初二上册数学知识点总结:第二章实数

合集下载

初二上册数学知识点总结

初二上册数学知识点总结

初二数学上册知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。

那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

八年级数学上册第二章实数知识点北师大版

八年级数学上册第二章实数知识点北师大版

第二章:实数一、无理数1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。

2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2—π,3π等;(2)特殊结构的数(看似循环而实则不循环):如:2。

010 010 001 000 01…(两个1之间依次多1个0)等。

(3)无理数与有理数的和差结果都是无理数.如:2—π是无理数(4)无理数乘或除以一个不为0的有理数结果是无理数。

如2π,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式.例:(1)下列各数:①3.141、②0。

33333……、③75-、④π、⑤252.±、⑥32-、⑦0。

3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。

(填序号)(2)有五个数:0。

125125…,0.1010010001…,-π,4,32其中无理数有( )个二、算术平方根1.定义:如果一个正数x的平方等于a,即a2,那么,这个正数x=x就叫做a的算术平方根,记为:“a”,读作,“根号a”,其中,a称为被开方数。

例如32=9,那么9的算术平方根是3,即39=。

特别规地,0的算术平方根是0,即00=,负数没有算术平方根2。

算术平方根具有双重非负性:(1)若a有意义,则被开方数a是非负数。

(2)算术平方根本身是非负数。

3。

算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a;而平方根具有两个互为相反数的值,表示为:a±.例:(1)下列说法正确的是()A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; ( D )、0没有平方根;(2)下列各式正确的是( )A 、981±= B 、14.314.3-=-ππ C 、3927-=- D 、235=-(3)2)3(-的算术平方根是 。

八年级数学上册 第二章 实数

八年级数学上册 第二章 实数

第二章实数目录第二章实数 (1)第一课时:实数的认识 (1)知识要点一:认识无理数 (1)知识要点二:平方根 (1)知识要点四:算术平方根 (2)拓展:随机的n (3)知识要点五:立方根 (4)知识要点五:估算无理数的大小 (4)知识要点六:实数的概念 (5)知识要点七:实数的性质 (5)知识要点八:实数与数轴 (7)知识要点九:实数的比较大小 (8)知识要点10:实数的运算 (9)总练习题 (9)C 基础巩固 (9)B 能力提升 (10)A 拔尖训练 (11)第二课时:二次根式的性质、化简与运算 (13)知识要点一:二次根式的概念 (13)知识要点二:二次根式有意义的条件 (13)知识要点三:二次根式的性质与化简 (14)知识要点四:最简二次根式 (14)知识要点五:分母有理化 (15)知识要点六:二次根式的乘除法 (16)知识要点七:同类二次根式 (17)知识要点八:二次根式的加减法 (18)知识要点九:二次根式的混合运算 (18)知识要点十:二次根式的化简求值 (19)知识要点十一:二次根式的应用 (20)总练习题 (20)C 基础巩固 (20)B 能力提升 (21)A 拔尖训练 (22)第一课时:实数的认识知识要点一:认识无理数伟大的数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m 等于多少?是整数呢,还是分数?这个问题引起了学派成员希帕斯的兴趣,他花费了很多的时间去钻研,最终希帕斯断言:m 既不是整数也不是分数,是当时人们还没有认识的新数.希帕斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们残忍地将希帕斯扔进地中海.这样,无理数的发现人被谋杀了!定义1 无限不循环小数叫做无理数。

常见的无理数的类型:(1)有规律但不循环的小数;(2)有特定意义的符号,如π;(3)方开不尽的数(见知识要点二之开方的概念)。

八年级上册数学第二章知识点总结

八年级上册数学第二章知识点总结

八年级上册数学第二章知识点总结一、实数的概念与分类。

1. 有理数与无理数。

- 有理数:整数和分数统称为有理数。

整数包括正整数、零、负整数;分数包括有限小数和无限循环小数。

例如,2,-3,(1)/(2),0.25(有限小数,可化为(1)/(4)),0.3̇(无限循环小数,可化为(1)/(3))都是有理数。

- 无理数:无限不循环小数叫做无理数。

常见的无理数有三类:一是开方开不尽的数,如√(2),sqrt[3]{3}等;二是含有π的数,如π,2π等;三是有规律但不循环的无限小数,如0.1010010001·s(每两个1之间依次多一个0)。

2. 实数的分类。

- 按定义分类:实数可分为有理数和无理数。

有理数又可分为整数(正整数、零、负整数)和分数(正分数、负分数);无理数就是无限不循环小数。

- 按正负性分类:实数可分为正实数(正有理数、正无理数)、零、负实数(负有理数、负无理数)。

二、平方根、算术平方根与立方根。

1. 平方根。

- 定义:如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根(或二次方根)。

例如,因为(±2)^2=4,所以±2是4的平方根。

- 表示方法:正数a的平方根记为±√(a),读作“正负根号a”。

- 性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

2. 算术平方根。

- 定义:正数a的正的平方根叫做a的算术平方根,记为√(a),0的算术平方根是0。

例如,4的算术平方根是√(4) = 2。

- 性质:算术平方根√(a)具有双重非负性,即a≥slant0且√(a)≥slant0。

3. 立方根。

- 定义:如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根(或三次方根)。

例如,因为2^3=8,所以2是8的立方根。

- 表示方法:a的立方根记为sqrt[3]{a}。

- 性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。

初二数学上册知识点汇总

初二数学上册知识点汇总

数学知识提纲姓名初二上册初二数学(上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a,b,c 有关系222c b a =+,那么这个三角形是直角三角形,且最长边所对的角是直角.3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实 数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0。

1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值.(|a |≥0).零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a |=—a,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和—1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用. 5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a,那么这个正数x 就叫做a 的算术平方根。

【精品】新北师大版八年级数学上册第二章实数知识点总结+练习

【精品】新北师大版八年级数学上册第二章实数知识点总结+练习

b
( 2)若 a> b,则 3 a 3 b或 a3 b3
( 3)若 a、 b 都为正数,且 a> b 时,则 a2> b2
例:通过估算比较下列各组数的大小
比较两个数的大小:
方法一:估算法。如 3< 10 < 4
3.14 C 、 27 9 3 D 、 5 3 2
( 3) ( 3) 2 的算术平方根是
。( 4)若 x
x 有意义,则 x 1 ___________。
( 5)已知△ ABC的三边分别是 a, b,c, 且 a, b 满足 a 3 (b 4) 2 0 ,求 c 的取值范围。
( 6)(提高题)如果 x、 y 分别是 4- 3 的整数部分和小数部分。求 x - y 的值 .
( 1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;
( 2)所有的有理数都能写成分数的形式(整数可以看成是分母为
1 的分数),而无理数则不能写成分数形式。
例:( 1)下列各数: ① 3.141 、② 0.33333 ,, 、③
5
7 、④π 、⑤
2.25 、⑥
2
、⑦ 0.3030003000003 ,,
平方根:
1. 定义:如果一个数 x 的平方等于 a,即 x2
a ,那么这个数 x 就叫做 a 的平方根;,我们称 x 是 a 的平方 (也
叫二次方根) ,记做: x
a (a 0)
2. 性质:( 1)一个正数有两个平方根,且它们互为相反数;
(2) 0 只有一个平方根,它是 0 本身; ( 3)负数没有平方根
根。因此,算术平方根只有一个值,并且是非负数,它只表示为:
示为: a 。
例:( 1)下列说法正确的是
()

八年级上册数学第二章知识点

八年级上册数学第二章知识点

为⼤家整理的⼋年级上册数学第⼆章知识点的⽂章,供⼤家学习参考!更多最新信息请点击
⼀、实数的概念及分类
1、实数的分类
⼀是分类是:正数、负数、0;
另⼀种分类是:有理数、⽆理数
将两种分类进⾏组合:负有理数,负⽆理数,0,正有理数,正⽆理数
2、⽆理数:⽆限不循环⼩数叫做⽆理数。

在理解⽆理数时,要抓住“⽆限不循环”这⼀时之,归纳起来有四类:
(1)开⽅开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三⾓函数值,如sin60o等
⼆、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时⼀对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成⽴。

2、绝对值
在数轴上,⼀个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本⾝,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0.
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成⽴。

倒数等于本⾝的数是1和-1.零没有倒数。

4、数轴
规定了原点、正⽅向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺⼀不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是⼀⼀对应的,并能灵活运⽤。

5、估算。

八年级数学上册知识点归纳第二章

八年级数学上册知识点归纳第二章

八年级数学上册知识点归纳第二章八年级数学上册知识点归纳第二章1、实数的概念及分类①实数的分类②无理数无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:开方开不尽的数,如√7,3√2等;有特定意义的数,如圆周率π,或化简后含有π的数,如π/?+8等;有特定结构的数,如0.1010010001…等;某些三角函数值,如sin60°等2、实数的倒数、相反数和绝对值①相反数②绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

|a|≥0。

0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

③倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

0没有倒数。

④数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

⑤估算3、平方根、算数平方根和立方根①算术平方根一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。

特别地,0的算术平方根是0。

性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

②平方根一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方求一个数a的平方根的运算,叫做开平方。

注意√a的双重非负性:√a≥0;a≥0③立方根一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(或三次方根)。

表示方法:记作3√a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:-3√a=3√-a,这说明三次根号内的负号可以移到根号外面。

4、实数大小的比较①实数比较大小正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上册数学知识点总结:第二章实数
编者按:小编为大家收集了初二上册数学知识点总结:第二章实数,供大家参考,希望对大家有所帮助!
一、实数的概念及分类
1、实数的分类
一是分类是:正数、负数、0;
另一种分类是:有理数、无理数
将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数
2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住无限不循环这一时之,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率,或化简后含有的数,如 +8等;
(3)有特定结构的数,如0.1010010001
(4)某些三角函数值,如sin60o等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,
则有a+b=0,a=b,反之亦成立。

2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a若|a|=-a,则a0。

3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算
以上就是为大家提供的初二上册数学知识点总结:第二章实数希望能对考生产生帮助,更多资料请咨询中考频道。

相关文档
最新文档