弹塑性力学复习思考题

合集下载

工程弹塑性力学题库及答案(修订)

工程弹塑性力学题库及答案(修订)

,再求应力偏张量






由此求得:
然后求得:

,解出
然后按大小次序排列得到


1.9 已知应力分量中
,求三个主应力
,以及每个
主应力所对应的方向余弦

解:特征方程为
记, , 应满足下列关系
由(a),(b)式,·11得
(a) (b) (c)
, ,由此求得
,代入(c)式,得
解:的定义、物理意义:

1) 表征 Sij 的形式;2) 相等,应力莫尔圆相似,Sij 形式相同;3) 由可确定 S1:S2:S3。
1.4设某点应力张量 的分量值已知,求作用在过此点平面
力矢量
,并求该应力矢量的法向分量 。
解:该平面的法线方向的方向余弦为
上的应
而应力矢量的三个分量满足关系
曲线基本上和简单拉伸时的
曲线一样。
7.4 比较两种塑性本构理论的特点: 解:增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加 载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系, 再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影 响,直接建立应变全量与应力全量直接的关系。
z
且 利用平衡方程

时, 为(e)式。
(3)塑性阶段 平衡方程和几何方程同上。
本构方程 与(2)弹塑性阶段同样步骤:可得
(e) (f) (g)
5.9 如图所示等截面直杆,截面积为 ,且 。在 处作用一个逐渐增加 的力 。该杆材料为理想弹塑性,拉伸和压缩时性能相同。按加载过程分析
结构所处不同状态,并求力 作用截面的位移 与 的关系。 解:基本方程为

弹性力学复习思考题

弹性力学复习思考题

其中: 为曲梁圆周边界上的分布载荷。 其中: q 为曲梁圆周边界上的分布载荷。 M, Q分别为梁截面上弯矩与剪力。 分别为梁截面上弯矩与剪力。 分别为梁截面上弯矩与剪力 应力函数: 结合应力分量与应力函数的关系确定 应力函数:
2 σθ = 2 r
= f (r)
= f (r) sin θ
= f (r) cosθ
力偶、 (9)半无限平面体在边界上作用力偶、集中力、分布力下,应力函数 )半无限平面体在边界上作用力偶 集中力、分布力下 、应力分量、位移分量的确定? 应力分量、位移分量的确定? 应力分量、位移分量的确定? (10)圆孔附近应力集中问题应力函数 、应力分量、位移分量的确定? ) (11)叠加法的应用。 )叠加法的应用。
X = l(1+ )αT,
Y = m(1+ )αT
(5)温度应力问题求解的基本思路与方法: )温度应力问题求解的基本思路与方法: (a)求出满足位移平衡方程(6-18)的一组特解(此时,无需满足 )求出满足位移平衡方程( )的一组特解(此时, 边界条件;用位移势函数求解)。 边界条件;用位移势函数求解)。 (b)不计变温,求出满足平衡方程(6-18)的一组补充解(常由应 )不计变温,求出满足平衡方程( )的一组补充解( 力函数求解,其边界条件为特解给出的面力)。 力函数求解,其边界条件为特解给出的面力)。 的概念; 与位移分量的关系; (6)位移势函数 ψ 的概念;位移势函数 ψ 与位移分量的关系;温 ) 度应力问题中, 满足的方程; 度应力问题中,位移势函数 ψ 满足的方程;应力分量的位移势 的表示。 函数 ψ 的表示。
王俊民 编 徐秉业 编

《弹性力学学习方法及解题指导》 弹性力学学习方法及解题指导》
同济大学出版社 机械工业出版社

弹塑性力学思考与练习ppt正式完整版

弹塑性力学思考与练习ppt正式完整版
精确满足时,也可在此部分边界上以静力等效的力 上都逐点满足边界条件往往存在很大难度。
某种材料制成匀分布的表面力作用,假定圆环材料为理想弹塑
的边界条件代替加以求解; 性,屈服时符合Tresca准则,试确定该圆筒所能承受的弹性极限载荷(以及极限载荷)。
关于圣维南原理在求解弹性力学问题中的意义:
在数学上弹性力学问题被称为边值问题,其待求的未 知量(应力、应变、位移)完全满足基本方程并不困难, 但是,要求在全部边界上都逐点满足边界条件往往存在很 大难度。圣维南原理的存在,可以使问题得到简化: (1).在符合圣维南原理的那部分边界上,可以放弃严格 的逐点边界条件,而改为满足另一组静力等效的合力形式 表示的整体边界条件; (2).当物体一小部分边界上仅仅知道物体所受外力的合 力而不知其分布方式时,可以在这部分边界上直接写合力 条件进行求解;
可以近似判断应力分布、应力集中情况。 为保证物体的连续性,物体内部的应变分量一定要满足(变形协调方程、本构方程)。
材料进入塑性状态后,应力与应变之间(是、不是)一一对应的,某一应力对应的应变与(温度、加载历史)有关。 某种材料制成的圆环如图所示,其内半径为a,外半径为b,在内边界承受集度为q的均匀分布的表面力作用,假定圆环材料为理想弹塑 性,屈服时符合Tresca准则,试确定该圆筒所能承受的弹性极限载荷(以及极限载荷)。 利用圣维南原理有时在工程结构受力分析中可以近似判断应力分布、应力集中情况。 无论使用什么解法,只要解答满足全部方程、边界条件以及多连体的位移单值条件,就是正确、唯一的答案。 在符合圣维南原理的那部分边界上,可以放弃严格的逐点边界条件,而改为满足另一组静力等效的合力形式表示的整体边界条件; 平衡微分方程是通过在物体内任一点取个微元体,建立所有( 力、应力)之间的平衡条件导出的。 材料进入塑性状态后,应力与应变之间(是、不是)一一对应的,某一应力对应的应变与(温度、加载历史)有关。

弹塑性力学习题及问题详解

弹塑性力学习题及问题详解

本教材习题和参考答案与局部习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:假如ijji a a =,如此0ijk jk e a =。

〔需证明〕a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

弹塑性力学思考与练习(共15张PPT)

弹塑性力学思考与练习(共15张PPT)
弹塑性力学思考与练习
第1页,共15页。
4.为保证物体的连续性,物体内部的应变分量一 定要满足(变形协调方程、本构方程)。 5.平衡微分方程是通过在物体内任一点取个微元 体,建立所有( 力、应力)之间的平衡条件导 出的。 6.对于特定的物体,所受外力一旦给定,它内部的 应力状态就是完全(确定、不确定)了,与研究问 题时坐标系的选取方式(有关、无关)。
第4页,共15页。
思考题
1.圣维南原理的内容是什么?它在求解弹性力学问题中 有什么意义? 2.弹性平面问题的类型及各自的特点有哪些?
3.弹塑性力学中简化后的应力——应变关系模型有哪些?绘 出它们各自的应力——应变关系曲线。
4.什么是屈服准则? 以Tresca屈服准则为例说明如何确定 屈服常数。
第5页,共15页。
第3页,共15页。
10.材料进入塑性状态后,应力与应变之间(是、不是) 一一对应的,某一应力对应的应变与(温度、加载历史) 有关。 11.在进行结构设计时,采用弹性设计方法要比用弹塑性 设计方法(节约、浪费)材料。 12.材料的弹性性质(受、不受)塑性变形的影响是弹 塑性理论的假设之一。
13.材料的屈服极限在数值上与(比例极限、弹性极限)非 常接近,工程上可以认为近似相等。
5.试说明两类平面问题应力、应变以及基本方程有何异同, 由平面应力问题的到平面应变问题的解在材料常数上应作怎 样的代换?
6.受力物体是单连通的,若按应力求解,应力分量要 满足什么条件才是问题的正确解答?常体力时,应力 函数要满足什么条件才是所给问题的正确解?
第6页,共15页。
关于圣维南原理在求解弹性力学问题中的意义:
第2页,共15页。
7.经典弹性力学问题是(线性,非线性)问题,问题的解

弹塑性力学习题题库加答案(1)

弹塑性力学习题题库加答案(1)

第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及30106.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x y xy MPa MPa σστατα--=----+=⋅+=⋅-=-⨯-⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x y xy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+⨯=----+=-⋅+=-⋅+=+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。

2—6. 悬挂的等直杆在自重W 作用下(如图所示)。

材料比重为γ弹性模量为 E ,横截面面积为A 。

试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。

解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:题图1-3c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:zz zEEσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22zzzzz z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。

(完整word版)弹塑性力学思考题答案

(完整word版)弹塑性力学思考题答案

弹塑性理论思考题⒈ 一点的应力状态?答:通过一点P 的各个面上应力状况的集合 ⒉ 一点应变状态? 答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。

]代表一点 P 的邻域内线段与线段间夹角的改变⒊ 应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量J2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。

答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合张量之定义,因此,表示点的应力状态的9个分量构成一个二阶张量,称为应力张量。

一点的应力状态可以借用矩阵以张量σij 表示:。

其中:xz τ=zxτ,xy τ=yx τ,yz τ=zy τ。

应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即J 1,J 2,J 3是不变量,不随着坐标轴的变换而发生变化。

所以J 1,J 2,J 3分别被称为应力张量的第一、第二、第三不变量。

应力张量可分解为两个分量0-00+00m x m xy xz ij m yxy m yz m zx zy z m σσσττσστσστσττσσ⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,等式右端第一个张量称为应力球张量,第二个张量称为应力偏张量。

应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。

应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力及主轴同原σij ,二阶对称张量,同样存在三个不变量J 1' ,J 2' ,J 3' 体积应力:P46平均应力:12311()()33m x y z σσσσσσσ=++=++,m δ为不变量,与坐标无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生弹塑性力学复习思考题
1. 简答题:
(1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤?
(2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么?
(5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何
与物理意义是什么?
(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定?
(9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有
和联系和区别?
(10) 论述薄板小挠度弯曲理论的基本假定?
二、计算题
1、已知P 点的应力张量为
31110
21
2
0ij σ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
求该点的主应力、主方向及最大剪应力
2、 利用应变协调条件检查其应变状态是否存在存在?

(1)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数
222(),,2x y xy k x y ky kxy εεγ=+== k 为常数
(2)2
22
22
5ij x y xz y
z z xz z ε⎡⎤⎢⎥=⎢⎥⎢⎥⎣

3、写出如下问题的边界条件
(a)用直角坐标,(b)用极坐标
P
l θ
r
θ
r
θ
r
4、 正方形薄板三边固定,另一边承受法向压力b
x
p p π-=sin
0,如图所示,设位移函数为 0=u b
y b x
a v 2sin sin
2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。

y
x
a b
A B
C
O
(第4题图) (第6题图)
5、悬臂梁在自由端受集中力P 作用,如图所示。

试用极小势能原理求最大挠度
第5题图 提示设梁的挠曲线为
6、对给定的应力函数:
(1)32223123,,Ax y Bx y Cxy ϕϕϕ===,试确定它们哪个能作为平面问题的应力函数,并分析它们能解什么问题?
(2)证明32
23[]434F xy P xy y c c c
ϕ=-+可以作为应力函数,并求在区域0,x c y c -区
域内的应力分量,并分析该应力函数可以解决那类平面问题。

7.如图所示矩形截面柱承受偏心载荷作用,且不计其重量,若应力函数32
Ax Bx ϕ=+,试 求:
(1)应力分量;(2)应变分量;(3)假设D
点不移动,且该点处截面内线单元不能转动
x
23
23w a x a x =+
(0,0
0x y u y ==⎛⎫
∂=

∂⎝⎭),求位移分量
8、图示三角形截面梁只受重力作用,梁的质量密度为ρ,宽度为1,试用纯三次应力函数求解各应力分梁。

9.如图所示的楔形体两侧面上受有均布切向载荷q ,试求其应力分量。

y
10.已知一圆形薄管,平均半径为a,厚度为t,在薄管的两端受有拉力p 和扭矩T 作用,写出管内一点处的Tresca 屈服条件和Mises 屈服条件表达式。

11.如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。

板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。

试证,为了将薄板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。

并求挠度和反力。

12.如图所示的矩形板,使用板的挠度表示相应的边界条件。

13、试证明用位移表示的平衡方程为
,,()0i jj i i Gu G X λ++Θ+= 其中 ii u v w x y z
ε∂∂∂Θ=
++=∂∂∂为体积应变 (提示广义胡克定律的另外一种表达形式为
2ij ij kk ij G σελεδ=+)
14、试以矩形薄板(第12题)为例说明自由边等效剪力的含义。

x
y。

相关文档
最新文档