2017考研数学 极限、连续与求极限必考重难点

合集下载

高数考研重点罗列

高数考研重点罗列

考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。

(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。

2017考研数学:2017考研高等数学易错知识点盘点

2017考研数学:2017考研高等数学易错知识点盘点

中公教育东莞分校
2017考研高等数学易错知识点盘点
1.函数连续是函数极限存在的充分条件。

若函数在某点连续,则该函数在该点必有极限。

若函数在某点不连续,则该函数在该点不一定无极限。

2,若函数在某点可导,则函数在该点一定连续。

但是如果函数不可导,不能推出函数在该点一定不连续。

3. 基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

4.在一元函数中,驻点可能是极值点,也可能不是极值点。

函数的极值点必是函数的驻点或导数不存在的点。

5. 设函数y=f(x)在x=a处可导,则函数y=f(x)的绝对值在x=a处不可导的充分条件是: f(a)=0,f'(a)≠0
6.无穷小量与有界变量之积仍是无穷小量。

7.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

8.在求极限的问题中,极限包括函数的极限和数列的极限,但在考试中一般出的都是函数的极限,求函数的极限中,主要是掌握公式,有些不常见的公式一定要记熟,这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。

9.在运用两个重要极限求函数极限的时候,一定要首先把所求的式子变换成类似于两个重要极限的形式,其次还需要看自变量的取极限的范围是否和两个重要极限一样。

10.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。

1。

2017考研数学之函数极限及连续性内容概括及总结

2017考研数学之函数极限及连续性内容概括及总结

2017考研数学之函数极限及连续性内容概括及总结考研数学中的高等数学,第一章内容便是函数的极限和连续性,这是高等数学的基础,同时也是考试的热点。

首先,函数是高等数学研究的主体对象,而极限是微积分理论建立的工具和桥梁,当然也可以看成是函数的一个基本性质,而连续性也是函数的一个基本性质,而且是函数可导的先决条件,同时函数可积也主要针对的是连续函数,即连续函数是微积分学中讨论的主要函数类型。

函数的极限和连续性既是本章的主要内容,也是微积分学的基础。

由于近几年的考试大纲几乎没有实质性的变化,而本章的内容也已固定下来,因此对相关内容有有个大致的了解,以便心中有数。

本章内容主要有三点:1.函数的相关概念,如定义域、对应法则和值域,这些属于最基本的要求。

函数的基本性质:有界性、单调性、奇偶性和周期性。

掌握这些性质,有利于简化计算,提供证明思路。

2.数列极限和函数极限的相关概念、性质、存在准则以及如何求解极限,这些是重中之重,特别是求极限,年年考。

无穷小量与无穷大量的概念、性质以及无穷小量的阶的比较等等,特别是阶的比较,是常考的地方。

3.函数的连续性的定义,间断点的分类,以及连续函数的性质,特别是在闭区间上的连续函数的性质,也是常考的地方。

以上是本章的主要内容,既然是微积分学的基础啊,那么其重要性就不言而喻了,同时也每年都考。

当然,由于本章的基本概念、基本理论和基本方法比较多,而这也是相关的考点。

从以往的考试分析来说,得分率比较低,希望同学们一定概要重视三基的复习。

通过试卷的分析,可以大致归纳一下常考的三种题型:求解极限;无穷小量的比较;间断点的分类判断。

对于无穷小量的比较,实际上是求解型这一未定式的极限,而判断间断点的类型,也是求解极限。

因此,这三种题型的中心就是求极限,实际上求极限是贯穿始终的。

那么同学们的复习重点就在于求极限的常用方法:如倒代换,有理化,等价代换,洛必达法则,两个基本极限等等。

在今后的复习中,文都教育的老师会带领大家一一领略相关方法的风采。

2017考研数学:求极限的一般题型

2017考研数学:求极限的一般题型

2017考研数学:求极限的一般题型下面总结一下,求极限的一般题型:1、求分段函数的极限,当函数数含有绝对值符号时,就很有可能是有分情况讨论的了!当X趋近无穷时候存在e的x次方的时候,就要分情况讨论应为E的x次方的函数正负无穷的结果是不一样的!2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太麻烦了你要想办法把它搞掉!解决办法:1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是!有2个问题要注意!问题1:积分函数能否求导?题目没说积分可以导的话,直接求导的话是错误的!!!!问题2:被积分函数中既含有t又含有x的情况下如何解决?解决1的方法:就是方法2微分中值定理!微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决2的方法:当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!当x与t是除的关系或者是加减的关系,就要换元了!(换元的时候积分上下限也要变化!)3、求的是数列极限的问题时候:夹逼或者分项求和定积分都不可以的时候,就考虑x趋近的时候函数值,数列极限也满足这个极限的,当所求的极限是递推数列的时候:首先:判断数列极限存在极限的方法是否用的单调有界的定理。

判断单调性不能用导数定义!!数列是离散的,只能用前后项的比较(前后项相除相减),数列极限是否有界可以使用归纳法最后对xn与xn+1两边同时求极限,就能出结果了!4、涉及到极限已经出来了让你求未知数和位置函数的问题。

解决办法:主要还是运用等价无穷小或者是同阶无穷小。

因为例如:当x趋近0时候f(x)比x=3的函数,分子必须是无穷小,否则极限为无穷,还有洛必达法则的应用,主要是因为当未知数有几个时候,使用洛必达法则,可以消掉某些未知数,求其他的未知数。

5、极限数列涉及到的证明题,只知道是要构造新的函数。

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

2017考研数学 数学2高等数学必考重难点大全

2017考研数学 数学2高等数学必考重难点大全

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。

中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。

同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

下面是中公考研小编整理的考研数学二高等数学部分的重要知识点,供2017考研的各位考生参考。

在紧张的复习中,中公考研提醒您一定要充分利用备考资料和真题,并且持之以恒,最后一定可以赢得胜利。

更多考研数学复习资料欢迎关注中公考研网。

2017强化阶段线代必记重难点之连续

2017强化阶段线代必记重难点之连续

2017 强化阶段线代必记重难点之连续线性代数数的重难点主要为:行列式与矩阵的变化、运算、求解;矩阵的正交;二次型的求解,正定二次型;方程组有解的条件;向量组的线性相关与线性无关,等。

下面针对考研强化阶段数学的复习特点,为大家梳理一下线性代数强化阶段必须理解掌握的重难点。

连续一、连续连续即“极限值=函数值”,这一个等式包含了三个方面:1、函数必须在该点处有定义;2、函数必须在这个点附近存在极限;3、是前面 1、2 两点的内容必须相等,同时满足这三个条件,才叫做函数在某点处连续。

看到,判断函数连续,要先求极限,所以,如何求函数在该点处的极限值或是用极限存在的充要条件(左右极限存在且相等),是一个隐含的知识点。

二、不连续我们自然会问,会不会有不连续的点呢?答案当然是肯定的,不连续的点就是我们所说的---间断点。

那么所谓“不连续”就是不能同时满足连续的三个条件的点:1、函数在该点处没有定义;2、若函数在该点有定义,但函数在该点附近的极限不存在;3、虽然函数在该点处有定义,极限也存在,但是二者不相等。

对于间断点,根据左右极限存在与否,我们把它分为两类。

若左右极限都存在的间断点,称为第一类间断点;若左右极限相等,这个间断点称为第一类间断点中的可去间断点; 若左右极限不相等,这个间断点称为第一类间断点中的跳跃间断点。

若左右极限中至少有一个不存在(包含极限等于无穷的情形)的间断点,称为第二类间断点;若其中一个极限是趋于无穷的,这个间断点就称为无穷间断点;若极限是在两个常数之间来回振荡的,就称为振荡间断点。

三、连续性质对于连续性最重要的应用或者是说考研中的一个小难点,就是闭区间上连续函数的三个性质:最大最小值定理、零点定理、介值定理。

对于上面的知识点,我们看看在考研中是怎么考察的。

对于连续的概念,难度上属于简单知识点。

首先,在十五年前,对于连续性的考查,更多的是给一个分段函数,然后判断分段点处函数的连续性,这是一个基本题型,只需判断连续的三个条件即可,其实主要是考查求函数某点处左右极限的值。

极限与连续知识点

极限与连续知识点

极限与连续知识点在数学的广袤天地中,极限与连续是两个极为重要的概念,它们就像基石一样,支撑着微积分这座宏伟的大厦。

接下来,让我们一同深入探索极限与连续的神秘世界。

首先,咱们来聊聊极限。

极限这个概念呢,简单来说,就是一个变量无限接近某个固定的值。

比如说,当 x 无限接近 1 的时候,函数 f(x)的值会趋近于一个特定的数 L,那我们就说函数 f(x)在 x 趋近于 1 时的极限是 L 。

极限的计算方法有很多种。

其中一种常见的方法是通过代数运算来求解。

比如说,对于简单的分式函数,如果分子和分母都可以因式分解,那么通过约分就可能求出极限。

再比如,有的时候可以通过有理化分子或分母来简化式子,从而求出极限。

还有一种重要的方法是利用极限的性质。

比如极限的四则运算法则,两个函数的和、差、积、商的极限等于它们各自极限的和、差、积、商(在除法的情况下,分母的极限不能为 0 )。

再来说说连续。

连续是什么意思呢?一个函数在某个点处连续,意味着当自变量在这个点附近稍微变动时,函数值的变动也很小。

具体来说,如果函数 f(x)在点 x = a 处满足三个条件:函数 f(x)在点 x = a处有定义;函数 f(x)在 x 趋近于 a 时的极限存在;并且这个极限等于f(a) ,那么我们就说函数 f(x)在点 x = a 处连续。

连续函数具有很多很好的性质。

比如,连续函数的和、差、积、商(分母不为 0 )仍然是连续函数。

而且,如果一个函数在闭区间 a, b上连续,那么它在这个区间上一定能取到最大值和最小值。

那极限和连续之间又有什么关系呢?其实,函数在某点处连续的前提是该点处的极限存在,并且极限值等于函数在该点的函数值。

咱们通过一些实际的例子来更好地理解这些概念。

比如说,函数f(x) = x + 1 ,它在整个实数范围内都是连续的。

因为对于任何一个实数 a ,当 x 趋近于 a 时,f(x) 的极限就是 a + 1 ,而 f(a) 也是 a + 1 ,两者相等,所以函数在点 a 处连续。

考研高等数学重难点的解析

考研高等数学重难点的解析

考研高等数学重难点的解析考研高等数学重难点的解析我们在准备考研数学的复习时,需要把高等数学的重难点知识掌握好。

店铺为大家精心准备了考研高等数学重难点的分析,欢迎大家前来阅读。

考研高等数学知识点的总结高等数学:从科目上看,从数一到数三,分量最重的都是高等数学,它在数一、数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。

通过对2013考研数学考纲以及历年真题的分析,新东方在线的老师对高数的重难点进行了梳理、总结:一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。

二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。

一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。

微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。

函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。

曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。

多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。

多元函数的应用也是重点,主要是条件极值和最值问题。

方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。

三、积分学部分:一元函数积分学的一个重点是不定积分与定积分的计算。

这个对于有些来说可能不难,但是要想用简便的方法解答还是需要多花点时间的。

在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。

中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。

同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

下面是中公考研小编整理的极限、连续与求极限必考重难点,供2017考研复习备考初期阶段的各位考生参考。

1.微积分中研究的对象是函数
函数概念的实质是变量之间确定的对应关系。

变量之间是否有函数关系,就看是否存在一种对应规则,使得其中一个量或几个量定了,另一个量也就被唯一确定,前者是一元函数,后者是多元函数。

函数这部分的重点是:复合函数、反函数和分段函数、函数记号的运算及基本初等函数与其图象。

2.极限是微积分的理论基础
研究函数的性质实质上是研究各种类型的极限,如连续、导数、定积分、级数等等。

由此可见极限的重要性。

本章的重点内容是极限。

既要准确理解极限的概念、性质和极限存在的条件,又要能准确地求出各种极限。

求极限的方法很多,综合起来主要有:
⑴利用极限的四则运算与幂指数运算法则;
⑵利用函数的连续性;
⑶利用变量替换与两个重要极限;
⑷利用等价无穷小因子替换;
⑸利用洛必达法则;
⑹分别求左、右极限;
⑺数列极限转化为函数极限;
⑻利用适当放大缩小法;
⑼对递归数列先证明极限存在(常用到“单调有界数列有极限”的准则),再利用递归关系求出极限;
⑽利用导数的定义求极限;
⑾利用泰勒公式;
⑿利用定积分求n项和式的极限.
3.无穷小就是极限为零的变量
极限问题可归结为无穷小问题。

极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。

要理解无穷小及其阶的概念,学会比较无穷小的阶及确定无穷小阶的方法,会用等价无穷小因子替换求极限。

4.连续函数或除若干点外是连续的函数
由于函数的连续性是通过极限定义的,所以判断函数是否连续及函数间断点的类型等问题本质上仍是求极限。

因此这部分也是本章的重点。

要掌握判断函数连续性及间断点类型的方法,特别是分段函数在连接点处的连续性。

函数的其他许多性质都与连续性有关,因此我们要了解连续函数的重要性质——有界闭区间上连续函数的有界性定理,最大值、最小值定理和中间值(介值)定理,并会应用这些性质。

在紧张的复习中,中公考研提醒您一定要充分利用备考资料和真题,并且持之以恒,最后一定可以赢得胜利。

更多考研数学复习资料欢迎关注中公考研网。

相关文档
最新文档