晶体生长微观机理及晶体生长边界层模型

合集下载

南京大学-晶体生长课件-Chapter 6-晶体生长理论

南京大学-晶体生长课件-Chapter 6-晶体生长理论
第六章 晶体生长理论模型
§6.1. 晶体生长理论简介
1669年丹麦学者斯蒂诺(N.Steno) 发表了《论固体中自然含有的固体》,自此以来,开始了 晶体生长理论探索的篇章。经过各国科学家的精心研究,晶体生长理论已经有了长足的发展, 出现了各种各样的不同理论及模型。如晶体平衡形态理论、界面生长理论、PBC理论和负离子 配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。现代晶体 生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神 秘面纱。
从晶体平衡形态理论到负离子配位多面体生长基元模型,晶体生长理论在不断地发展并趋 于完善,主要体现在以下几个方面:从宏观到微观,从经验统计分析到定性预测,从考虑晶体 相到考虑环境相,从考虑单一的晶体相到考虑晶体相和环境相。晶体生长的定量化,并综合考 虑晶体和环境相,以及微观与宏观之间的相互关系是今后晶体生长理论的发展方向。
(1)布拉维法则:法国晶体学家A.Bravais于1850年利用群论推导出具有一定对称性的空间点阵 只有14种,分属于7大晶系;1866年,Bravais又论述了实际晶面与空间格子构造中面网之间的关系, 提出实际晶体的晶面常常平行网面结点密度最大的面网,这就是布拉维法则。布拉维法则阐明了晶 面发育的基本规,但是它只能预测同种晶体的一种形态, 即晶体的理想生长形态, 无法解释同种晶体 在不同生长条件下可具有不同的生长形态的实验事实。布拉维法法则只给出了晶体内部结构与生长 形态之间的关系, 完全忽略了生长条件对生长形态的作用。
该定律给出了晶体生长形态具体求解方法虽然, 运动学理论能够通过定量计算给出晶体的生 长形态但有一个重要的假设, 即某一生长系统中驱动力场是均匀的这实质上忽视了环境相和生长 条件对晶体生长形态的作用另一方面, 应用运动学定律, 通过计算得出晶体的生长形态, 必须首先 得到法向生长速率与晶面取向的关系, 这实际上是十分困难的从而大大限制了理论的实际应用利 用该定律能够定量计算出晶体的生长形态。

晶体生长动力学..

晶体生长动力学..
分为单形和聚形

单形:当晶体在自由体系中生长时,若生长出
的晶体形态的各个晶面的面网结构相同,而且 各个晶面都是同形等大,这样的理想形态称为 单形。

聚形:若在晶体的理想形态中,具有两套以
上不同形、也不等大的晶面,这种晶体的理 想形态为聚形,聚形是由数种单形构成的。
晶体生长过程所能出现的晶面可划分为三种类型,即F面、 S面、K面。 F面:或称平坦面(flat faces),它包含两个或两个以上 的共面的PBC(PBC矢量) S面:或称台阶面(stepped faces),它包含一个PBC ( PBC矢量)



K面:或称扭折面(kinked faces),它不包含 PBC( PBC矢量)

一、晶体生长形态与生长速率间的联系


晶体的晶面生长速率R是指在单位时间内晶面 (hkl)沿其法线方向向外平行推移的距离(d), 并且称为线性生长速率。 晶体生长的驱动力来源于生长环境相(气相、液 相、熔体)的过饱和度(△c)或过冷度( △T) 晶体生长形态的变化来源于各晶面相对生长速率 (比值)的改变。 下面以二维模式晶体生长为例来说明晶面的相对 生长速率的变化与晶体生长形态间的关系(如图 2.1所示)
§2.1 晶体生长形态


晶体生长形态是其内部结构的外在反映,晶体 的各个晶面间的相对生长速率决定了它的生长 形态。 晶体生长形态不但受其内部结构的对称性、结 构基元间键合和晶体缺陷等因素的制约,而且 在很大程度上还受到生长环境相的影响。 晶体生长形态能部分地反映出它的形成历史, 因此研究晶体生长形态,有助于人们认识晶体 生长动力学过程,为探讨实际晶体生长机制提 供线索。


NRa代表具有不稳定倾向的浮力与具有稳定倾向 的粘滞力的比值 当熔体中的浮力与粘滞力相抵消时,熔体的稳定 性则处于被破坏的临界状态,此时的Raleigh数 称为临界Raleigh数( NRa )c 当熔体所具有的NRa超过临界值时,熔体产生不 稳定的对流,从而引起熔体的温度振荡,干扰晶 体生长界面的稳定性,产生生长条纹,有损于晶 体的光学均匀性。

晶体生长ppt

晶体生长ppt
性能关系
晶体缺陷与晶体的物理性质之间存在密切关系。例如,位错 密度越高,材料的强度和韧性越差;空位浓度越高,材料的 导电性越差等。通过对晶体缺陷的控制和优化,可以改善材 料的性能。
03
晶体生长的化学基础
化学键与晶体结构
共价键
01
共价键是原子间通过共享电子对而形成的强相互作用力,它决
定了晶体的结构和化学性质。
固相生长是指通过固态物质之间的反应或扩散过 程,形成新的固态晶体的过程,包括机械研磨法 、热压烧结法等。
晶体生长的应用
1
晶体生长在材料科学和物理学领域具有广泛的 应用价值,如制备高性能材料、制造光学器件 、制备半导体材料等。
2
在能源领域,晶体生长技术也被广泛应用于太 阳能电池、燃料电池等新能源器件的制造过程 中。
04
晶体生长方法
气相生长法
物理气相沉积法
包括真空蒸发、激光烧蚀等,通过 在真空中蒸发原料,使原料原子或 分子沉积在基底表面形成晶体。
化学气相沉积法
通过化学反应的方式,使用气体原 料在基底表面形成晶体。
气相生长法的优点
可以生长出高质量、大尺寸的单晶 ,同时具有高沉积速率。
气相生长法的缺点
需要高真空设备,生产成本较高, 且生长速度较慢。
3
同时,晶体生长技术还可以应用于生物医学领 域,如制备生物材料、药物传递等。
02
晶体生长的物理基础
晶体的结构与性质
晶体结构
晶体具有格子构造,原子或分子在空间中按照一定的规律重复排列。不同的 晶体结构具有不同的物理性质,如硬度、导电性、光学特性等。
晶体对称性
晶体具有对称性,即晶体的形状和内部结构可以在空间中重复出现。这种对 称性也影响了晶体的物理性质。

晶体的生长机理和控制方法

晶体的生长机理和控制方法

晶体的生长机理和控制方法晶体是由原子或分子有序排列而形成的有规律的固体结构,广泛应用于化学、生物、材料、电子等领域。

晶体的生长是指通过物质的凝聚和有序排列形成完整晶体过程,其机理和控制方法也是学术和实践上重要的问题。

一、晶体的生长机理晶体的生长机理涉及到热力学、动力学、热传导、质量传输、界面化学等多个方面。

其中主要包括以下几个方面的内容:1.核化与成核:在过饱和度条件下,原料分子集聚形成的不稳定凝聚体称为临界核(nucleus),成核的速度与临界尺寸大小有关。

过大的临界尺寸会影响成核速度,过小则会限制晶体成长速率。

2.晶面生长与形核模式选择:晶体在生长过程中受到的外界环境和晶面热力势能的作用,会直接影响晶面造型和选择。

这也是研究晶体形貌和遗传的主要内容之一。

3.晶体成长速率:晶体生长速度受到物理、化学作用力和传质速率等影响,是一种非平稳过程。

晶面生长速率与色散系数、溶解度、传质系数等有关。

二、晶体的控制方法晶体的生长速率和生长状态的控制及调控,是晶体工艺和材料战略发展的主要研究方向之一。

以下是几种晶体生长控制方法的介绍:1.温度差控制法:是利用温度差异控制晶体生长速率和生长方向的一种方法。

在对称的两侧,控制温差形成温差层,从而调控晶体生长位置和速率。

2.流速控制法:流体在晶体表面的流动速度对晶体生长状态有明显影响。

通过调节流体流速来控制晶体生长速率和晶体形态。

3.添加控制剂:控制剂可以影响过饱和度和晶体成核速度。

通过添加控制剂来调节晶体的生长速率和生长方向。

4.电化学控制法:利用电场、电位或电流等电学性质,在晶体生长过程中对物质传输和物种吸附等过程进行有针对性的调节。

以上方法仅是晶体生长控制的概述,实际上还有其他方法,如冷却速率、溶液浓度、晶体取向控制等,具体选择方法还要根据晶体特性和工艺需求。

三、晶体的应用前景晶体作为一种重要的结晶材料,其应用领域广泛,包括但不限于以下几个方面:1.半导体电子学:从硅基结晶到磷化镓、硅锗合金、氧化锌等,晶体在电子学领域的应用尤为广泛,几乎所有电子器件都将其诞生地定义为晶体管!2.磁性材料:铁、钴、镍等金属的磁性,体现在固体晶体中体现出来。

第二章 晶体生长模型

第二章 晶体生长模型

1669年丹麦学者N.Steno 研究石英和赤铁矿晶体,发现
同种物质的晶体,其对应晶面间的角度守恒
重要发现,为几何结晶学研究奠定基础
2-16
r
z
m
m m
r
z
r
r
石英的理想晶体
m z
歪晶
m
2-17
本章概要
1.晶体生长途径 2.晶体生长二个理论:层生长、螺旋生长理论 3.晶面发育理论:布拉维法则、周期键链 4.影响晶体生长外因、几何淘汰率 5.面角守恒定律
晶体存在强键链。晶体平行键链生长,键力最强的方向生长 最快;平行强键链最多的面常成为晶面。
比较 K S F 面成长速度
K面:三个方向键链,生长速度最快,消失快 S面:二个方向键链 F面:一个方向键链,生长速度最慢易成为晶面
2-12

第四节
影响晶体生长的外部因素
涡流与介质流动方向 温度 杂质 pH值 黏度 结晶速度 生长顺序、生长空间 应力作用
2-9
晶面生长速度与面网密度关系
3 A a 1 B
面网密度小
A
C
B
2
生长速度
C
D b
D
面网密度小生长速度快,晶面消失快; 面网密度大生长速度慢,易保留下来成为晶面。 理想状态,不考虑外界条件 2-10
B C D C B D
A A
E
A B
E
晶面交角和生长速度对晶面发育的约束
2-11
3. 周期键链(PBC)理论 periodic bond chain 1955年P.Hartman and N.G.Perdok提出
1.层生长理论 layer growth --W.Kossel—I.N.Stranski二维成核理论 质点优先进入顺序: (1)1 > 2 > 3

三种晶体生长理论

三种晶体生长理论

三种晶体生长理论三种晶体生长理论:一、层生长理论科赛尔首先提出,后经斯兰特斯基加以发展的晶体的层生长理论亦称为科赛尔-斯兰特斯基理论。

这一模型主要讨论的关键问题是:在一个面尚未生长完全前在一界面上找出最佳生长位置。

图8-2表示了一个简单立方晶体模型中一界面上的各种位置,各位上成键数目不同,新支点就位后的稳定程度不同。

每个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多、释放出能量最大的位置。

图8-2所示质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹角,是最有利的生长位置;其次是S阶梯面,具有两面凹角的位置;最不利的生长位置是A。

由此可以得出如下的结论:警惕在理想情况下生长时,一旦有三面凹角位存在,质点则优先沿着三面凹角位生长一条行列;而当这一行列长满后,就只有二面凹角位了,质点就只能在二面凹角处就位生长,这时又会产生三面凹角位,然后生长相邻的行列;在长满一层面网后,质点就只能在光滑表面上生长,这一过程就相当于在光滑表面上形成一个二维核,来提供三面凹角和二面凹角,再开始生长第二层面网。

晶面(最外的面网)是平行向外推移而生长的。

这就是晶体生长的层生长模型,它可以解释如下一些生长现象:(1)晶体常生长成面平棱直的多面体形态。

(2)晶体在生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造(图8-3)。

它表明晶面是平行向外推移生长的。

(3)由于晶面是向外推移生长的,所以同种矿物不同晶面上对应晶面间的夹角不变。

(4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体,成为生长锥或砂钟状构造(图8-4,图8-5)在薄片中常常能看到。

然而晶体生长的实际情况要比简单层生长模型复杂得多,往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。

晶体的生长模式

晶体的生长模式

晶体的生长模式晶体的生长过程一般认为有三个阶段:首先是溶液或气体达到过饱和状态或过冷却状态,然后整个体系中出现瞬时的微细结晶粒子,这就是形成了晶核,最后这些粒子按照一定的规律进一步生长,成为晶体。

科学家已经发现了晶体生长的多种模式,其中较为重要的是层生长模式和螺旋生长理论。

晶体生长理论简介自从1669年丹麦学者斯蒂诺(N.Steno)开始研究晶体生长理论以来,晶体生长理论经历了晶体平衡形态理论、界面生长理论、PBC理论和负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。

现代晶体生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神秘面纱。

下面简单介绍几种重要的晶体生长理论和模型。

.晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Gibbs—Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。

晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件,没有考虑晶体的微观条件和环境相对于晶体生长的影响,是晶体的宏观生长理论。

.界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。

界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用,没有考虑晶体的微观结构,也没有考虑环境相对于晶体生长的影响。

.PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。

BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。

.负离子配位多面体模型:1994年由仲维卓、华素坤提出,将晶体的生长形态、晶体内部结构和晶体生长条件及缺陷作为统一体加以研究,考虑的晶体生长影响因素全面,能很好地解释极性晶体的生长习性。

晶体生长第六章 界面的微观结构

晶体生长第六章 界面的微观结构

第六章 界面的微观结构§1. 晶体的平衡形状1. 界面能极图与晶体的平衡形状γ(n)—界面能γ(n)dA=最小液体 γ(n)= γ=常数——球形晶体 ——界面能最低的晶面所包围(低指数面)§2. 邻位面与台阶的平衡结构1. 奇异面(低指数面、原子密排面、界面能最低的面)邻位面非奇异面界 面 能 极 图2. 邻位面台阶化邻位面→台阶(总界面能最低)§2. 台阶热力学性质1. 台阶——奇异面的一条连续曲线,线之间则有一个原子的高度差。

台阶是起止于晶体边缘或形成闭合曲线,不会终止在晶面内。

hk yZ tg -=∂∂=θ2. 台阶棱边能:单位长度台阶具有的自由能(产生单位长度台阶所作之功)台阶有线张力(棱边能大小),使台阶缩短。

3. 台阶棱边能的各项异性——台阶扭折化h tg k /θ=4. 台阶的平衡结构台阶上的扭折取决于台阶取向,当θ=0(台阶和密排方向一致),k →0,这只在0k 时成立。

热涨落可在台阶上产生扭折。

扭折有正负号。

扭折产生与台阶吸附空位或原子有关。

α+=α- α++α-+α0=1α+:产生正扭折机率台 阶 的 扭 折 化α-:产生负扭折机率α0:不产生扭折的机率细微平衡原理(The principle of detailed balancing )求扭折形成能 a: 2Φ1 2扭折b: 4Φ1 4扭折 一个扭折形成能为Φ1 c: 0 0 )/exp(//100kT Φ-==∴-+αααα台阶任意位置产生扭折的总机率(正和负)为: )/exp(210kT Φ-=+=-+αααα台阶有n 原子,a 为原子间距,台阶长na,台阶上的扭折数为:n (α++α-)扭折平均距离: +-+-+=+=+=ααααα2)(0a a n na X由于α++α-+α0=α0+2α+=1 即: )(1αααα+=++ }2){exp(210+Φ=∴kT a X X 0>>a , )exp(210kT a X Φ≈∴T →0k 时,X 0→∞ 扭折密度为零在有限温度下,台阶上总是存在扭折的(θ=0) 600K X0≈4~5a§3. 界面相变熵和界面的平衡结构1.光滑界面与粗糙界面晶体原子→振动平均频率固定熔体原子→振动平均频率是变化的X=N A/N N A晶体原子1-X 熔体X≈50% 1-X≈50% 粗糙界面X≈0% 或 1-X≈100% 光滑界面考察界面自由能的表达式,求出自由能最低时的X。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体生长微观机理及晶体生长边界层模型
晶体生长是一种重要的物理化学过程,它在材料科学、化学工业、生
物医药等领域都有着广泛的应用。

晶体生长微观机理及晶体生长边界
层模型是研究晶体生长过程中关键的问题,本文将从以下几个方面进
行探讨。

一、晶体生长微观机理
1. 晶体的结构与生长
晶体是由原子、离子或分子按照一定规律排列而成的固态物质,其结
构可以通过X射线衍射等手段进行表征。

在晶体生长过程中,溶液中
的溶质分子会逐渐聚集形成固态结构,这个过程可以分为三个阶段:
核化、成核和晶体生长。

2. 晶核形成与影响因素
在溶液中,当达到饱和度时,就会出现小于临界尺寸的“原始胚”,
随着时间的推移,“原始胚”会不断增大并发展成为稳定的“晶核”。

影响晶核形成的因素包括温度、浓度、pH值等。

3. 晶体生长速率与形貌
晶体生长速率与晶体表面的形貌密切相关,通常情况下,高速生长的晶体表面比较光滑,低速生长的晶体表面则会出现棱角和凸起。

晶体生长速率受到溶液中溶质浓度、温度、流动状态等多种因素影响。

二、晶体生长边界层模型
1. 晶体生长边界层概念
在晶体生长过程中,由于溶液和固态晶体之间存在着物质交换和能量转移,因此会形成一个厚度很小的“边界层”,这个“边界层”被称为“晶体生长边界层”。

它是指在固液相变过程中,在固相表面与液相之间存在的一种物理化学过程。

2. 晶体生长边界层模型
目前已经提出了多种不同的晶体生长边界层模型,其中最为广泛应用的是Kossel-Stranski模型。

该模型认为,在固态表面上形成了一层原子密度比周围低的单分子层,该单分子层可以吸附在固态表面上,并且能够引导下一层原子的沉积。

随着晶体生长,这个单分子层会不断向外扩散,直至达到平衡状态。

3. 晶体生长边界层的影响
晶体生长边界层对晶体生长速率和形貌都有着重要的影响。

较厚的边界层会导致晶体表面形貌不规则,生长速率变慢;而较薄的边界层则会使晶体表面光滑,生长速率加快。

三、总结
晶体生长微观机理及晶体生长边界层模型是研究晶体生长过程中关键的问题。

在实际应用中,需要综合考虑多种因素对晶体生长过程的影响,并采取相应的措施来优化晶体生长条件。

未来随着科学技术的不断发展,我们相信对于晶体生长微观机理及其控制方法会有更深入的认识和研究。

相关文档
最新文档