,挖土的有32人.高效课堂 教学设计1.熟练掌握利用一元一次方程解决产品配套问题和工程问题的方法,抓住解决这两类问题的关犍.2.熟练掌握列方程解决实际问题的一般思路.▲重点列方程解决实际问题.▲难点根据题意找等量关系.◆活动1 新课导入48位大学生暑假到水利工地做义工,若每人每天平均挖土5 m 3或运土3 m 3,他们如何配合,才能使挖出的土及时运走?若设其中x 人挖土,则运土的人数为__(48-x )__人,根据题意,可列方程__5x =3(48-x )__.◆活动2 探究新知1.教材P 100 例1.提出问题:(1)“1个螺钉配2个螺母”隐含着什么等量关系?(2)本题中有哪些等量关系?(3)如果设x 名工人生产螺母,怎样列方程?学生完成并交流展示.2.教材P 100 例2.提出问题:(1)题目中把什么看作1?(2)题目中的已知量和未知量分别是什么?(3)题目中的等量关系是什么?(4)列出的方程是什么?(5)由此你能归纳出用一元一次方程解决实际问题的基本步骤吗?学生完成并交流展示.◆活动3 知识归纳1.配套问题:关键是明确题目中的数量关系,根据数量关系列出方程.2.工程问题:常把总工作量看作1,再利用“工作量=人均效率×人数×时间”的关系列出方程.3.用一元一次方程解决实际问题的基本步骤包括:(1)审清题意,找__等量关系__;(2)设__未知数__,一般设所求的量为未知数;(3)列方程;(4)解方程;(5)检验、作答.◆活动4 例题与练习例1 某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个,该如何分配工人生产镜片和镜架,才能使每天生产的产品配套?解:设安排x 名工人生产镜片,则有(60-x )名工人生产镜架.由题意,得200x 2 =50(60-x ),解得x =20,则60-x =40.答:安排20名工人生产镜片,40名工人生产镜架,才能使每天生产的产品配套.例2 整理一批数据,由一人做需80 h 完成,现在计划先由一些人做2 h ,再增加5人做8 h ,完成这项工作的34 ,应该怎样安排参与整理数据的具体人数?解:设开始安排x 人做.依题意,得2×180 x +8×180 (x +5)=34 ,解得x =2.答:应该先安排2人做2 h 后,再增加5人做8 h .例3 一个三位数,十位上的数字比个位上的数字大3,且比百位上的数字小1,三个数字之和的50倍比这个三位数小2,求这个三位数.解:设十位数字为x ,则个位数字为x -3,百位数字为x +1,这个三位数为100(x +1)+10x +x -3. 根据题意,得50(x +x -3+x +1)=100(x +1)+10x +x -3-2,解得x =5.则这个三位数为100×(5+1)+10×5+5-3=652.练习1.教材P 101 练习第1,2题.2.教室里有40套桌椅(一把椅子配一张桌子),总价值2 800元,每把椅子20元,则每张桌子多少元?设每张桌子x元,可列方程为(B)A.40x+20=2 800 B.40x+40×20=2 800C.40(x-20)=2 800 D.40x+20(40-x)=2 8003.一项工作中,甲单独做需要10 h完成,乙单独做需要15 h完成,那么甲每小时完成总工作量的__110__,乙每小时完成总工作量的__115__.若设甲、乙合作需要x h完成,则可列方程为__x10+x15=1__,解得x=__6__.4.某配件厂原计划每天生产60件产品,改进技术后,工作效率提高了20%,这样不仅提前5天完成了生产任务,并且比原计划多生产了48件产品,求原计划要生产多少件产品.解:设原计划要生产x件产品.根据题意,得x60-x+4860×(1+20%)=5,解得x=2 040.答:原计划要生产2 040件产品.◆活动5课堂小结1.利用一元一次方程解决产品配套问题.2.利用一元一次方程解决工程问题.1.作业布置(1)教材P106习题3.4第2,3,4题;(2)对应课时练习.2.教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题
(4)根据怎样的数量关系列方程?
例题讲解
例3 挖一条长为1210米长的水渠,由甲施工队独做需要11 天完成,乙施工队独做需要20天完成,现在甲、乙两 施工队从两头同时施工,挖完这条水渠估计需几天? 等量关系: 甲施工队挖的米数+乙施工队挖的米数=1210米
例题讲解
例3 挖一条长为1210米长的水渠,由甲施工队独做需要11 天完成,乙施工队独做需要20天完成,现在甲、乙两 施工队从两头同时施工,挖完这条水渠估计需几天? 等量关系: 甲施工队挖的米数+乙施工队挖的米数=1210米 即本题的等量关系为 甲完成工作量+乙完成工作量=1210米 解:设挖完这条水渠估计要x天.
4
1 1 1 x 依题意得: x 60 120 4
x=10 1 答:两管同时注油10小时可注满油轮的 4
例6、 已知开管注水缸,10分钟可满,拨开底塞,满缸水 20 分钟流完,缸内的水流完后,现若管、塞同开,若干 时间后,将底塞塞住,又过了2倍的时间才注满水缸,求 管塞同开的时间是几分钟? 分析: 解:设两管同开x分钟
例1 一件工作,甲单独做20小时完成,乙单独做12小时 完成.现在先由甲单独做4小时,剩下的部分由甲、乙合 做,需要几小时完成?
解:设甲、乙合做 x小时后完成该项工作, 分析:甲独做20小时完成该项工作,则 依题意可得 甲每小时可做总工作量的1/20,而乙独 做12小时完成该项工作,则乙每小时可 1 1 1 4 1/12 ( 。这就是甲、乙两人 )x 1 做总工作量的 20 20 12 的工作效率。等量关系是: 解得:x=6 答:剩下的部分由甲、乙合做6小时完成该项工作。 甲效×甲做的时间+甲、乙合做效率×合做时间=1
1 1 x 4 ( x 2) 8 1 40 40
解得:x=2 答:应先安排2人工作。
例 题
例5
甲、乙两输油管向油轮注油,甲管独注需60 小时,乙管独注需120小时,问两管同时注油 1 多少小时可注满油轮的 ? 4 1
解:设两管同时注油需x小时可注满油轮的
1 等量关系:甲管注油量+乙管注油量= 4
x ≈8
例1中的1210这个数据可以不用,解方程也简单。
例4 修筑一条公路,甲工程队单独承包要80天完成,乙工程队单 独承包要120天完成
1)现在由两个工程队合作承包,几天可以完成? 2)如果甲、乙两工程队合作了30天后,因甲工作队另有任 务,剩下工作由乙工作队完成,则修好这条公路共需要几天?
解: 1)设两工程队合作需要x天完成。 等量关系:甲工作量+乙工作量=1 1 1 依题意得 x x 1 80 120 x=48 2)设修好这条公路共需要 y 天完成。 等量关系: 甲30天工作量+乙队y天的工作量 = 1
注入或放出率 注入或放出时间 注入 放出
1 10 1 20
注入或放出量
3 x 10 1 x 20
x关系:注入量-放出量=缸的容量
x=4 答:管塞同开的时间为4分钟
3 1 x x 1 依题意得: 10 20
例7 一个水槽有甲、乙两个水管。甲水管是进水管, , 在5小时之内 、 可以把空水槽装满。乙水管是出水 管, 满槽的水在6小时内 可以 流完。现水槽内没水, 如果先开甲水管1小时,再把 乙水管也打开,再经过几小时 水槽里的水恰好等于水槽容 5 量的 ? 18 5 解:设再经过x小时水槽里的水恰好等于水槽的 18
8 x ( x 2) 40 .
1 人均效率(一个人做1小时完成的工作量)为 40 4x
.
例2
整理一批图书,由一个人做要40小时完成.现在计划由一
部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作. 假设这些人的工作效率相同,具体应先安排多少人工作?
工作量=1人效率×人数×时间
解:设具体应先安排x人工作,则依题意可得:
由题意得: 1210x/11+1210x/20=1210
x ≈8
例题讲解
例3 挖一条长为1210米长的水渠,由甲施工队独做需要11 天完成,乙施工队独做需要20天完成,现在甲、乙两 施工队从两头同时施工,挖完这条水渠估计需几天? 分析:把这个问题看成工程问题的话, 通常把总量(即本题中的这条水渠)看成“1”, 即本题的等量关系为 甲完成工作量+乙完成工作量=1 解:设挖完这条水渠估计要x天. 1 1 由题意得: x x 1 11 20 220 x 31
4.工程问题中涉及三个量:工作量、工作效
率与工作时间.它们之间存在怎样的关系? 工作量=工作效率×工作时间
热身
甲每天生产某种零件80个,甲生产3天 后,乙也加入生产同一种零件,再经过5天, 两人共生产这种零件940个,问乙每天生产 这种零件多少个?
解:设乙每天生产零件的个数为x, 由题意得 3 80 5 80 5 x 940 解得 x 60 答:乙每天生产零件60个.
.
例
整理一批图书,由一个人做要40小时完成.现在计划由一
部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.
假设这些人的工作效率相同,具体应先安排多少人工作?
分析:
由x人先做4小时,完成的工作量为 40 . 再增加2人和前一部分人一起做8小时,完成的 工作量为 这项工作分两段完成,两段完成的工作量之和 为 1 .
依题意得
1 1 30 y 1 80 120 y=75
答:两工程队合作需要48天完成,修好这条公路还需75天。
一件工作,若甲单独做7天完成,乙单 独做5天完成,甲、乙合做一天完成全部
12 工作量的 35 .甲、乙合作2天完成全部 24 工作量 35 ,甲、乙合作x天完成全部工
作量的
12 x 35
工程问题中的数量关系:
热身
工作总量 1) 工作效率= ——————————— 完成工作总量的时间 2)工作总量=工作效率×工作时间 工作总量 3)工作时间= ————— 工作效率
4)各队合作工作效率=各队工作效率之和
5)全部工作量之和=各队工作量之和
一件工作,甲单独做20小时完成, 乙单独做12小时完成,
热身
问甲乙合作需要几小时完成?
甲每小时完成全部工作的 乙每小时完成全部工作的 甲x小时完成全部工作的
x 12
1 20
; ; ;
1 12
x 20
乙x小时完成全部工作
。
热身
1.一件工作,若甲单独做2小时完成,那么甲单独做1小
1 时完成全部工作量的 2
2.一件工作,若甲单独做a小时完成,则甲单独做1小时, 1 a 小时完成全部工作量 完成全部工作量的 ,m 的
m a
.a小时完成全部工作量的 1 .
引例:一件工作,甲单独做x小时完成,乙单独做y小时
完成,那么甲、乙的工作效率分别为 甲、乙合作m天可以完成的工作量 m m 1 1 为 或 m 。
x y
1 、 1 ; y x
x
y
热身
一项工作,甲单独做要20小时完成, 乙单独做要12小时完成,现在先由甲单独 做4小时,剩下由乙单独完成,剩下的部 分需要多少小时完成?
5 等量关系:甲管流进水的水-乙管流出的水 =水槽的 18
依题意得: 1 5
x x
1 5 1 6
2 5 2 答:再经过 3小时水槽里的水恰好是水槽容量的
2 x2 3
5 18
18
甲
甲、乙合做
练习:
1、某工作由甲、乙两队单独做分别需 要3小时、5小时,求两人合做这项工作 的80%需要几小时?
解:设两人合做这项工做需x小时,根据 题意得, (1/3+1/5)x=80% 解这个方程得 x=3/2 答:两人合做这项工做的80%需3/2小时。
练习:
2.某装潢公司接到一项业务,如果由甲组需10 天完成,由乙组做需 15 天完成 . 为了早日完工, 现由甲、乙两组一起做, 4 天后甲组因另有任 务,余下部分由乙组单独做,问还需几天才能 完成? (1)可否用示意图来分析数量关系? 带 (2)总工作量怎么表示?甲乙两人的工作 着 效率怎么表示? 问 (3)设哪个未知数?相关的量怎样用它表示?