勒贝格可积性准则证明
lebesgue可积的一些常用结论

Lebesgue可积性是实分析中的一个重要概念,它允许我们定义在更广泛的函数类上的积分。
以下是一些关于Lebesgue可积性的常用结论:1. **Lebesgue可积性是Riemann可积性的推广**:如果一个函数在某个区间上Riemann可积,那么它在这个区间上也是Lebesgue可积的,并且两者的积分值是相等的。
2. **Lebesgue可积性具有稳定性**:如果函数序列在某个区间上Lebesgue可积,并且逐点收敛于另一个函数,那么这个极限函数也是Lebesgue可积的,并且其积分值等于函数序列积分值的极限。
3. **Lebesgue可积性具有单调性**:如果函数序列在某个区间上单调增加(或单调减少),并且每个函数都是Lebesgue可积的,那么函数序列的极限也是Lebesgue可积的。
4. **Lebesgue可积性具有保号性**:如果函数序列在某个区间上保号(即不改变符号),并且每个函数都是Lebesgue可积的,那么函数序列的极限也是Lebesgue可积的。
5. **Lebesgue可积性具有可数可加性**:如果函数序列在某个区间上可数可加,并且每个函数都是Lebesgue可积的,那么函数序列的极限也是Lebesgue可积的。
6. **Lebesgue可积性具有连续可积性**:如果函数序列在某个区间上连续,并且每个函数都是Lebesgue可积的,那么函数序列的极限也是Lebesgue可积的。
7. **Lebesgue可积性具有紧致性**:如果函数序列在某个区间上紧致,并且每个函数都是Lebesgue可积的,那么函数序列的极限也是Lebesgue可积的。
8. **Lebesgue可积性具有可积性**:如果函数序列在某个区间上可积,并且每个函数都是Lebesgue可积的,那么函数序列的极限也是Lebesgue可积的。
9. **Lebesgue可积性具有绝对可积性**:如果函数序列在某个区间上绝对可积,并且每个函数都是Lebesgue可积的,那么函数序列的极限也是Lebesgue可积的。
勒贝格逐项积分定理证明勒贝格控制收敛定理

勒贝格逐项积分定理是数学分析领域的重要定理之一,它为我们理解积分与极限之间的关系提供了重要的理论基础。
在本文中,我将对勒贝格逐项积分定理进行深入探讨,并尝试给出其证明,同时还会结合勒贝格控制收敛定理进行分析。
我将从基本概念出发,逐步展开讨论,帮助读者充分理解这一重要定理。
1. 勒贝格积分的概念在开始探讨勒贝格逐项积分定理之前,我们首先需要了解勒贝格积分的基本概念。
勒贝格积分是对变量在某个区间上的函数进行积分的一种方法,与黎曼积分不同的是,勒贝格积分对函数的可积性有更加严格的要求。
这种积分方法在处理一些特殊的函数和收敛性问题时具有重要的应用价值。
2. 逐项积分的概念在研究级数的收敛性时,我们常常会接触到逐项积分的概念。
逐项积分是将级数中的每一项进行单独的积分,然后再考察这些积分的收敛性。
逐项积分在分析级数的收敛性和积分之间的关系时起着重要的作用,而勒贝格逐项积分定理正是对逐项积分的一个重要的推广和应用。
3. 勒贝格逐项积分定理的表述勒贝格逐项积分定理是关于逐项积分和函数极限交换次序的定理。
它指出,如果级数在某个区间上逐项积分后收敛,那么这个逐项积分所得的函数的极限与原级数在该区间上的逐项积分所得的函数的极限是相同的。
这个定理在分析级数的逐项积分和函数极限的关系时起着至关重要的作用。
4. 勒贝格逐项积分定理的证明为了证明勒贝格逐项积分定理,我们需要结合勒贝格控制收敛定理来进行分析。
勒贝格控制收敛定理是判别逐项积分收敛的重要定理,它为我们提供了一种有效的方法来判断逐项积分的收敛性。
通过对级数的逐项积分进行适当的控制,我们可以得到逐项积分的收敛性,从而进一步推导出勒贝格逐项积分定理。
5. 个人观点与理解在我看来,勒贝格逐项积分定理是数学分析领域中的一个重要定理,它揭示了级数逐项积分和函数极限之间的深刻关系。
通过对该定理的深入理解,我们不仅可以更加深刻地理解级数的收敛性和逐项积分的性质,还可以为解决一些实际问题提供重要的理论支持。
勒贝格 Lebesgue 定理

勒贝格定理
注:若f ( x), g( x)在[a,b]上可积,f ( x)与g( x)可以复合, f ( g( x))在[a,b]上也不一定可积.
例如:R(
x)为[0,1]上黎曼函数,取f
(u)
1, u 0, u
f ( qk ) 0 pk
存在无理数序列
k
,
lim
k
k
x, lim k
f
(k )
lim
k
k
=x
f ( x)在[0,1]不连续点集D( f ) 0,1,
D( f )是区间,不是零测集,f ( x)在[0,1] 有界,所以f 在[0,1]上不可积.
勒贝格定理应用
例4
判断函数在0,1
可积性.f
(
x)
1 x
0 f ( x) 1,函数有界.
y 1
o 1 1 1 1
1x
543 2
f
( x)在[0,1]上有界并且其不连续点集D(
f
)
1
n
n
2, 3,
{0},
D( f )是可数集,所以是零测集,所以f 在[0,1]上可积.
勒贝格定理应用
例2 判断下面函数在[0,1]上可积性
y
f
(
x
)
sgn
勒贝格定理
推论
1) 如果f 在a,b可积 f 0 ,则1/ f 在a,b可积; 2) 如果f , g在a,b可积,则fg在a,b可积; 3) 如果f 在a,b可积,则f 在任何子区间c,d a,b可积; 4) 如果f , g在a,b可积 g 0,则f / g在a,b可积;
勒贝格可积的充要条件

勒贝格可积的充要条件拉勒贝格可积性是条件函数理论的重要概念,它的充要条件是:不等式条件函数的可积性条件和其他函数函数积分可积性条件,以及该函数的局部可积性条件。
首先,不等式函数的可积性条件。
若一个函数在区间[a,b]内有限次可积,则其可积性条件是:函数f(x)在闭区间[a,b]中任意取n个不同的值x0,x1,x2,...,x(n-1),则必须有f(x0)+f'(x0)(x1-x0)+f'(x1)(x2-x1)+...+f'(x(n-1))(xn-x(n-1))=f(xn)其次,函数函数积分可积性条件。
若在闭区间[a,b]内,存在连续可导函数h(x),函数f(x)受约束f(x)<=h(x),且该约束满足任意取n个不同的值x0,x1,x2,...,x(n-1)时,方程h(x0)*h(x1)*...*h(x(n-1))>=f(x0)*f(x1)*...*f(x(n-1))必须成立,其可积性条件是,对于任意取n个不同的值x0,x1,x2,...,x(n-1),必须有f(x0)*h(x1)*h(x2)*...*h(x(n-1))+f(x1)*h(x0)*h(x2)*...*h(x(n-1))+f(x2)*h(x0)*h(x1)*...*h(x(n-1))+...+f(x(n-1))*h(x0)*h(x1)*...*h(x(n-2))<=h(x0)*h(x1)*...*h(x(n-1))最后,该函数的局部可积性条件,该函数必须具有足够多的可导分量,从而使闭区间[a,b]内函数在某点存在极限。
通过以上三种可积性条件,就可判断函数是否满足拉勒贝格可积的要求。
拉勒贝格可积的一般化理论是积分变换的重要基础,可以广泛应用于科学技术、经济、数学分析等领域。
lebesgue积分的几个充要条件

lebesgue积分的几个充要条件Lebesgue分是一种实用的数学概念,它用于衡量定义在某一特定函数上的极限。
它于1902年由法国数学家H. 依拉克莱(Henri Lebesgue)提出,是现代分析学中最基础而又最重要的定义之一。
它被广泛用于各种不同的数学问题,如求解偏微分方程、研究随机过程、处理信号等等。
Lebesgue分的几个充要条件是:(1)长性:函数的积分和总面积大于等于0,即积分函数f(x),其面积I=∫af(x)dx≥0;(2)均值定理:当f(x)为连续函数时,即积分函数f(x),其面积I=∫af(x)dx既可以计算函数的积分,又可以计算函数的平均值,即有I=∫a[f(x)]dx=f(x)dx/n;(3)许使用分段/离散函数,一般情况下,可以用离散函数替代连续函数来计算积分,即可以用一个小的窗口,以一定的步长来计算离散函数的积分,而不需要使用连续函数;(4)法性质:即函数的积分可以分解为多个积分,并可以结合得到最后的总积分,即有I=∫af(x)dx=∑∫af1(x)dx+∫af2(x)dx+……+∫afn(x)dx;(5)盖定理:函数的积分可以用来表示定义域[a,b]的面积,也可以用来表示图像下面的积分面积,即有I=∫af(x)dx=∫bak(x)dx,其中k(x)为图像下面的函数;(6)换性质:函数积分的顺序是可以换的,即有I=∫af(x)dx=∫bf(b-x)dx;(7)线性性质:函数积分与系数相乘是线性关系,即有I=∫af(x)dx=c∫af(x)dx,其中c∈R。
Lebesgue分有很多种应用,它可以用来测量一个连续函数的极限界限,也可以用来计算多变量的函数的积分。
它也被广泛应用于函数分析、统计信号处理、最优化、概率和复变函数等领域,用来研究复杂的数学结构。
例如,可以用它来计算多元函数的导数、研究随机过程,解决最优化问题,研究复杂的微积分函数结构等等。
虽然Lebesgue分有一些明确的充要条件,但它们在实际应用中也不是绝对的。
勒贝格积分公式

勒贝格积分公式一、勒贝格积分的定义。
1. 简单函数的勒贝格积分。
- 设E⊆R^n是可测集,φ(x)=∑_i = 1^k c_iχ_E_i(x)是E上的非负简单函数,其中c_i≥slant0,E_i⊆ E是可测集且E=bigcup_i = 1^k E_i,E_i∩ E_j=varnothing(i≠ j),χ_E_i是E_i的特征函数。
- 则∫_Eφ(x)dx=∑_i = 1^k c_im(E_i),这里m(E_i)表示集合E_i的勒贝格测度。
2. 非负可测函数的勒贝格积分。
- 对于E上的非负可测函数f(x),定义∫_E f(x)dx=sup<=ft{∫_Eφ(x)dx:φ(x)≤slant f(x),φ(x)是简单函数}。
3. 一般可测函数的勒贝格积分。
- 设f(x)是E上的可测函数,将f(x)分解为f(x)=f^+(x)-f^-(x),其中f^+(x)=max{f(x),0},f^-(x)=-min{f(x),0}。
- 如果∫_E f^+(x)dx和∫_E f^-(x)dx至少有一个是有限值,则∫_E f(x)dx=∫_Ef^+(x)dx-∫_E f^-(x)dx。
当∫_E f^+(x)dx和∫_E f^-(x)dx都有限时,称f(x)在E上勒贝格可积。
二、勒贝格积分的基本性质。
1. 线性性质。
- 设f(x)和g(x)是E上的勒贝格可积函数,α,β∈R,则∫_E[α f(x)+βg(x)]dx=α∫_E f(x)dx+β∫_E g(x)dx。
2. 单调性。
- 若f(x)≤slant g(x)在E上几乎处处成立(即除了一个勒贝格测度为零的集合外成立),则∫_E f(x)dx≤slant∫_E g(x)dx。
3. 可加性。
- 设E = E_1∪ E_2,E_1∩ E_2=varnothing,f(x)在E上勒贝格可积,则∫_Ef(x)dx=∫_E_1 f(x)dx+∫_E_2 f(x)dx。
勒贝格积分的性质与应用

勒贝格积分的性质与应用摘要:在函数勒贝格积分存在的条件下,对勒贝格积分的性质进行思考和证明,将勒贝格积分性质进行扩展和进一步的研究。
同时,对勒贝格积分性质的应用进行整理,突出勒贝格积分的优点,从而对勒贝格积分性质和应用形成更加清晰的认识,促进与积分性质相关问题的解决,提高应用实变函数理论分析问题与解决实际问题的能力。
关键词:勒贝格积分性质应用0.引言黎曼积分的出现,使得一大类在牛顿积分意义下或柯西积分意义下不可积的函数进行积分变成了可能,从而使得常见的积分问题基本上都能得到完满的解决,但黎曼可积的函数主要的还是连续函数,或者说不连续点不太多的函数[1]。
针对Riemann积分中存在的缺陷,法国数学家勒贝格成功的引入了一种新的积分,即Lebesgue积分。
勒贝格积分是实变函数论的中心内容,积分理论建立在勒贝格测度论的基础上,是黎曼积分理论的升华,它不仅包含了黎曼积分理论的成果,而且很大程度上摆脱了黎曼积分的困境。
勒贝格意义上的积分,使得可积函数类大大增加,而且具有良好的性质,积分与极限交换顺序的条件也大大减弱,使积分运算更加便捷,更适合数学各分支及很多实际问题的需要[2][3]。
1.勒贝格积分的双向性[4]在黎曼积分中,函数黎曼可积与函数具有黎曼积分值是等价的。
但在勒贝格积分中,函数勒贝格可积与函数具有勒贝格积分值并不等价。
勒贝格可积与勒贝格积分的定义区别:勒贝格积分存在:设f(x)是E上的可测函数,若非负可测函数f+(x),f−(x)在E上的积分不同时为+∞,则称f(x)在E上有积分,并定义f(x)在E上的积分为∫f(x) E dx=∫f+(x)Edx−∫f−(x)Edx。
积分值为有限数或±∞。
勒贝格可积:设f(x)是E上的可测函数,若非负可测函数f+(x),f−(x)在E上的积分都为有限数时,即当f+(x)与f−(x)均在E上可积时,称f(x)在E上可积,其积分值为有限数。
2.勒贝格积分的性质目前关于勒贝格积分的诸多性质,大多都是在函数勒贝格可积的条件下给出的,然而有很多实际问题当中出现的函数虽然具有勒贝格积分,但不是勒贝格可积的,这类积分就不能用勒贝格可积条件下的诸多性质。
第七章 勒贝格积分理论简介

第七章 勒贝格积分理论简介本章所讨论的测度都是勒贝格测度,故不再特别说明。
所说可测均指。
所指函数也都是定义在实数子集上的实值函数。
可测-L 在第六章第二节中,我们曾经提到勒贝格积分的一种定义方式。
由此积分的定义可以看出,定义在一个可测集上的符号函数是可以积分的当且仅当E f 是可测的,由此引入了可测函数的概念。
但是从可测函数的角)(1+<≤i i y f y E 度考虑,可测函数可以另外的方式引入。
本章先讨论可测函数的刻画方式和一些基本性质,然后对勒贝格积分的常见计算方式作一些粗略的介绍。
进一步的内容可以在任何一本实变函数的教材可见。
§1 可测函数的定义刻画与运算我们先给出可测函数的一种最朴素的定义方式。
7.1定义:设是定义在上的函数,若对任意集合是可侧集,f E R ∈a )(a f E <称是可侧函数。
f 7.2命题. 设是集合上的函数。
f E (1)若是可侧,在上连续,则是上可测函数。
E f E f E (2)若是上可测函数,,则集合,,,f E R ∈a E )(f a E ≤)(f a E <都是可测集。
)(a f E ≤(3)若,且在上可测,则是上的可测函数。
φ==)0(f E f E f1E 证明:(1)对任意,是中开集,即存在中开集,使得R ∈a )(a f E <E R G ,故是可侧集。
E G a f E =<)()(a f E <(2)结论可由如下的集合等式得到)(a f E E n <=∈ω)(\)(a f E E f a E <=≤)1()(1f na E f a E n ≤+=<∞= )(\)(f a E E a f E <=≤(3)由⎪⎪⎩⎪⎪⎨⎧<><=<><>=<0)1()0(0)0(0)0()1()1(a a f E f E a f E a f E a f E a f E 可知是可侧集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATH255:Lecture10
The Riemann Integral:Lebesgue’s Integrability Criterion
Definition.A set S of real numbers is said to have measure zero if,for every >0,the set S is contained in a countable union of intervals,the sum of whose lengths is less than .
Theorem.If S1,S2,...,S n,...are each of measure zero then their union is also of measure zero. Proof.Each set S k can be covered by a countable union of intervals,the sum of whose lengths< /2k. The union of all the intervals so obtained is also countable and the sum of the lengths is less than
∞
11/2k= .
QED
A countable set is of measure zero but there are uncountable sets of measure zero.For example, the Cantor set consisting of all the real numbers in the interval[0,1]whose representation to the base 3contain only0or2,is an uncountable set of measure zero.The proof of this is left as an exercise. Definition.Let f be a bounded function defined on a subset S⊆R.The oscillation of f on S is
Ωf(S)=sup
x,y∈S
|f(x)−f(y)|.
If T⊆S,we haveΩf(T)≤Ωf(S).Let N r(c)={x||x−c|<r}.
Definition.If f is a bounded function on S and c∈S,the oscillation of f at c is defined to be
ωf(c)=inf
r>0
Ωf(S∩N r(c)).
Exercise1.If f is a bounded function on S and c∈S,then f is continuous at c⇐⇒ωf(c)=0. Theorem(Lebesgue’s Integrability Criterion).A bounded function on[a,b]is Riemann integrable if and only if the points of discontinuity of f form a set D of measure zero.
Proof.(⇒)Let >0be given and let D i be the set of points x withωf(x)≥ /2i.Let P be the partition{a=x0<x1<···<x n=b}of[a,b]with
U(P,f)−L(P,f)=
n
k=1
(M k−m k)∆x k<
4
.
If x∈D i∩(x k−1,x k)there is an r>0such that N r(x)⊆(x k−1,x k)so that
2i
≤ωf(x)≤Ωf(N r(x))≤M k−m k.
If T is the set of these k with D i∩(x k−1,x k)=∅,it follows that
2i
k∈T
∆x k≤
n
k=1
(M k−m k)∆x k<
4i
.
Hence
k∈T
[x k−x k−1]< /2i and D i⊆
k∈T
[x k−1,x k].This shows that each D i is contained in the
union of afinite number of intervals,the sum of whose lengths is less than /2i.Since D=
D i,it
follows that D is of measure zero.
(⇐)Let M>0be an upper bound for|f|on[a,b]and let >0be given.Since D is of measure zero, it can be covered by open intervals J i,(i≥1),the sum of whose lengths is less that /4M.We now define a functionδon[a,b]as follows:
1.If t∈D,there is a k such that t∈J k.Thus there is aδ(t)>0such that Nδ(t)(t)⊆J k.
2.If t/∈D,there is aδ(t)>0such that x∈Nδ(t)(t)⇒|f(x)−f(t)|< /4(b−a).
Lemma.If δis a function on [a,b ]such that δ(x )>0for all x ,there is a partition
P ={a =x 0<x 1<···<x n =b }
of [a,b ]and a tag t for P such that for all k we have [x k −1,x k ]⊆N δ(t k )(t k ).
We call such a tagged partition δ-fine with gauge δ.
Proof.Let S be the set of those x ∈[a,b ]such that there is a δ-fine tagged partition of [a,x ].The set s is not empty since,for any c ∈[a,b ]with a <c <a +δ(a ),the partition {a,c }with tag a of [a,c ]is δ-fine.If x ∈S and x <b ,we can choose c so that x <c <min(b,x +δ(x ).If (P,t )is a δ-fine partition of [a,x ],then (P ∪{c },(t,c ))is a δ-fine tagged partition of [a,c ].This shows that sup S =b .To show that b ∈S ,choose c ∈S so that max(a,b −δ(b ))<c <b .If (P,t )is a δ-fine partition of [a,c ],then (P ∪{b },(t,b ))is a δ-fine tagged partition of [a,b ].QED
Let (P,t )be a δ-fine tagged partition of [a,b ]and consider
U (P,f )−L (P,f )=n k =1
(M k −m k )∆x k =
k ∈A (M k −m k )∆x k + k ∈B (M k −m k )∆x k ,where A is the set of the k with t k ∈D and B the set of those k with t k /∈D .If k ∈A ,we have M k −m k ≤2M and we have M k −m k < /2(b −a )if k ∈B .The sum of the lengths of the intervals J k,i =J k ∩[x k −1,x k ]with k ∈A and i ≥1is less than /4M and the sum of the lengths of the intervals for a fixed k ∈A is ≥∆x k .Since J k,i ∩J ,j =∅for k = ,it follows that k ∈A ∆x k is less than the sum of the lengths of the intervals J k,i .Hence,
k ∈A (M k −m k )∆x k ≤2M k ∈A ∆x k <2M 4M = 2, k ∈B (M k −m k )∆x k < 2(b −a ) k ∈B
∆x k ≤ 2which gives U (P,f )−L (P,f )< .Since >0is arbitrary,f ∈R (a,b ).QED。