主成分分析法的步骤和原理
主成分分析法的步骤和原理

主成分分析法的步骤和原理
1.数据标准化:针对原始数据集,对每个变量进行标准化处理,使得
每个变量的均值为0,方差为1、这样做的目的是确保每个变量都具有相
同的重要性。
2.计算协方差矩阵:协方差矩阵是一个对称的矩阵,它描述了变量之
间的线性关系。
通过计算原始数据的协方差矩阵,可以得到变量之间的相
关程度。
3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征
值和特征向量。
特征值表示了每个主成分所解释的方差的大小,而特征向
量表示了每个主成分的方向。
4.选择主成分:根据特征值的大小,选择解释方差较大的前k个主成分,通常只选取特征值大于1的主成分。
这些主成分可以解释原始数据中
大部分的方差。
5.构建特征向量矩阵:将选取的k个特征向量按照特征值从大到小的
顺序排列,构成一个特征向量矩阵。
6.数据转换:将原始数据与特征向量矩阵相乘,得到降维后的数据集。
每个样本由k个主成分组成,而不再包含原始数据中的所有变量。
主成分分析的原理是基于最大方差的思想。
在原始数据中,方差较大
的变量携带了较多的信息,而方差较小的变量携带了较少的信息。
主成分
分析的目标是将原始数据投影到方差较大的方向上,以便在保留较多信息
的同时降低数据的维度。
通过特征值分解协方差矩阵,可以得到原始数据的主成分。
特征向量代表了每个主成分的方向,而特征值则表示了每个主成分所解释的方差大小。
通常,选择特征值较大的前几个主成分,可以达到保留较多信息的目的。
同时,主成分之间是正交的,即它们之间没有相关性,这样可以进一步减少数据冗余。
主成分分析

一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则系数l ij 的确定原则:①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关;②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。
新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ΛM M M ΛΛ212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p pp x l x l x l z x l x l x l z x l x l x l z ΛΛΛ22112222121212121111............p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。
数据挖掘中的主成分分析方法原理解析

数据挖掘中的主成分分析方法原理解析数据挖掘是一门涉及大数据处理和分析的领域,而主成分分析(Principal Component Analysis,PCA)是其中一种常用的数据降维方法。
本文将解析主成分分析方法的原理。
一、主成分分析的背景和目的在数据挖掘中,我们常常面临的问题是如何处理高维度的数据。
高维度数据不仅难以可视化,而且会导致计算复杂度的增加。
主成分分析的目的就是通过线性变换将原始的高维度数据转换成低维度的数据,同时保留原始数据中的最重要的信息。
二、主成分分析的基本原理主成分分析的核心思想是通过线性变换将原始数据投影到一个新的坐标系中,使得投影后的数据具有最大的方差。
这样做的目的是为了找到数据中最重要的特征,即主成分。
主成分分析的步骤如下:1. 标准化数据:首先,对原始数据进行标准化处理,即将每个特征的均值调整为0,方差调整为1。
这样做的目的是为了消除不同特征之间的尺度差异。
2. 计算协方差矩阵:接下来,计算标准化后的数据的协方差矩阵。
协方差矩阵描述了不同特征之间的相关性。
协方差矩阵的对角线上的元素表示每个特征的方差,非对角线上的元素表示不同特征之间的协方差。
3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
特征值表示了在新坐标系下的投影方差,而特征向量表示了对应的投影方向。
4. 选择主成分:根据特征值的大小,选择前k个特征值对应的特征向量作为主成分。
这些主成分是原始数据中最重要的特征。
5. 数据转换:将原始数据投影到选定的主成分上,得到降维后的数据。
三、主成分分析的应用主成分分析在数据挖掘中有广泛的应用。
首先,它可以用于数据预处理,即在进行其他数据挖掘算法之前,对数据进行降维处理。
这样可以减少计算复杂度,同时保留重要的信息。
其次,主成分分析可以用于数据可视化。
通过将高维度数据降维到二维或三维空间,我们可以更好地理解数据之间的关系。
此外,主成分分析还可以用于特征选择,即选择最重要的特征用于建模和预测。
主成分分析

一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。
2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。
从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。
二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。
主成分分析

(3)对于特征值=4.661 0,=2.089 0, =1.0430分别求出其特征向量e1,e2,e3,再 用公式(3.5.5)计算各变量x1,x2,…,x9 在主成分z1,z2,z3上的载荷(表4)。
表4
主成分载荷 占方差的百分数 /% 82.918 80.191 92.948 75.346 85.811 71.843 95.118 98.971 92.939
z1
z2 -0.532 0.887
z3 -0.0061 -0.0028
x1 x2 x3 x4 x5 x6 x7 x8 x9
0.739 0.123 -0.964 0.004 2 0.813 0.819 0.933 0.197 0.964
0.009 6 0.009 5 0.868 0.444 0.179 -0.133 -0.1 0.003 7 -0.0011 0.125 -0.251 0.97
68.001 1 255.42 211.55 60.702 1 251.03 220.91 63.304 1 246.47 242.16 54.206 814.21 193.46
55.901 1 124.05 228.44 54.503 805.67 175.23
49.102 1 313.11 236.29
-0.0025 0.0091,x5,x6,x7,x9——正相关, x3——负相关,z1是生态经济结构状况。 (2)第2主成分z2:x2,x4,x5——正相关, x1— —负相关,其中,除了x1为人口总数外,x2,x4, x5都反映了人均占有资源量的情况,z2代表了人均 资源量。
0.009 -0.078 -0.93 -0.109 -0.05 -0.031 0.672 0.658 1 -0.03 0.89 0.098 0.222 -0.03 1 0.29
主成分分析法的原理应用及计算步骤57270

一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。
而变量之间信息的高度重叠与高度相关会给统计方法的应用带来许多障碍。
为了解决这些问题,最简单与最直接的解决方案就是削减变量的个数,但这必然又会导致信息丢失与信息不完整等问题的产生。
为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。
主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。
主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:↓主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。
↓主成分能够反映原有变量的绝大部分信息因子并不就是原有变量的简单取舍,而就是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。
↓主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。
↓主成分具有命名解释性总之,主成分分析法就是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、基本原理主成分分析就是数学上对数据降维的一种方法。
其基本思想就是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
(完整版)主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤1.计算协方差矩阵:首先,我们需要将原始数据进行标准化处理,即使每个特征都有零均值和单位方差。
假设我们有m个n维样本,数据集为X,标准化后的数据集为Z。
那么,计算协方差矩阵的公式如下:Cov(Z) = (1/m) * Z^T * Z其中,Z^T为Z的转置。
2.计算特征向量:通过对协方差矩阵进行特征值分解,可以得到特征值和特征向量。
特征值表示了新坐标系中每个特征的重要性程度,特征向量则表示了数据在新坐标系中的方向。
将协方差矩阵记为C,特征值记为λ1, λ2, ..., λn,特征向量记为v1, v2, ..., vn,那么特征值分解的公式如下:C*v=λ*v计算得到的特征向量按特征值的大小进行排序,从大到小排列。
3.选择主成分:从特征向量中选择与前k个最大特征值对应的特征向量作为主成分,即新坐标系的基向量。
这些主成分可以解释原始数据中大部分的方差。
我们可以通过设定一个阈值或者看特征值与总特征值之和的比例来确定保留的主成分个数。
4.映射数据:对于一个n维的原始数据样本x,通过将其投影到前k个主成分上,可以得到一个k维的新样本,使得新样本的方差最大化。
新样本的计算公式如下:y=W*x其中,y为新样本,W为特征向量矩阵,x为原始数据样本。
PCA的应用:1.数据降维:PCA可以通过主成分的选择,将高维数据降低到低维空间中,减少数据的复杂性和冗余性,提高计算效率。
2.特征提取:PCA可以通过寻找数据中的最相关的特征,提取出主要的信息,从而减小噪声的影响。
3.数据可视化:通过将数据映射到二维或三维空间中,PCA可以帮助我们更好地理解和解释数据。
总结:主成分分析是一种常用的数据降维方法,它通过投影数据到一个新的坐标系中,使得投影后的数据具有最大的方差。
通过计算协方差矩阵和特征向量,我们可以得到主成分,并将原始数据映射到新的坐标系中。
PCA 在数据降维、特征提取和数据可视化等方面有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型
假设用p个变量来描述研究对象,分别用X
1,X
2
…X
p
来表示,这p个变量构
成的p维随机向量为X=(X
1,X
2
…X
p
)t。
设随机向量X的均值为μ,协方差矩阵为
Σ。
假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:
Σ=E{(X-E[X])(X-E[X])}=(如图
对X进行线性变化,考虑原始变量的线性组合:
Z1=μ11X1+μ12X2+…μ1p X p
Z2=μ21X1+μ22X2+…μ2p X p
………………
Z p=μp1X1+μp2X2+…μpp X p
主成分是不相关的线性组合Z
1,Z
2
……Z
p
,并且Z
1
是X1,X2…X p的线性组合
中方差最大者,Z
2是与Z
1
不相关的线性组合中方差最大者,…,Z p是与Z
1
,Z
2
……
Z
p-1
都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤
第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始
数据可得矩阵X=(x
ij )
m×p
,其中x
ij
表示第i家上市公司的第j项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之
间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
R 为实对称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为:
22
1
1
)
()()()(j kj n
k i kj j kj n
k i kj ij X X X X X X X X R -=
--=
-=
∑∑
第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。
解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。
因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。
特征值是各主成分的方差,它的大小反映了各个主成分的
影响力。
主成分Z i 的贡献率W i =
∑=p
j
j j
1
λλ,累计 贡献率为
∑∑==p
j
j m
j j 1
1
λλ。
根据选取主成分个数的原则,特征值要求大于1且累计贡 献率达80%-95%的特征值λ1,λ2,…,λm 所对应的1,2,…,m (m ≤p ),其中整数m 即为主成分的个数。
第五步:建立初始因子载荷矩阵,解释主成分。
因子载荷量是主成分Z i 与原始指标X i 的相关系数R (Z i ,X i ),揭示了主成分与各财务比率之间的相关程度,利用它可较好地解释主成分的经济意义。
第六步:计算企业财务综合评分函数F m ,计算出上市公司的综合值,并进行降序排列:
F m =W 1Z 1 + W 2Z 2+…+ W i Z i
[2]
朱星宇,陈勇强.SPSS 多元统计分析方法及应用[M].北京:清华大学出版社,。